Introduction.
This paper pursues a study devoted to point out geometrical results required by a further structural analysis of physical theories.

In a previous paper [7] we have studied the tangent space of a bundle. Tangent spaces suffice to formulate one - body mechanics, as we are dealing with curves $c: R \rightarrow M$, whose differential is a map $d c: R \rightarrow T M$. On the other hand, continuum mechanics requires jet spaces, in order to get the derivatives of a field $f: M \rightarrow N$ as a map valued on a well structured space $j f: M \rightarrow J(M, N)$.

In a way analogous to [7], we show how the affine structure enables us to understand better the nature of jet spaces and of operations on them like Lie and covariant derivatives.

Let M and N be two manifolds. We consider the jet spaces $J^{h}(M, N)$ and the jet maps $j^{h} f: M \rightarrow J^{h}(M, N)$ of $f: M \rightarrow N$ and the bundles $J^{h}(M, N)$ on $J^{k}(M, N)$, with $h>k$. We give an explicit and intrinsic construction of $J^{\prime}(M, N)$ and $J^{2}(M, N)$, showing that $J^{2}(M, N)$ is an affine bundle on $J^{\prime}(M, N)$. This result can be extendend to higher orders (§ 1).

Let $n \equiv(E, P, M)$ be a bundle. We consider the relation between jet of sections $J E$ and jet of maps $J(M, E)$. We give an explicit and intrinsic construction of $J^{\prime} E$ and $J^{2} E$ as affine sub bundles of $J^{\prime}(M, E)$ and $J^{2}(M, E)$, respectively. This result can be extended to higher orders. We introduce contractions between jet spaces and tangent spaces, which will be used for Lie and covariant derivatives. In the particular case where n is a vector bundle, we show that $J^{h} E$ is an affine bundle on $J^{k} E$, with $h>k$, and we introduce several interesting maps related with tensor product and duality ($\S 2$).

Let $n=(E, p, M)$ be a bundle. If we endow n witha morphism $B: E X_{M} j^{k} T M \rightarrow T E$, affine on $h T E$ and linear on E, we get a Lie operator which unifies the covariant derivatives ($k=0$), the usual Lie derivatives of tensors ($k=1$) and of many geometrical objects (§3).

We analyse connections on n in terms of jet bundles and we relate these
results with the analogous ones obtained by means of tangent bundles ($\S 4$).
In the following, all manifolds and maps are C^{∞}. We leave to the reader the coordinate expression of formulas and the proof of some propositions.

1 - JETS.
Let M and N be two C^{∞} manifolds.
1 DEFINITION.
The JET SPACE, of order i, OF MAPS $M \rightarrow N$, is the set

$$
J^{i}(M, N) \equiv \bigsqcup_{p \in M} \mathcal{F}_{p / \rho}^{i},
$$

where
a) \exists_{p} is the set of C^{∞} maps $M \rightarrow N$ defined in a neighbourhood of p;
b) ρ_{p}^{i} is the equivalence relation in F_{p} given by

$$
f \rho_{p}^{i} g \quad \Longleftrightarrow \quad T_{p}^{i} f=T_{p}^{i} g \quad \dot{ }
$$

2 DEFINITION.
Let
$f: M \rightarrow N$
be a C^{∞} map, perhaps defined locally.
The JET, of order i, of f is the map

$$
\begin{aligned}
j^{i} f: M & \rightarrow J^{i}(M, N) \\
p & \rightarrow[f]_{p}^{i}
\end{aligned}
$$

given by

3 PROPOSITION.
There is a unique C^{∞} structure on $J^{i}(M, N)$, such that

$$
\forall f: M \rightarrow N \quad \text { the map } \quad j^{i} f \quad \text { is } \quad C^{\infty} .
$$

PROOF .
It can be easily seen by means of an atlas of M and N.
4 PROPOSITIONS.
Let $0 \leqslant i \leqslant j$. The natural projection

$$
\sigma^{i j}: J^{j}(M, N) \rightarrow J^{i}(M, N)
$$

given by

$$
[f]_{p}^{j} \rightarrow[f]_{p}^{i}
$$

(which is well defined) induces a bundle structure

$$
\left(J^{j}(M, N), \sigma^{i j}, J^{i}(M, N)\right)
$$

5 PROPOSITION.
The map

$$
J^{\circ}(M, N) \rightarrow M \times N
$$

given by

$$
[f]_{p}^{\circ} \rightarrow(p, f(p))
$$

(which is well defined) is a diffeomorphism Henceforth we will make the identification

$$
J^{\circ}(M, N) \cong M \times N
$$

6 PROPOSITION.
The map

$$
\begin{aligned}
J^{\prime}(M, N) & \rightarrow T^{*} M \otimes T N \\
{[f]_{p}^{i} } & \rightarrow T_{p} f \in T_{p}^{*} M \otimes T_{f(p)} N
\end{aligned}
$$

(which is well defined) is a diffeomorphism.
PROOF.
We have

$$
J^{\prime}(M, N)=\varliminf_{(p, q) \in M \times N}\left\{\Phi(p, q)^{\}}\right.
$$

where

$$
{ }_{(p, q)}: T_{p} M \rightarrow T_{q} N
$$

is any linear map -
Henceforth we will make the identification

$$
J^{\prime}(M, N) \cong T^{*} M \otimes T N
$$

7 THEOREM.
$\left(J^{2}(M, N), \sigma^{\prime \prime}, J^{\prime}(M, N)\right)$ is an affine bundle, whose vector bundle is

$$
\left(J^{\prime}(M, N) X_{M \times N}\left(T^{*} M V_{M} T^{*} M M_{X}^{\infty} N^{T} N\right), \bar{\sigma}^{12}, J^{\prime}(M, N)\right) .
$$

(where v denotes the symmetrized tensor product).
PROOF .

We have

$$
J^{2}(M, N)=\underbrace{}_{(p, q)^{\epsilon J^{\prime}(M N)}}{ }^{\left\{\bar{\Phi}_{\Phi}\right.}(p, q)^{\}}
$$

where

$$
\bar{\Phi}_{\Phi(p, q)}: T_{p}^{2} M \rightarrow T_{q}^{2} N
$$

is any map such that
a) $\bar{\Phi}_{\Phi}$ is a linear bundle homomorphism, hence the following diagram is

b) $\bar{\Phi}_{\Phi(p, q)} 0 \mathrm{~s}$ is linear
c) $T \pi_{N} \circ \bar{\Phi}_{\Phi}^{(p, q)}={ }^{\Phi}(p, q)$
d)
) $\Perp 0$ $0 \bar{\Phi}_{\Phi}(p, q) \quad 0 v=\Phi_{(p, q)} 0 T \Pi_{M}$.

In fact a), d) characterize the jets of maps $M \rightarrow N$.
Moreover, if we fix ${ }_{(p, q)} \in J^{\prime}(M, N)$, then the conditions a) and b) determi ne a vector space structure on the set $\left.\bar{\Phi}_{\Phi}, p, q\right)$ and the linear functional conditions c) and d) determine an affine subspace.

The associated vector space is obtained taking ${ }_{(p, q)}=0$ in the conditions c) and d). Such maps can be identified with a couple constituted by a bilinear symmetric map $T M X_{M} T M \rightarrow T N$ and a linear map $T M \rightarrow T N$ over a same $\operatorname{map} \mathrm{M} \rightarrow \mathrm{N} \quad$

This theorem can be generalized to higer orders.
8 PROPOSITION.
a) We get

$$
J^{\prime}(R, N) \cong R \times T N
$$

This isomorphism is the unique map $J^{\prime}(R, N) \rightarrow R \times T N$ that makes commutative the following diagram, for each curve $c: R \rightarrow N$,

b) We get

$$
J^{\prime}(M, R) \cong R \times T^{*} M
$$

This isomorphism is the unique map $J^{\prime}(M, R) \rightarrow R \times T^{*} M$ that makes commuta tive the following diagram, for each function $f: M \rightarrow R$,

c) There is a unique map (which is an isomorphism)

$$
J^{2}(R, N) \rightarrow R \times s T^{2} N
$$

such that the following diagram is commutative, for each curve $c: R \rightarrow N$,

2 - JETS OF SECTIONS.
Let $n \equiv(E, p, M)$ be a bundle.
1 DEFINITION.
The JET SPACE, of order i, OF SECTIONS $M \rightarrow E$, is the set where

$$
J^{i} E \equiv \operatorname{L}_{p \in M} \rho_{p / \rho_{p}^{i}},
$$

a) \mathcal{I}_{p} is the se of C^{∞} sections $M \rightarrow E$ defined in a neighbourhood of p;
b) ρ_{p}^{i} is the restriction of the equivalence relation defined in $(1,1)-$

Let us remark that we get

$$
J^{i}(M, N)=J^{i}(M \times N),
$$

considering $M \times N$ as a trivial bundle on M.

2 PROPOSITION.
a) $J^{i} E$ is a submanifold of $J^{i}(M, E)$.
b) The following diagram is commutative, for each $i>j$

c) The triple

$$
n^{j i} \equiv\left(J^{i} E, \sigma^{j i}, J^{i} E\right) \quad \text { is a bundle. }
$$

d) The triple

$$
n^{i} \equiv\left(J^{i} E, \sigma^{i}, M\right)
$$ is a bundle.

e) If
$f: M \rightarrow E$
is a section,
then

$$
j^{i} f: M \rightarrow J^{i} E
$$

is a section

3 PROPOSITION.

We get a natural isomorphism

$$
J^{\circ} E \cong E \quad \therefore
$$

4 THEOREM.

$$
\eta^{01} \equiv\left(J^{\prime} E, \sigma^{01}, J^{\circ} E\right) \text { is an affine subbundle of }\left(J^{\prime}(M, E), \sigma^{01}, J^{\circ}(M, E)\right)
$$

over the inclusion $\quad J^{\circ} E \rightarrow J^{\circ}(M, E)$,
whose vector bundle is $\overline{\eta^{0 l}} \equiv\left(T^{*} M \otimes_{E} \cup T E, \Pi_{E}, E\right)$.
PROOF .
We have

$$
J^{\prime} E=L_{e \in E}\left\{\Phi e^{\}}\right.
$$

where

$$
\Phi_{e}: T_{p(e)} M \rightarrow T_{e} E
$$

is any linear map such that
a) $T p \circ \Phi_{e}=i d_{T p(e)^{M}}-$

5 THEOREM.
$\eta^{12} \equiv\left(J^{2} E, \sigma^{12}, J^{\prime} E\right)$ is an affine subbundle of $\left(J^{2}(M, E), \sigma^{12}, J^{\prime}(M, E)\right)$
over the inclusion J'E $\rightarrow J^{\prime}(M, E)$, whose vector bundle is

$$
\bar{n}^{12} \equiv\left(J^{\prime} E x_{E}\left(T^{*} M V_{M} T^{*} M \otimes_{E} \vee T E\right), \bar{\sigma}^{12}, J^{\prime}(M, E)\right)
$$

PROOF.
We have
$\left.J^{2} E=L_{Q_{e} \epsilon_{J}} E^{\left\{\bar{\Phi}_{\Phi}\right.}\right\}$
where

$$
\bar{\Phi}_{\Phi_{e}}: T^{2} p(e)^{M} \rightarrow T_{e}^{2} E
$$

is any linear map as in (1.7), that satisfies the further condition
a) $T^{2} p \circ \bar{\Phi}_{\Phi}=i d_{T}^{2}{ }_{p(e)}^{M} \quad$.

This theorem can be generalized to higher orders.
6 PROPOSITION.
There is a unique map

$$
c: J E X_{M}^{\top M} \rightarrow T E
$$

such that, for each section $u: M \rightarrow T M, v: M \rightarrow E$, the following diagram is commutative

Such a map is given by

$$
c:\left(\Phi_{e}, u_{p(e)}\right) \rightarrow \Phi_{e}\left(u_{p(e)}\right) \in T_{e} E .
$$

c is an affine morphism on $h T E$ and a linear morphism on $J ' E \rightarrow E$. Hence the following diagram is commutative

7 PROPOSITION.
There is a unique map

$$
c^{*}: T^{*} M x_{M} J^{\prime} T M \rightarrow T T^{*} M
$$

such that the following diagram is commutative

8 PROPOSITION.

Let $\eta \equiv(E, p, M)$ be an affine (vector) bundle, whose vector bundle is $\bar{n} \equiv(\bar{E}, \bar{p}, M)$.

Then $\eta^{i} \equiv\left(J^{i} E, \sigma^{i}, M\right)$ is an affine (vector) bundle and

$$
\overline{J^{i} E}=J^{i} \bar{E} .
$$

PROOF .
The affine (vector) operations on E are compatible with respect to the equivalence relations $\rho_{p}^{i} \quad$.

9 COROLLARY.
Let $k>h>0$.
Let $n \equiv(E, p, M)$ be a vector bundle.
Then $\eta^{h k} \equiv\left(J^{k} E, \sigma^{h k}, J^{k} E\right)$ is an affine bundle, whase vector bundle $n^{-h k}$ is the pull back bundle of (Ker $\sigma^{h k}, \sigma^{k}$, M) with respect to the map σ^{h}.

Namely the following diagram is commutative

Moreover, if $h \equiv k-1$, we get

$$
j^{h k} E=J^{h} E x_{M}\left(l_{k M}^{l} \quad T^{*} M \mathbb{\otimes}_{M} E\right)
$$

where $V T^{*} M$ is the K-symmetrized tensor product of $T^{*} M$ over M. kM
Let us remark that, if $E \equiv M \times F$ (i.e. n is a trivial bundle), then we get

$$
J^{k} E=E \oplus_{M} \operatorname{Ker} \sigma^{o k}=F \times \operatorname{Ker} \sigma^{o k}
$$

In such a case, we put

$$
j '^{k} u \equiv \pi^{2} \circ j^{k} u
$$

In particular, for $F \equiv R$, we get

$$
j^{\prime} f=d f
$$

10 PROPOSITION.
Let $\eta^{\prime} \equiv\left(E^{\prime}, P^{\prime}, M\right)$ and $\eta^{\prime \prime}=\left(E^{\prime \prime}, P^{\prime \prime}, M\right)$ be vector bundles.
There is a unique linear map $t: J^{k} E^{\prime} \mathbb{«}_{M} J^{k} E^{\prime \prime} \rightarrow J^{k}\left(E^{\prime} \mathbb{M}_{M^{\prime \prime}}{ }^{\prime \prime}\right)$
such that the following diagram is commutative

for each section $u^{\prime}: M \rightarrow E^{\prime}, u^{\prime \prime}: M \rightarrow E^{\prime \prime}$

11 COROLLARY.

Let $n \equiv(E, p, M)$ be a vector bundle.
There is a unique linear map on M

$$
t: \mathbb{K} \quad \otimes_{M} J^{k-1} E \rightarrow J^{k} E,
$$

where \mathbb{K} is the Kernel of the linear morphism $J^{k}(M \times R) \rightarrow J^{\circ}(M \times R)$ on M, such that

As a particular case, we get
$\begin{array}{ll}j^{\prime}(f u) & =f j^{l} u+d f \otimes u, \\ \text { being } & t^{\prime}(d f \otimes u)=d f \otimes u \quad\end{array}$

12 PROPOSITION.
ket $n \equiv(E, p, M)$ be an affine bundle, whose vector bundle is $\bar{n} \equiv(\bar{E}, \bar{p}, M)$. There is a unique map

$$
J^{\prime} E X_{E} J ' E \xrightarrow{\text { dif }} T^{*} M \otimes_{M} \bar{E}
$$

such that, for each vertical curve $c, c^{\prime}: R \rightarrow E$, the following diagram is commutative

13 PROPOSITION.
Let $n \equiv(E, p, M)$ be a vector bundle and let $n^{*} \equiv\left(E^{*}, p_{9}^{\prime} M\right)$ be the dual one.
Ther is a unique map

such that, for each section $u: M \rightarrow E$ and $v: M \rightarrow E^{*}$, the following diagram is commutative

Such a map is bilinear.

14 PROPOSITION.
Let $n \equiv(E, p, M)$ be a vector bundle and let $g: E X_{M} E \rightarrow R$ be a pseudoRiemannian structure.

There is a unique map

$$
g: J^{\prime} E X_{M} J^{\prime} E \rightarrow T^{*} M
$$

such that the following diagram is commutative, for each section $u, v: M \rightarrow E$

3 LIE DERIVATIVES.
1 DEFINITION.
A K-LIE-DERIVABLE bundle is a 4-plet

$$
n \equiv(E, p, M ; B)
$$

where (E, p, M) is a bundle and

$$
B: E X_{M} J^{k} T M \rightarrow T E
$$

is a bundle morphism on hTE and a linear morphism on E.

Hence the following diagram is commutative

and B is an affine morphism on hTE.

2 DEFINITION.
Let n be a K-LIE-derivable bundle.
a) The LIE OPERATOR is the map

$$
\sim \sim: J^{\prime} E X_{M} J^{k} T M \rightarrow \bar{v} T E
$$

given by the composition

$$
J^{\prime} E x_{M} J^{k} M \rightarrow\left(J^{\prime} E x_{M}^{T M}\right) \times\left(E \times_{M} J^{k} T M\right) \quad C-B \rightarrow \bar{\vee} T E
$$

b) Let $u: M \rightarrow T M$ and $t: M \rightarrow E$ be sections.

The LIE DERIVATIVE of t with respect to u is the section

$$
\bar{L}_{u} t \equiv\left(j^{1} t, j^{k} u\right): u \rightarrow \bar{v} T E .
$$

Hence the following diagram is commutative

3 PROPOSITION.

We have
a)

$$
\check{L}_{\left(u+u^{\prime}\right)^{v}}=\check{L}_{u}+\check{L}_{u} v
$$

b)

$$
\check{L}_{f u} v=f \tilde{L}_{u} v-B\left(v, t \circ\left(j^{k} f \otimes j^{k-1} u\right)\right) \quad \dot{ }
$$

4 If n is a vector bundle, we denote by

$$
i: J^{\prime} E X_{M} J^{k} T M \rightarrow E
$$

the map

$$
L \equiv \Pi_{E} \circ \tilde{L}
$$

and by

$$
L_{u} t: M \rightarrow E
$$

the map

$$
L_{u} t \equiv \Perp_{E}^{\circ} \breve{L}_{u} t
$$

5 PROPOSITION.
Let n be a vector bundle and let B be a linear morphism on $J^{k} T M \rightarrow T M$ Then we have

$$
\begin{aligned}
& L_{u}\left(t+t^{\prime}\right)=L_{u} t+L_{u} t^{\prime} \\
& L_{u}(f t)=f L_{u} t+(u \cdot f) t
\end{aligned}
$$

6 PROPOSITION.
Let η^{\prime} and $n^{\prime \prime}$ be vector bundles and let B^{\prime} and $B^{\prime \prime}$ be linear morphisms on $J^{k} T M \rightarrow T M$.

Then there is a unique linear morphisms on $J^{k} T M \rightarrow T M$

$$
B:\left(E^{\prime} \otimes_{M} E^{\prime \prime}\right) x_{M} j^{k} T M \rightarrow T\left(E^{\prime} \otimes_{M} E^{\prime \prime}\right)
$$

such that the following diagram is commutative

Then ($E^{\prime}{ }_{M} E^{\prime \prime}, P, M ; B$) results into a Lie derivable bundle.
Furthermore, we get

$$
L_{u}\left(t^{\prime} \otimes t^{\prime}\right)=L_{u} t^{\prime} \otimes t^{\prime \prime}+t^{\prime} \otimes L_{u} t^{\prime \prime} \quad-
$$

7 EXAMPLE.
Let $\quad \eta \equiv(E, p, M ; B)$ be a 0 -Lie derivable bundle.
Then $B: E X_{M} T M \rightarrow T E$
results into a horizontal section (see [7], §5).
Moreover, if n is a vector bundle and B is a linear morphism on $T M$, the o-Lie-derivative coincide with the covariant derivative.

8 EXAMPLE

We get the usual Lie derivative of tensors $M \rightarrow T_{(p, q)} M$, taking into account the previous proposition and the l-Lie-derivable bundles
$n \equiv\left(T M, \Pi_{M}, M ;{ }^{\circ} \mathrm{C}\right)$
and
$n \equiv\left(T^{*} M, \rho_{M}, M, C^{*}\right) \quad$.

9 EXAMPLE.
Let $B \equiv(E, P, M ; B)$ a bundle of geometric objects (see [7]).
Let β be of "order $\mathrm{K}^{\prime \prime}$, i.e. such that the following condition holds: if $v \in J^{k} T M, x^{\prime}, x^{\prime \prime}: M \rightarrow T M$ are two representative of v and $f^{\prime}, f^{\prime \prime}$ are the one parameter groups generated by $x^{\prime}, x^{\prime \prime}$
then

$$
\partial\left(B f^{\prime}\right)=\partial\left(B f^{\prime \prime}\right) .
$$

Then the map

$$
B: E \times J^{k} T M \rightarrow T E,
$$

given by
$B(e, v) \equiv \partial(B f)(e)$
makes ($E, p, M ; B$) a k-Lie derivable bundle.

4 CONNECTION ON A BUNDLE.
Let $n \equiv(E, p, M)$ be a bundle.
1 DEFINITION.

A CONNECTION on n is an affine bundle morphism on E

$$
\tilde{\Gamma}: J ' E \rightarrow \bar{J} E=T^{*} M \otimes_{E} \vee T E
$$

whose fiber derivatives are 1.
A HORIZONTAL SECTION is a section

$$
\tilde{H}: E \rightarrow J ' E
$$

\therefore

Hence the following diagram is commutative

2 PROPOSITION.

The maps α and β between the set of connections and the set of horizontal sections, given by

$$
\alpha: \tilde{\Gamma} \rightarrow \tilde{H},
$$

where \dot{H} is the unique horizontal section such that $\check{\Gamma} \circ \tilde{H}=0$,
and

$$
B: \tilde{H} \rightarrow \tilde{\Gamma} \equiv i d_{J E}-\tilde{H} \circ \sigma^{01},
$$

are inverse bijections.
Henceforth we will consider $\tilde{\Gamma}$ and \tilde{H} as mutually related. Hence giving a connection is the choice of a point for each affine fiber of J'E, getting in this way an identification of the affine fibers with their vector spaces.

3 PROPOSITION.

The set \vec{j}^{2} of all connections is the affine space of the sections of the affine bundle $n^{0 l} E$, whose vector space is the space of sections of the vector bundle $\bar{n}^{01} E$.

4 Let us remark that $\mathcal{J}[7]$ and \tilde{I} have the same vector space.
PROPOSITION.
Each one of the following commutative diagrams determine the same isomorphism, whose derivative is 1 , between the two affine spaces I and \tilde{I} :
a)

b)

Henceforth we will write $\tilde{\Gamma}, \Gamma$ and H for $\tilde{I}, \tilde{\Gamma}$ and \tilde{H}.

5 PROPOSITION.
Let $c: R \rightarrow E$ be a curve. The following conditions are equivalent.
a) $\mathrm{H} \circ \sigma^{0 l} \circ \mathrm{j}^{\prime} \mathrm{C} \equiv \mathrm{H} \circ \mathrm{C}=\mathrm{j}^{\prime} \mathrm{C}$
$\left.a^{\prime}\right) H \circ h \circ d c \equiv H \circ(c, d(p \circ c))=d c$
b) $\Gamma \circ j^{\prime} c=0$
$\left.\mathrm{b}^{\prime}\right) \Gamma \circ \mathrm{d} c=0$ -

Hence a curve $c: R \rightarrow E$ is HORIZONTAL if the previous conditions hold. 6 PROPOSITION.

Let η be a vector bundle. Let r be a connection. The following conditions are equivalent.
a) $\Gamma: J ' E \rightarrow \overline{J ' E} \quad$ is a vector bundle morphism on M.
$\left.a^{\prime}\right) \Gamma: T E \rightarrow \bar{U} T E \quad$ is a vector bundle morphism on $T M$.
b) $H: E \rightarrow J ' E \quad$ is a vector bundle morphism on $T M$.
$\left.b^{\prime}\right) H: h T E \rightarrow T E \quad$ is a vector bundle morphism on $T M$.

Hence a connection (horizontal section) is LINEAR if the previous condi tions hold.

7 PROPOSITION.

Let Γ^{\prime} and $\Gamma^{\prime \prime}$ be two linear connections of η^{\prime} and $n^{\prime \prime}$, respectively The tensor product of Γ^{\prime} and $\Gamma^{\prime \prime}$ is the connection Γ on $n^{\prime} \otimes n^{\prime \prime}$ associated with the horizontal section

$$
H=t \circ\left(H^{\prime} \otimes H^{\prime \prime}\right) \quad
$$

Hence the following diagram is commutative

8 PROPOSITION.
Let r be a linear connection on η.
The dual connection of Γ is the linear connection r^{*} on n^{*} associated with the unique horizontal section H^{*}, which makes commutative the following diagram

9 PROPOSITION.
Let Γ be a linear connection on n. Let $v: M \rightarrow E$ be a section.
We get $\quad \nabla V=\left(i d_{T_{M}^{*}} \mu_{E}\right) \circ \Gamma \circ j^{l} V \quad \dot{-}$
Hence the following diagram is commutative

10 PROPOSITION.
Let $n \equiv \tau M$ and let $g: T M X_{M} T M \rightarrow R$ be a non degenerate symmetrical bilinear map.

The Riemannian connection r induced by g is associated with the unique linear section

$$
H: T M \rightarrow J T M
$$

such that
a) the following diagram is commutative

b) the torsion

$$
\theta=0 \quad \dot{-}
$$

```
REFERENCES
```

1 R. PALAIS,
Foundations of global non-linear Analysis, Benjamin, New York, 1968.

2 R. HERMANN,

3 P. LIBERMANN,

5 R. OUZILOU,

6 S. E. SALVIOLI,

7
M.MODUGNO-G.STEFANI, Some results on second tangent and cotangent spaces, to appear.

