Let M and N be two $m C^\infty$ manifolds.

1 DEFINITION.

The JET SPACE, of order i, OF MAPS $M \rightarrow N$, is the set

- 4 -

$$J^{i}(M,N) \equiv \bigsqcup_{p \in M} \mathcal{F}_{p/\rho p}^{\rho i}$$
,

where

a)
$$\mathbf{J}_{p}$$
 is the set of C^{∞} maps $M \rightarrow N$ defined in a neighbourhood of p;
b) ρ_{p}^{i} is the equivalence relation in \mathbf{J}_{p} given by
 $f \rho_{p}^{i} g \iff T_{p}^{i} f = T_{p}^{i} g \stackrel{\cdot}{-}$

<u>.</u>

2 DEFINITION.

Let
$$f: M \rightarrow N$$

be a C^{∞} map, perhaps defined locally.
The JET, of order i, of f is the map
 $j^{i}f: M \rightarrow J^{i}(M,N)$
given by $p \rightarrow [f]_{p}^{i}$

3 PROPOSITION.

There is a unique C^{∞} structure on $J^{i}(M,N)$, such that $\forall f: M \rightarrow N$ the map $j^{i}f$ is C^{∞} .

PROOF.

It can be easily seen by means of an atlas of $\,M\,$ and $\,N\,$.

4 PROPOSITIONS.

Let $0 \le i \le j$. The natural projection

given by

(which is well defined) induces a bundle structure $(J^{j}(M,N), \sigma^{ij}, J^{i}(M,N))$

5 PROPOSITION.

 $J^{\circ}(M,N) \rightarrow M \times N$ The map $[f]_{p}^{\circ} \rightarrow (p,f(p))$ given by

(which is well defined) is a diffeomorphism • Henceforth we will make the identification

 $J^{\circ}(M,N) \cong M \times N$.

6 PROPOSITION.

The map

$$\begin{array}{rcl} J'(M,N) & \rightarrow & T^{*}M \boxtimes T N \\ & \left[f\right]_{p}^{i} & \rightarrow & T_{p}f \in T^{*}M \boxtimes T_{f(p)}N \\ & p & p & p & f(p) \end{array}$$

(which is well defined) is a diffeomorphism.

PROOF.

We have
$$J'(M,N) = \bigsqcup_{\{p,q\} \in M \times N} \{ \Phi(p,q) \}$$

where $\Phi(p,q) : T_p M \rightarrow T_q N$

is any linear map

Henceforth we will make the identification

$$J'(M,N) \stackrel{\sim}{=} T^*M \otimes T N$$
.

7 THEOREM.

 $(J^{2}(M,N),\sigma'',J'(M,N))$ is an affine bundle, whose vector bundle is

$$(J'(M,N) \times_{M \times N} (T^* M V_M T^* M_{M \times N} T N), \overline{\sigma}^{12}, J'(M,N))$$

(where v denotes the symmetrized tensor product).

PROOF.

$J^{2}(M,N) = \bigoplus_{\substack{\Phi \\ (p,q) \in J'(M N)}} \{\overline{\Phi}_{\Phi}(p,q)\}$

We have

$$\bar{\Phi}_{\Phi} : T^{2}_{p}M \rightarrow T^{2}_{q}N$$

$$(p,q)$$

where

b)

a) $\bar{\Phi}_{\Phi}$ is a linear bundle homomorphism, hence the following diagram is commutative

c) T
$$\Pi_{N} \circ \overline{\Phi}_{\Phi} = \Phi(p,q)$$

d) $\coprod \circ \overline{\Phi}_{\Phi}(p,q) \circ \nabla = \Phi(p,q) \circ T \Pi_{M}$

In fact a) ...,d) characterize the jets of maps $M \rightarrow N$.

Moreover, if we fix $\Phi_{(p,q)} \in J'(M,N)$, then the conditions a) and b) determine a vector space structure on the set $\{\bar{\Phi}_{\Phi}^{\ }\}$ and the linear functional (p,q)

conditions c) and d) determine an affine subspace.

The associated vector space is obtained taking $\Phi_{(p,q)} = 0$ in the conditions c) and d). Such maps can be identified with a couple constituted by a bilinear symmetric map $TM \times_M TM \to TN$ and a linear map $TM \to TN$ over a same map $M \to N$.

This theorem can be generalized to higer orders.

8 PROPOSITION.

a) We get $J'(R,N) \cong R \times TN$

This isomorphism is the unique map $J'(R,N) \rightarrow R \times T N$ that makes commutative

the following diagram, for each curve $c : R \rightarrow N$,

b) We get $J'(M,R) \cong R \times T^*M$.

This isomorphism is the unique map $J'(M,R) \rightarrow R \times T^*M$ that makes commutative the following diagram, for each function $f : M \rightarrow R$,

c) There is a unique map (which is an isomorphism)

$$J^2(R,N) \rightarrow R \times s T^2 N$$

such that the following diagram is commutative, for each curve $c : R \rightarrow N$,

2 - JETS OF SECTIONS.

Let $n \equiv (E, p, M)$ be a bundle.

1 DEFINITION.

The JET SPACE, of order i, OF SECTIONS $M \rightarrow E$, is the set

where
$$J^{i}E \equiv \bigsqcup_{p \in M} f^{j}_{p/\rho_{p}}$$
,

a) \int_{p}^{∞} is the se of C^{∞} sections $M \rightarrow E$ defined in a neighbourhood of p;

- b) ρ_p' is the restriction of the equivalence relation defined in (1,1) \pm
 - Let us remark that we get