
b) We get $J^{\prime}(M, R) \cong R \times T^{*} M$.

This isomorphism is the unique map $J^{\prime}(M, R) \rightarrow R \times T^{*} M$ that makes commuta tive the following diagram, for each function $f: M \rightarrow R$,

c) There is a unique map (which is an isomorphism)

$$
J^{2}(R, N) \rightarrow R \times s T^{2} N
$$

such that the following diagram is commutative, for each curve $c: R \rightarrow N$,

2 - JETS OF SECTIONS.
Let $\eta \equiv(E, p, M)$ be a bundle.
1 DEFINITION.
The JET SPACE, of order i, OF SECTIONS $M \rightarrow E$, is the set where

$$
J^{i} E \equiv \operatorname{L}_{p \in M} \rho_{p / \rho_{p}^{i}},
$$

a) \mathcal{I}_{p} is the se of C^{∞} sections $M \rightarrow E$ defined in a neighbourhood of p;
b) ρ_{p}^{i} is the restriction of the equivalence relation defined in $(1,1)$. Let us remark that we get

$$
J^{i}(M, N)=J^{i}(M \times N),
$$

considering $M \times N$ as a trivial bundle on M.
2 PROPOSITION.
a) $J^{i} E$ is a submanifold of $J^{i}(M, E)$.
b) The following diagram is commutative, for each $i>j$

c) The triple $n^{j i} \equiv\left(J^{i} E, \sigma^{j i}, J^{i} E\right) \quad$ is a bundle.
d) The triple $n^{i} \equiv\left(J^{i} E, \sigma^{i}, M\right) \quad$ is a bundle.
e) If
$f: M \rightarrow E$
is a section,
then

$$
j^{i} f: M \rightarrow J^{i} E
$$

is a section

3 PROPOSITION.

We get a natural isomorphism

$$
J^{\circ} E \cong E \quad \therefore
$$

4 THEOREM.

$$
\eta^{01} \equiv\left(J^{\prime} E, \sigma^{01}, J^{\circ} E\right) \text { is an affine subbundle of }\left(J^{\prime}(M, E), \sigma^{01}, J^{\circ}(M, E)\right)
$$

over the inclusion

$$
J^{\circ} E \rightarrow J^{\circ}(M, E),
$$

whose vector bundle is $\bar{n}^{0 l} \equiv\left(T^{*} M \otimes_{E} \cup T E, \Pi_{E}, E\right)$.
PROOF .
We have

$$
J^{\prime} E=\operatorname{L}_{\mathrm{e} \in \mathrm{E}}\left\{\Phi e^{\}}\right.
$$

where

$$
\Phi_{e}: T_{p(e)} M \rightarrow T_{e} E
$$

is any linear map such that
a) $T p \circ \Phi_{e}=i d_{T p(e)^{M}}-$

5 THEOREM.
$n^{12} \equiv\left(J^{2} E, \sigma^{12}, J^{\prime} E\right) \quad$ is an affine subbundle of $\left(J^{2}(M, E), \sigma^{12}, J^{\prime}(M, E)\right)$
over the inclusion J'E $\rightarrow J^{\prime}(M, E)$, whose vector bundle is

$$
\bar{n}^{12} \equiv\left(J^{\prime} E x_{E}\left(T^{*} M V_{M} T^{*} M \otimes_{E} \vee T E\right), \bar{\sigma}^{12}, J^{\prime}(M, E)\right)
$$

PROOF.
We have

$$
\left.J^{2} E=L_{Q_{e} \in J} E^{\left\{\bar{\Phi}_{\Phi}\right.}\right\}
$$

where

$$
\bar{\Phi}_{\Phi}: T^{2} p(e)^{M} \rightarrow T_{e}^{2} E
$$

is any linear map as in (1.7), that satisfies the further condition
a) $T^{2} p \circ \bar{\Phi}_{\phi}=i d_{T}^{2}{ }_{p(e)}^{M} \quad-$

This theorem can be generalized to higher orders.
6 PROPOSITION.
There is a unique map

$$
c: J E X_{M}^{\top} M \rightarrow T E
$$

such that, for each section $u: M \rightarrow T M, v: M \rightarrow E$, the following diagram is commutative

Such a map is given by

$$
c:\left(\Phi_{e}, u_{p(e)}\right) \rightarrow \Phi_{e}\left(u_{p(e)}\right) \in T_{e} E .
$$

c is an affine morphism on $h T E$ and a linear morphism on $J ' E \rightarrow E$. Hence the following diagram is commutative

7 PROPOSITION.
There is a unique map

$$
c^{*}: T^{*} M x_{M} J^{\prime} T M \rightarrow T T^{*} M
$$

such that the following diagram is commutative

8 PROPOSITION.
Let $\eta \equiv(E, p, M)$ be an affine (vector) bundle, whose vector bundle is $\bar{n} \equiv(\bar{E}, \bar{p}, M)$.

Then $\eta^{i} \equiv\left(J^{i} E, \sigma^{i}, M\right)$ is an affine (vector) bundle and

$$
\overline{J^{\top} E}=J^{i} \bar{E}
$$

PROOF .
The affine (vector) operations on E are compatible with respect to the equivalence relations $\rho_{p}^{i} \quad-$

9 COROLLARY.
Let $k>h>0$.
Let $n \equiv(E, p, M)$ be a vector bundle.
Then $n^{h k} \equiv\left(J^{k} E, \sigma^{h k}, J^{k} E\right)$ is an affine bundle, whase vector bundle $n^{-h k}$ is the pull back bundle of (Ker $\sigma^{h k}, \sigma^{k}$, M) with respect to the map σ^{h}. Namely the following diagram is commutative

Moreover, if $h \equiv k-1$, we get

$$
j^{-h k} E=J^{h} E x_{M}\left(l_{k M}^{\prime} \quad T^{*} M \mathbb{ब}_{M} E\right)
$$

where $V T^{*} M$ is the K-symmetrized tensor product of $T^{*} M$ over M. kM
Let us remark that, if $E \equiv M \times F$ (i.e. n is a trivial bundle), then we get

$$
J^{k} E=E \oplus_{M} \operatorname{Ker} \sigma^{o k}=F \times \operatorname{Ker} \sigma^{o k} \text {. }
$$

In such a case, we put

$$
j '^{k} u \equiv \pi^{2} \circ j^{k} u .
$$

In particular, for $F \equiv R$, we get

$$
j^{\prime}{ }_{f}=d f
$$

10 PROPOSITION.
Let $\eta^{\prime} \equiv\left(E^{\prime}, p^{\prime}, M\right)$ and $\eta^{\prime \prime}=\left(E^{\prime \prime}, p^{\prime \prime}, M\right)$ be vector bundles.
There is a unique linear map $t: J^{k} E^{\prime} \mathbb{Q}_{M^{\prime}} j^{k} E^{\prime \prime} \rightarrow J^{k}\left(E^{\prime} \mathbb{M}_{M^{\prime \prime}}\right)$
such that the following diagram is commutative

for each section $u^{\prime}: M \rightarrow E^{\prime}, u^{\prime \prime}: M \rightarrow E^{\prime \prime}$

11 COROLLARY.

Let $\eta \equiv(E, p, M)$ be a vector bundle.
There is a unique linear map on M

$$
t: \mathbb{K} \quad \otimes_{M} J^{k-1} E \rightarrow J^{k} E,
$$

where \mathbb{K} is the Kernel of the linear morphism $J^{k}(M \times R) \rightarrow J^{\circ}(M \times R)$ on M, such that

As a particular case, we get

$$
\begin{aligned}
& j^{1}(f u)=f j^{1} u+d f \otimes u \\
& t^{\prime}(d f \otimes u)=d f \otimes u
\end{aligned}
$$

being

12 PROPOSITION.
ket $n \equiv(E, P, M)$ be an affine bundle, whose vector bundle is $\bar{n} \equiv(\bar{E}, \bar{p}, M)$. There is a unique map

$$
J^{\prime} E X_{E} J^{\prime} E \longrightarrow T^{*} M \mathbb{N}_{M} \bar{E}
$$

such that, for each vertical curve $c, c^{\prime}: R \rightarrow E$, the following diagram is commutative

13 PROPOSITION.
Let $n \equiv(E, p, M)$ be a vector bundle and let $n^{*} \equiv\left(E^{*}, P_{9}^{\prime} M\right)$ be the dual one. Ther is a unique map

such that, for each section $u: M \rightarrow E$ and $v: M \rightarrow E^{*}$, the following diagram is commutative

Such a map is bilinear.

14 PROPOSITION.

Let $n \equiv(E, p, M)$ be a vector bundle and let $g: E X_{M} E \rightarrow R$ be a pseudoRiemannian structure.

There is a unique map

$$
g: J^{\prime} E X_{M} J^{\prime} E \rightarrow T^{*} M
$$

such that the following diagram is commutative, for each section $u, v: M \rightarrow E$

3 LIE DERIVATIVES.

1 DEFINITION.
A K-LIE-DERIVABLE bundle is a 4-plet

$$
n \equiv(E, p, M ; B),
$$

where (E, p, M) is a bundle and

$$
B: E X_{M} J^{k} T M \rightarrow T E
$$

is a bundle morphism on hTE and a linear morphism on E.

