7 EXAMPLE.
Let $\quad \eta \equiv(E, P, M ; B)$ be a 0 -Lie derivable bundle.
Then $\quad B: E x_{M} T M \rightarrow T E$
results into a horizontal section (see [7], §5).
Moreover, if n is a vector bundle and B is a linear morphism on $T M$, the O-Lie-derivative coincide with the covariant derivative.

8 EXAMPLE

We get the usual Lie derivative of tensors $M \rightarrow T_{(p, q)}$, taking into account the previous proposition and the l-Lie-derivable bundles
$n \equiv\left(T M, \Pi_{M}, M ; S \circ C\right)$
and
$n \equiv\left(T^{*} M, \rho_{M}, M, C^{*}\right) \quad$.

9 EXAMPLE.
Let $B \equiv(E, P, M ; B)$ a bundle of geometric objects (see [7]).
Let β be of "order $K^{\prime \prime}$, i.e. such that the following condition holds: if $v \in J^{k} T M, x^{\prime}, x^{\prime \prime}: M \rightarrow T M$ are two representative of v and $f^{\prime}, f^{\prime \prime}$ are the one parameter groups generated by $x^{\prime}, x^{\prime \prime}$
then

$$
\partial\left(B f^{\prime}\right)=\partial\left(B f^{\prime \prime}\right) .
$$

Then the map

$$
B: E \times J^{k} T M \rightarrow T E
$$

given by $B(e, v) \equiv \partial(B f)(e)$
makes ($E, p, M ; B$) a k-Lie derivable bundle.

4 CONNECTION ON A BUNDLE.
Let $n \equiv(E, p, M)$ be a bundle.
1 DEFINITION.

A CONNECTION on n is an affine bundle morphism on E

$$
\tilde{\Gamma}: J^{\prime} E \rightarrow \overline{J^{\prime} E}=T^{*} M \otimes_{E} \vee T E
$$

whose fiber derivatives are 1.
A HORIZONTAL SECTION is a section
$\tilde{H}: E \rightarrow J ' E$

Hence the following diagram is commutative

2 PROPOSITION.

The maps α and B between the set of connections and the set of horizontal sections, given by

$$
\alpha: \tilde{\Gamma} \rightarrow \tilde{H},
$$

where \dot{H} is the unique horizontal section such that $\check{\Gamma} \circ \tilde{H}=0$,
and

$$
B: \tilde{H} \rightarrow \tilde{\Gamma} \equiv i d_{J E}-\tilde{H} \circ \sigma^{01} \text {, }
$$

are inverse bijections.
Henceforth we will consider $\tilde{\Gamma}$ and \tilde{H} as mutually related.
Hence giving a connection is the choice of a point for each affine fiber of J'E, getting in this way an identification of the affine fibers with their vector spaces.

3 PROPOSITION.

The set \mathcal{J}^{2} of all connections is the affine space of the sections of the affine bundle $n^{0 l} E$, whose vector space is the space of sections of the vector bundle $\mathrm{n}^{\mathrm{ol}} \mathrm{E}$.

4 Let us remark that \widetilde{J} [7] and \tilde{I} have the same vector space. PROPOSITION.

Each one of the following commutative diagrams determine the same isomorphism, whose derivative is 1 , between the two affine spaces I and \tilde{I} :
a)

b)

Henceforth we will write \tilde{I}, Γ and H for $\tilde{J}, \tilde{\Gamma}$ and \tilde{H}.

5 PROPOSITION.
Let $c: R \rightarrow E$ be a curve. The following conditions are equivalent.
a) $H \circ \sigma^{01} \circ j^{\prime} c \equiv H \circ C=j^{\prime} c$
$\left.a^{\prime}\right) H \circ h \circ d c \equiv H \circ(c, d(p \circ c))=d c$
b) $\Gamma \circ j^{\prime} c=0$
$\left.b^{\prime}\right) \Gamma \circ d c=0 \quad$.

Hence a curve $c: R \rightarrow E$ is HORIZONTAL if the previous conditions hold.

6 PROPOSITION.

Let η be a vector bundle. Let Γ be a connection.
The following conditions are equivalent.
a) $\quad \Gamma: J^{\prime} E \rightarrow \overline{J^{\prime} E} \quad$ is a vector bundle morphism on M.
$\left.a^{\prime}\right) \Gamma: T E \rightarrow \bar{v} T E \quad$ is a vector bundle morphism on TM.
b) $H: E \rightarrow$ J'E is a vector bundle morphism on $T M$.
$\left.b^{\prime}\right) \quad H: h T E \rightarrow$ TE is a vector bundle morphism on TM.

Hence a connection (horizontal section) is LINEAR if the previous condi tions hold.

7 PROPOSITION.

Let Γ^{\prime} and $\Gamma^{\prime \prime}$ be two linear connections of η^{\prime} and $\eta^{\prime \prime}$, respectively The tensor product of Γ^{\prime} and $\Gamma^{\prime \prime}$ is the connection Γ on $n^{\prime} n^{\prime \prime}$ associated with the horizontal section

$$
H=t \circ\left(H^{\prime} \otimes H^{\prime \prime}\right)
$$

Hence the following diagram is commutative

8 PROPOSITION.

Let r be a linear connection on η.

The dual connection of Γ is the linear connection Γ^{*} on n^{*} associated with the unique horizontal section H^{*}, which makes commutative the following diagram

9 PROPOSITION.
Let Γ be a linear connection on n. Let $v: M \rightarrow E$ be a section. We get $\quad \nabla V=\left(i d_{T}^{*} M \mu_{E}\right) \circ \Gamma \circ j^{l} V \quad \dot{-}$

Hence the following diagram is commutative

10 PROPOSITION.
Let $n \equiv \tau M$ and let $g: T M X_{M} T M \rightarrow R$ be a non degenerate symmetrical bilinear map.

The Riemannian connection r induced by g is associated with the unique linear section

$$
H: T M \rightarrow J T M
$$

such that
a) the following diagram is commutative

b) the torsion $\quad \theta=0$

