7 EXAMPLE.

Let $n \equiv (E,p,M;B)$ be a O-Lie derivable bundle.

Then
$$B : E \times_M T M \rightarrow T E$$

results into a horizontal section (see [7], §5).

Moreover, if n is a vector bundle and B is a linear morphism on TM, the O-Lie-derivative coincide with the covariant derivative.

8 EXAMPLE

We get the usual Lie derivative of tensors $M \rightarrow T$, taking into account (p,q)the previous proposition and the l-Lie-derivable bundles

٠

$$n \equiv (TM, \Pi_M, M; s \circ c)$$
 and $n \equiv (T^*M, \rho_M, M, C^*)$

9 EXAMPLE.

Let $\beta \equiv (E,p,M;B)$ a bundle of geometric objects (see [7]).

Let B be of "order K", i.e. such that the following condition holds: if $v \in J^{k}TM$, x',x" : $M \rightarrow TM$ are two representative of v and f',f" are the one parameter groups generated by x',x"

then $\partial(Bf') = \partial(Bf'')$.

Then the map

B: $E \times J^{k} TM \rightarrow TE$, given by $B(e,v) \equiv \partial(Bf)(e)$

makes (E,p,M;B) a k-Lie derivable bundle.

4 CONNECTION ON A BUNDLE.

Let $\eta \equiv (E, p, M)$ be a bundle.

1 DEFINITION.

A CONNECTION on n is an affine bundle morphism on E

$$\tilde{T}$$
: J'E $\rightarrow \overline{J'E} = T^*M \otimes_E v TE$

whose fiber derivatives are 1. A HORIZONTAL SECTION is a section $\stackrel{\sim}{H} : E \rightarrow J'E$

Hence the following diagram is commutative

2 PROPOSITION.

The maps α and β between the set of connections and the set of horizontal sections, given by

$$\alpha : \tilde{\Gamma} \rightarrow \tilde{H},$$

where H is the unique horizontal section such that $\tilde{\Gamma} \circ \tilde{H} = 0$,

and
$$\beta : \hat{H} \rightarrow \hat{\Gamma} \equiv id_{j'E} - \hat{H} \circ \sigma^{0}$$
,

are inverse bijections.

Henceforth we will consider $\stackrel{\sim}{\Gamma}$ and $\stackrel{\sim}{H}$ as mutually related .

Hence giving a connection is the choice of a point for each affine fiber of

J'E, getting in this way an identification of the affine fibers with their vector

spaces.

3 PROPOSITION.

The set $\hat{\mathbf{j}}^{\prime}$ of all connections is the affine space of the sections of the affine bundle $n^{O1}E$, whose vector space is the space of sections of the vector bundle $n^{O1}E$. 4 Let us remark that $\hat{\mathbf{j}}^{\prime}$ [7] and $\hat{\hat{\mathbf{j}}}^{\prime}$ have the same vector space. PROPOSITION.

Each one of the following commutative diagrams determine the same isomorphism, whose derivative is 1, between the two affine spaces \mathcal{T} and $\hat{\mathcal{F}}$:

a)
$$TM \times_M J'E \xrightarrow{\sim} TM \times_M (T^*M \otimes_E \sqrt{TE})$$

5 PROPOSITION.

Let $c : R \rightarrow E$ be a curve. The following conditions are equivalent.

a) H ₀ ♂^{0]} ∘ j'c ≡ H ∘c = j'c

a') $H \circ h \circ dc \equiv H \circ (c, d(p \circ c)) = d c$

b) Гој'С=0 b') ГоdС=0 <u>.</u>

Hence a curve $c : R \rightarrow E$ is HORIZONTAL if the previous conditions hold. 6 PROPOSITION.

Let n be a vector bundle. Let Γ be a connection. The following conditions are equivalent.

a) $\Gamma: J'E \rightarrow J'E$ is a vector bundle morphism on M. a') $\Gamma: TE \rightarrow \sqrt{TE}$ is a vector bundle morphism on TM. b) $H : E \rightarrow J'E$ is a vector bundle morphism on TM. b') H :hTE \rightarrow TE is a vector bundle morphism on TM. Hence a connection (horizontal section) is LINEAR if the previous condi

tions hold.

7 PROPOSITION.

 Γ' and Γ'' be two linear connections of η' and η'' , respectively Let The tensor product of Γ' and Γ'' is the connection $\overline{\Gamma}$ on $n' \otimes n''$ associated with the horizontal section

$$H = t \circ (H' \otimes H'')$$
.

Hence the following diagram is commutative

8 PROPOSITION.

Let Γ be a linear connection on η .

The dual connection of Γ is the linear connection Γ^* on π^* associated

with the unique horizontal section H^* , which makes commutative the following

diagram

- 20 -

9 PROPOSITION.

Let Γ be a linear connection on n. Let $v : M \to E$ be a section. We get $\nabla v = (id_T *_M \otimes \coprod_E) \circ \Gamma \circ j^1 v \stackrel{!}{\cdot}$

Hence the following diagram is commutative

10 PROPOSITION.

Let $n \equiv \tau M$ and let $g : TM \times_M TM \rightarrow R$ be a non degenerate symmetrical bilinear map.

The Riemannian connection Γ induced by g is associated with the unique

linear section

$$H : T M \rightarrow J'T M$$

such that

b) the torsion $\Theta = 0$.