1 - JETS.
Let M and N be two C^{∞} manifolds.
1 DEFINITION.
The JET SPACE, of order i, OF MAPS $M \rightarrow N$, is the set

$$
J^{i}(M, N) \equiv \bigsqcup_{p \in M} \mathcal{F}_{p / \rho_{p}^{i}},
$$

where
a) \exists_{p} is the set of C^{∞} maps $M \rightarrow N$ defined in a neighbourhood of p;
b) ρ_{p}^{i} is the equivalence relation in F_{p} given by

$$
f \rho_{p}^{i} g \quad \Longleftrightarrow \quad T_{p}^{i} f=T_{p}^{i} g \quad \dot{ }
$$

2 DEFINITION.
Let

$$
f: M \rightarrow N
$$

be a C^{∞} map, perhaps defined locally.
The JET, of order i, of f is the map

$$
j^{i} f: M \rightarrow J^{i}(M, N)
$$

given by

$$
p \rightarrow[f]_{p}^{i} \quad-
$$

3 PROPOSITION.
There is a unique C^{∞} structure on $J^{i}(M, N)$, such that

$$
\forall f: M \rightarrow N \quad \text { the map } \quad j^{i} f \quad \text { is } C^{\infty} .
$$

PROOF .
It can be easily seen by means of an atlas of M and N.
4 PROPOSITIONS.
Let $0 \leqslant i \leqslant j$. The natural projection

$$
\sigma^{i j}: J^{j}(M, N) \rightarrow J^{i}(M, N)
$$

given by

$$
[f]_{p}^{j} \rightarrow[f]_{p}^{i}
$$

(which is well defined) induces a bundle structure

$$
\left(J^{j}(M, N), \sigma^{i j}, J^{i}(M, N)\right) \quad \doteq
$$

5 PROPOSITION.
The map

$$
J^{\circ}(M, N) \rightarrow M \times N
$$

given by

$$
[f]_{p}^{\circ} \rightarrow(p, f(p))
$$

(which is well defined) is a diffeomorphism Henceforth we will make the identification

$$
J^{\circ}(M, N) \cong M \times N
$$

6 PROPOSITION.
The map

$$
\begin{aligned}
J^{\prime}(M, N) & \rightarrow T^{*} M \otimes T N \\
{[f]_{p}^{i} } & \rightarrow T_{p} f \in T_{p}^{*} M \otimes T_{f(p)} N
\end{aligned}
$$

(which is well defined) is a diffeomorphism.
PROOF .
We have

$$
J^{\prime}(M, N)=\bigsqcup_{(p, q) \in M \times N}\left\{\Phi(p, q)^{\}}\right.
$$

where

$$
\Phi_{(p, q)}: T_{p} M \rightarrow T_{q} N
$$

is any linear map -
Henceforth we will make the identification

$$
J^{\prime}(M, N) \cong T^{*} M \otimes T N
$$

7 THEOREM.
$\left(J^{2}(M, N), \sigma^{\prime \prime}, J^{\prime}(M, N)\right)$ is an affine bundle, whose vector bundle is

$$
\left(J^{\prime}(M, N) X_{M \times N}\left(T^{*} M V_{M} T^{*} M M_{X}^{\infty} N^{\top} N\right), \bar{\sigma}^{12}, J^{\prime}(M, N)\right)
$$

(where v denotes the symmetrized tensor product).
PROOF .

We have

$$
J^{2}(M, N)=\underbrace{}_{(p, q)^{\epsilon J^{\prime}(M N)}}{ }^{\left\{\bar{\Phi}_{\Phi}\right.}(p, q)^{\}}
$$

where

$$
\bar{\Phi}_{(p, q)}: T_{p}^{2} M \rightarrow T_{q}^{2} N
$$

is any map such that
a) $\bar{\Phi}_{\Phi}$ is a linear bundle homomorphism, hence the following diagram is

b) $\bar{\Phi}_{\Phi(p, q)} 0 \mathrm{~s}$ is linear
c) $T \Pi_{N} \circ \bar{\Phi}_{\Phi}^{(p, q)}={ }_{(p, q)}$
d) $\Perp \circ \bar{\Phi}_{\Phi_{(p, q)}} 0 v=\Phi_{(p, q)} 0 T \Pi_{M}$.

In fact a) ..., d) characterize the jets of maps $M \rightarrow N$.
Moreover, if we fix $\Phi(p, q) \in J^{\prime}(M, N)$, then the conditions a) and b) determi ne a vector space structure on the $\operatorname{set}\left\{\bar{\Phi}_{\Phi}\right\}$ and the linear functional conditions c) and d) determine an affine subspace.

The associated vector space is obtained taking $\Phi_{(p, q)}=0$ in the conditions c) and d). Such maps can be identified with a couple constituted by a bilinear symmetric map $T M X_{M} T M \rightarrow T N$ and a linear map $T M \rightarrow T N$ over a same $\operatorname{map} M \rightarrow N \quad-$

This theorem can be generalized to higer orders.
8 PROPOSITION.
a) We get $J^{\prime}(R, N) \cong R \times T N$

This isomorphism is the unique map $J^{\prime}(R, N) \rightarrow R \times T N$ that makes commutative the following diagram, for each curve $c: R \rightarrow N$,

b) We get $J^{\prime}(M, R) \cong R \times T^{*} M$.

This isomorphism is the unique map $J^{\prime}(M, R) \rightarrow R \times T^{*} M$ that makes commuta tive the following diagram, for each function $f: M \rightarrow R$,

c) There is a unique map (which is an isomorphism)

$$
J^{2}(R, N) \rightarrow R \times s T^{2} N
$$

such that the following diagram is commutative, for each curve $c: R \rightarrow N$,

2 - JETS OF SECTIONS.
Let $\eta \equiv(E, p, M)$ be a bundle.
1 DEFINITION.
The JET SPACE, of order i, OF SECTIONS $M \rightarrow E$, is the set where

$$
J^{i} E \equiv \operatorname{L}_{p \in M} \rho_{p / \rho_{p}^{i}},
$$

a) \mathcal{I}_{p} is the se of C^{∞} sections $M \rightarrow E$ defined in a neighbourhood of p;
b) ρ_{p}^{i} is the restriction of the equivalence relation defined in $(1,1)$. Let us remark that we get

