$$J'(R,N) \longrightarrow R \times T N$$

$$j'c \qquad \qquad (id_R,dc)$$

$$R$$

b) We get
$$J'(M,R) \cong R \times T^*M$$
.

This isomorphism is the unique map $J'(M,R) \to R \times T^*M$ that makes commutative the following diagram, for each function $f: M \to R$,

$$J'(M,R) \longrightarrow R \times T^*M$$

$$j f \qquad \qquad (f,df)$$

c) There is a unique map (which is an isomorphism)

$$J^2(R,N) \rightarrow R \times S T^2 N$$

such that the following diagram is commutative, for each curve $c: R \rightarrow N$,

$$J^{2}(R,N) \xrightarrow{R \times s T^{2} N} R \times s T^{2} N$$

$$j^{2}c \xrightarrow{R} (id_{R},d^{2}c)$$

2 - JETS OF SECTIONS.

Let $\eta \equiv (E,p,M)$ be a bundle.

1 DEFINITION.

The JET SPACE, of order i, OF SECTIONS M → E, is the set

- a) \int_{p}^{∞} is the se of C^{∞} sections $M \to E$ defined in a neighbourhood of p;
- b) $_{\rm p}^{\rm i}$ is the restriction of the equivalence relation defined in (1,1) . Let us remark that we get

$$J^{i}(M,N) = J^{i}(M \times N),$$

considering M x N as a trivial bundle on M.

2 PROPOSITION.

- a) $J^{i}E$ is a submanifold of $J^{i}(M,E)$.
- b) The following diagram is commutative, for each i > j

- c) The triple $n^{ji} = (J^iE, \sigma^{ji}, J^iE)$ is a bundle.
- d) The triple $n^{i} \equiv (J^{i}E, \sigma^{i}, M)$ is a bundle.
- e) If $f: M \to E \qquad \text{is a section,}$ then $j^i f: M \to J^i E \qquad \text{is a section} \qquad .$

3 PROPOSITION.

We get a natural isomorphism

4 THEOREM.

 $\eta^{01} \equiv (J'E, \sigma^{01}, J^{\circ}E)$ is an affine subbundle of $(J'(M,E), \sigma^{01}, J^{\circ}(M,E))$ over the inclusion $J^{\circ}E \rightarrow J^{\circ}(M,E)$, whose vector bundle is $\bar{\eta}^{01} \equiv (T^{*}M \otimes_{E} \vee TE, \Pi_{E}, E)$. PROOF.

We have
$$J'E = \left[\begin{array}{c} \Phi_e \\ e \in E \end{array}\right]$$

$$\Phi_{e} : T_{p(e)}^{M} \rightarrow T_{e}^{E}$$

is any linear map such that

a)
$$Tp \circ \Phi_e = id_{T_p(e)}M$$
 :

5 THEOREM.

 $\eta^{12} \equiv (J^2E, \sigma^{12}, J'E)$ is an affine subbundle of $(J^2(M,E), \sigma^{12}, J'(M,E))$

over the inclusion $J'E \rightarrow J'(M,E)$, whose vector bundle is

$$\bar{\eta}^{12} \equiv (J'E x_F(T^*M V_M T^*M x_F v TE), \bar{\sigma}^{12}, J'(M,E))$$

PROOF.

We have

$$J^{2}E = \bigcup_{\varphi \in J'} E^{\{\overline{\Phi}_{\Phi}\}}$$

where

$$\bar{\Phi}_{e}: T^{2}_{p(e)}M \rightarrow T^{2}_{e}E$$

is any linear map as in (1.7), that satisfies the further condition

a)
$$T^2 p \circ \overline{\Phi}_e = id_{T^2} M \dot{-}$$

This theorem can be generalized to higher orders.

6 PROPOSITION.

There is a unique map

$$c: J'E \times_M T M \rightarrow T E$$

such that, for each section $u: M \to TM$, $v: M \to E$, the following diagram is commutative

Such a map is given by

c:
$$(\Phi_e, u_{p(e)}) \rightarrow \Phi_e(u_{p(e)}) \in T_e E$$
.

c is an affine morphism on hTE and a linear morphism on J'E \rightarrow E. Hence the following diagram is commutative

7 PROPOSITION.

There is a unique map

$$c^*: T^*M \times_M J' T M \rightarrow T T^*M$$

such that the following diagram is commutative

8 PROPOSITION.

Let $\eta \equiv (E,p,M)$ be an affine (vector) bundle, whose vector bundle is $\bar{\eta} \equiv (\bar{E},\bar{p},M)$.

Then
$$\eta^i \equiv (J^i E, \sigma^i, M)$$
 is an affine (vector) bundle and $J^i E = J^i \bar{E}$.

PROOF.

The affine (vector) operations on E are compatible with respect to the equivalence relations ρ_p^i .

9 COROLLARY.

Let k > h > 0.

Let $\eta \equiv (E,p,M)$ be a vector bundle.

Then $n^{hk} \equiv (J^k E, \sigma^{hk}, J^k E)$ is an affine bundle, whose vector bundle n^{hk}

is the pull back bundle of (Ker σ , σ ,M) with respect to the map σ .

Namely the following diagram is commutative

Moreover, if $h \equiv k-1$, we get

$$J^{hk}E = J^{h}E \times_{M} (V T^{*}M \times_{M} E),$$

where V T * M is the K-symmetrized tensor product of T * M over M $\underline{\ }$

Let us remark that, if $E \equiv MxF$ (i.e. n is a trivial bundle), then we get

$$J^{k}E = E \bullet_{M} Ker \sigma^{Ok} = F \times Ker \sigma^{Ok}$$
.

In such a case, we put

$$j^{k}u \equiv \pi^{2} \circ j^{k}u$$
.

In particular, for $F \equiv R$, we get

$$j'^{\dagger}f = df$$

10 PROPOSITION.

Let $\eta' \equiv (E',p',M)$ and $\eta'' = (E'',p'',M)$ be vector bundles. There is a unique linear map $t: J^k E' \bowtie_M J^k E'' \rightarrow J^k (E' \bowtie_M E'')$

such that the following diagram is commutative

$$J^{k}E' \underset{M}{\otimes_{M}} J^{k}E'' \xrightarrow{t} J^{k}(E' \underset{M}{\otimes_{M}} E'')$$

$$(j^{k}u', j^{k}u'') \underset{M}{\longrightarrow} j^{k}(u' \underset{M}{\otimes} u'')$$

for each section $u': M \rightarrow E', u'': M \rightarrow E''$

11 COROLLARY.

Let $\eta \equiv (E,p,M)$ be a vector bundle.

There is a unique linear map on M

$$t: IK \otimes_{M} J^{k-1}E \rightarrow J^{k}E,$$

where K is the Kernel of the linear morphism $J^k(MxR) \rightarrow J^\circ(MxR)$ on M, such that

As a particular case, we get

$$j^{l}(fu) = f j^{l}u + d f \boxtimes u,$$

$$t'(d f \boxtimes u) = d f \boxtimes u .$$

being

12 PROPOSITION.

Let $\eta \equiv (E,p,M)$ be an affine bundle, whose vector bundle is $\bar{\eta} \equiv (\bar{E},\bar{p},M)$. There is a unique map

$$J'E \times_E J'E \xrightarrow{dif} T^*M \otimes_M \bar{E}$$

such that, for each vertical curve $c,c':R \rightarrow E$, the following diagram is commutative

$$J'E \times_{E} J'E \xrightarrow{T^*M \boxtimes_{M} E}$$

$$(j'c,j'c') \qquad R \qquad j'(c-c')$$

13 PROPOSITION.

Let $n \equiv (E,p,M)$ be a vector bundle and let $n^* \equiv (E^*,p_s'M)$ be the dual one. Ther is a unique map

$$J'E \times_{M} J'E^{*} \longrightarrow T^{*}M$$

such that, for each section $u: M \to E$ and $v: M \to E^*$, the following diagram is commutative

$$J'E \times_{M} J' E^{*} \xrightarrow{<,>} T^{*}M$$

$$(j^{1}u,j^{1}v) \qquad M$$

$$\Pi^{2}(j^{1}< u,v>)$$

Such a map is bilinear .

14 PROPOSITION.

Let $n \equiv (E,p,M)$ be a vector bundle and let $g: E \times_M E \to R$ be a pseudo-Riemannian structure.

There is a unique map

$$g: J'E \times_M J'E \rightarrow T^*M$$

such that the following diagram is commutative, for each section $u,v:M\to E$

3 LIE DERIVATIVES.

1 DEFINITION.

A K-LIE-DERIVABLE bundle is a 4-plet

$$n \equiv (E,p,M;B),$$

where (E,p,M) is a bundle and

$$B : E \times_M J^k TM \rightarrow T E$$