Introduction.

This paper pursues a study devoted to point out geometrical results
required by a further structural analysis of physical theories.

In a previous paper [7] we have studied the tangent space of a bundle.
Tangent spaces suffice to formulate one - body mechanics, as we are dealing
with curves ¢ : R > M, whose differential is a map dc : R > T M.

On the other hand, continuum mechanics requires jet spaces, in order to get
the derivatives of a field f : M > N as a map valued on a well structured
space jf : M > J(M,N).

In a way analogous to [7], we show how the affine structure enables us to
understand better the nature of jet spaces and of operations on them
like Lie and covariant derivatives.

Llet M and N be two manifolds. We consider the jet spaces Jh(M,N) and

the jet maps jhf : M +7Jh(M,N) of f :M-> N and the bundles Jn(M,N) on
Jk(M,N), with h > k. We give an explicit and intrinsic construction of
J'(M,N) and J%(M,N), showing that J2(M,N) is an affine bundle on J'(M,N).
This result can be extendend to higher orders (5 1).

Let n = (E,p,M) be a bundle. We consider the relation between jet of
sections JE and jet of maps J(M,E). We give an explicit and intrinsic
construction of J'E and JZE as affine sub bundles of J'(M,E) and JZ(M,E),
respectively. This result can be extended to higher orders. We introduce
contractions between jet spaces and tangent spaces, which will be used for
Lie and covariant derivatives. In the particular case where n 1is a vector
bundle, we show that JhE is an affine bundle on JkE, with h > k, and we
introduce several interesting maps related with tensor product and duality (§2).

Let n = (E,p,M) be a bundle.If we endow nwithamorphism B : E xMJkTM ~ TE,
affine on hTE and linear on E, we get a Lie operator which unifies the
covariant derivatives (k=0), the usual Lie derivatives of tensors (k=1) and
of many geometrical objects (§3).

We analyse connections on n in terms of jet bundles and we relate these
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results with the analogous ones obtained by means of tangent bundles (§4).
In the following _all manifolds and maps are C”. We leave to the reader the

coordinate expression of formulas and the proof of some propositions.



1 - JETS.
Let M and N be two C manifolds.
1 DEFINITION.
The JET SPACE, of order i, OF MAPS M -+ N, is the set

Ji(M,N) = ]S

.i
peM P/Pp

where

a) 3} is the set of C~ maps M - N defined in a neighbourhood of p;

b) p; is the equivalence relation in ‘Sb given by

2 DEFINITION.

Let f:M > N
be a C map, perhaps defined locally.
The JET, of order i, of f 1is the map

iU M s 3T (MLN)

given by p > Dﬂ;
3 PROPOSITION.

There is a unique C  structure on J1(M,N), such that

¥f:M->N the map j1f is C .

PROOF .

It can be easily seen by means of an atlas of M and N .

4 PROPOSITIONS.

Let 0 ¢ 1 < j. The natural projection
o' 3N - 3T (MLN)

iven b ST
given by EJp []p
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(which is well defined) induces a bundle structure
(3" (M,N), oY, 3T (M,N))

5 PROPOSITION.
The map J9UMN) - MxN

given by Bﬂ; > (p,f(p))

(which is well defined) is a diffeomorphism

Henceforth we will make the identification
JO(M,N) 2 M x N .

6 PROPOSITION.
The map J'MN) > TMaTHN

i *
f1° > TfeTMaT N
[Js) p p f(p)

(which is well defined) is a diffeomorphism.

PROOF .
We have J'(M,N) = | {®( )}
(p,q)eMxn P24
where ) : TM->TN
(p,q) p q

1s any linear map
Henceforth we will make the identification

Y

J'MN) S T™Me TN .

/ THEOREM.

(J2(M,N),o",J'(M,N)) is an affine bundle, whose vector bundle is

* *
1 12 '
(J (M,N)xMXN(T M VMT M MQNT N), ot4,J"(M,N)) .
(where v denotes the symmetrized tensor product).
PROOF .
We have JZMN) = L1 o, }
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where @@ t T M= TqN
(p»9q)

is any map such that

a) ®® is a linear bundle homomorphism, hence the following diagram is
(p>a) commutative
$¢
ey —2ad) gty
p q
T N
P
(p»q)
™M » T N
p q
b) o 0s is linear
¢(p,q)
)T oo = ¢
N o ,
(p»q) (p-a)
d) |09 ov =20 oTm
¢ , M
(p,q) (p>9)
In fact a) ...,d) characterize the jets of maps M » N.
Moreover, if we fix Q(p q) e J'(M,N), then the conditions a) and b) determi
ne a vector space structure on the set {5® } and the linear functional

(p»q)
conditions ¢) and d) determine an affine subspace.

The associated vector space is obtained taking Q(p q) = 0 1in the condi-

tions c¢) and d). Such maps can be identified with a couple constituted by a

bilinear symmetric map TMxMTM -~ TN and a linear map TM -+ TN over a same

map M -> N

This theorem can be generalized to higer orders.

8 PROPOSITION.
a) We get J'(R,N) R x TN
This isomorphism is the unique map J'(R,N) = R x T N that makes commutative

the following diagram, for each curve ¢ : R~ N

3
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-— R X TN
15\\\\\ ;////n1d ,dc)
*
b) We get J'(M,R) R XxTM.

*
This isomorphism is the unique map J'(M,R) - R x T M that makes commuta
tive the following diagram, for each function f : M - R,
J'(M,R) ——— R xTM

i'f (f,df)

c) There is a unique map (which is an isomorphism)

P(RN)  » Rxs TN

such that the following diagram is commutative, for each curve ¢ : R - N,

JZ(R,N) —_—3 R X s T2 N

S

Jc (1dR,d c)

2 - JETS OF SECTIONS.
Let n = (E,p,M) be a bundle.

1 DEFINITION.
The JET SPACE, of order i, OF SECTIONS M - E, is the set

where J'E = L j}

peM p/p ’

a).j b is the se of C  sections M~ E defined in a neighbourhood of p;
b) p; is the restriction of the equivalence relation defined in (1,1)

Let us remark that we get
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SNy = 9t x N,
considering M x N as a trivial bundle on M.
2 PROPOSITION.
a) JiE is a submanifold of Ji(M,E) .

b) The following diagram is commutative, for each i > j

J'E —— J(M,E)

031 l L OJ-]

Mg —— 3 m,E)

03\3 &//;:0 a°J
M

c) The triple nji = (JiE,ojj,JiE) is a bundle.

d) The triple ni = (JiE,oi,M) is a bundle.

e) If f:M>E is a section,
then jif M- JiE is a section

3 PROPOSITION.

We get a natural isomorphism

4 THEOREM.
n®l = (J'E,001,J°E) is an affine subbundle of (J'(M,E),001,Jd°(M,E))

over the inclusion J°E - J°(M,E) ,
whose vector bundle is 10! = (T'M 8. v TE,M¢,E)
PROOF .

We have J'E = || te )

eek



where ¢ T M -TE
is any linear map such that

a) Tp o o = id :

5 THEOREM.

ni? = (J2%E,0!2,J'E) is an affine subbundle of (J2(M,E),0!?,J'(M,E))

over the jinclusion J'E -+ J'(M,E), whose vector bundle is
“12 =g * * T12 g
nt4 =(J'E xE(T M VMT M ac v TE), ote,J"(M,E))
PROOF.
) -
We have I = L*EA'E{¢¢ )
e e
where s T2 M - T2E
@e p(e) e

is any linear map as in (1.7), that satisfies the further condition
2 - .
a) Tpoo =1id.2
¢ T .
e p(e) -
This theorem can be generalized to higher orders.
6 PROPOSITION.
There is a unique map

c : J'E XM TM - TE

such that, for each section u : M>TM, v: M- E, the following diagram is

commutative
M (Vo) 3 50E 4 1M
\\\\\\\\ M
Tvou 9 k’///// C
TE

Such a map is given by



¢ 1is an affine morphism on hTE and a linear morphism on J'E -~ E.

Hence the following diagram is commutative

-

~ —_— ™
m

=

m

J'E xyTH < N
01.\ /
= xidpy hTE h

7 PROPOSITION.
There is a unique map

SPER G xg OV TH - T ™M

such that the following diagram is commutative

E 3
* : (soc ,c) .
TM xM J'"TM XM ™M > T TM XTMT TM
| .
0 ( 3 R

8 PROPOSITION.

Let n = (E,p,M) be an affine (vector) bundle, whose vector bundle is

Then n' E(J1 E,o1,M) is an affine (vector) bundle and
J'E = 0'E

PROOF .

The affine (vector) operations on E are compatible with respect to the

equivalence relations o'



- 11 -

9 COROLLARY.

Let k > h > 0.
Let n = (E,p,M) be a vector bundle.

hk k. hk k ) . -n
Then n = (JE,o ,JE) 1is an affine bundle, whase vector bundle

. h
is the pull back bundle of (Ker ahk,ok,M) with respect to the map o

Namely the following diagram is commutative

jth —p Ker th

a

.
J > M
Moreover, if h = k-1, we get
I"ke - oNe XV M 8
* kM %
where V T M is the K-symmetrized tensor product of T M over M .
kM
Let us remark that, if E = MxF (i.e. n 1is a trivial bundle), then we qet
JkE = E 8, Ker 09K = F x Ker 40K

M
In such a case, we put

.k .
J'UEf[zojku.
In particular, for = R, we get
j']f =d f

10 PROPOSITION.

Let n' = (E'yp',M) and n" = (E",p",M) be vector bundles.
k k k

Ther2is a unique linear map t : JE' ﬁMJ E" > J (B! ﬁME”)
such that the following diagram is commutative
k I k 1] t — k oo -
JE 8, JE » J(E a, E )
K \ \
(J uI’Jku[I) M J (u'ﬂ u”j

for each section u’' : M - E', u" : M+ E"
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11 COROLLARY.
Let n = (E,p,M) be a vector bundle.

There is a unique linear map on M

t oK 8, JHE 5 JkE,

where K is the Kernel of the linear morphism Jk(MxR) + J°(MxR) on M,

such that

k
Ked E - J E

M -1
\ k
u

Kk . k .k
j faj y t(jfeju -fJju.
As a particular case, we get

1
fju+dfau,

(]
—
-+

-l
~—

1

being t'(d feau)=dfeau

12 PROPOSITION.

ket n = (E,p,M) be an affine bundle, whose vector bundle is n = (E,p,M)

There is a unique map

\ . dif _ # -
J'E XE J'E > TM ﬂM E

such that, for each vertical curve c¢,c' : R~ E, the following diagram
is commutative

cd't ————— T M By,

\/

JCJC

13 PROPOSITION.

Let n = (E,p,M) be a vector bundle and let n* E(E*,D;M) be the dual one.

Ther is a unique map
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J'E xMJ'E* 2> > TN

* .
such that, for each section u : M- E and v : M > E , the following

diagram is commutative

J'E x. ' B <22 > TM
M\ /'?
(j]u,jWV) M H2(j1<u,v>)

Such a map is bilinear .

14 PROPOSITION.

Let n = (E,p,M) be a vector bundie and Tet g : E x E - R Dbe a pseudo-

M
Riemannian structure.
There is a unique map “
g : J'E xMJ'E -~ T M

such that the following diagram is commutative, for each section

] ] g o *
J'E XM J'E »y T M
] O | / 1 \
(J U,J V) e o J (g(U,V);
M

3 LIE DERIVATIVES.
T DEFINITION.
A K-LIE-DERIVABLE bundle is a 4-plet
n = (E,p,M;B),
where (E,p,M) 1is a bundle and
k

B : E Xy JT™M - TE

is a bundle morphism on hTE and a linear morphism on E



- 14 -

Hence the following diagram is commutative

ExMJkTM 8 5 TE
idE;;;E\\\\\\sg k,/’///////h
hTE

and B is an affine morphism on hTE.

2 DEFINITION.
Let n be a K-LIE-derivable bundle.
a) The LIE OPERATOR is the map

[

~: J'E xMJkTM + v TE

given by the composition

, k , k C-B -
JE xd M+ (3'E X, TM) x (E x 'TM) — 7 = L TE

b) Let u:M~>TM and t : M-+ E be sections.
The LIE DERIVATIVE of t with respect to u 1is the section

1 .k -
Lt (J t,ju) :u-> v TE .

u

Hence the following diagram is commutative

3 PROPOSITION.
We have

a)

— %
<
1
o
—
<
-
—+
o
_——~
.,
—+
=
[
o
~—

b) L v=rf
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4 If n is a vector bundle, we denote by

Ao J'E X JkTM - E

M
the map L= o/
E
and by Lut : M- E
the map Lut = LLEO fut ‘

5 PROPOSITION.

k
Let n be a vector bundle and let B be a linear morphism on J TM - TM

Then we have

L (t+t') =L t + L t'
u u

n
L,(Ft) = f L t+ (uft
6 PROPOSITION.

Let n' and n" be vector bundles and let B' and B"

on JkTM + TM.

Then there is a unique linear morphisms on JkTM - ™

1 113 k 1 "
B : (E'myE")x,d TM - T(E'm,E")

such that the following diagram is commutative

be linear morphisms

. k K . k " k
E xME M J ™M ——— (E Xy J M) x (E Xy J M)
BI X BII
TE XTM TE
(E' @ E")x J¥TM —2 5 T(E=t£ E")
M M

Then (E' m

Furthermore, we get

L(t"at')=Lt at"+talt"
u u u

ME“,p,M;B) results into a Lie derivable bundle.
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7 EXAMPLE.
Let n= (E,p,M;B) be a 0-Lie derivable bundie.
Then B:Ex, TM - TE

M

results into a horizontal section (see 7|, §5).

Moreover, if n is a vector bundle and B is a linear morphism on TM, the

O-Lie-derivative coincide with the covariant derivative.
8 EXAMPLE
We get the usual Lie derivative of tensors M - T

the previous proposition and the 1-Lie-derivable bundles

*
n = (TM, HM,M, soC) and n= (T M,QM

9 EXAMPLE.

(p,q)

M,

M, taking into account

c*)

Let 8 = (E,p,M;B) a bundle of geometric objects (see |7]) .

Let 8 be of "order K", i.e. such that the following condition holds:

if ve JkTM, x',x" : M > TM are two representative of

the one parameter groups generated by x',x"
then a(Bf') = a(Bf")

Then the map "
B:ExJTM - TE,

given by B(e,v) = 3(Bf)(e)
makes (E,p,M;B) a k-Lie derivable bundle.

4 CONNECTION ON A BUNDLE.
Let n = (E,p,M) be a bundle.

1 DEFINITION.

v and f',f" are
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A CONNECTION on »n 1is an affine bundle morphism on E

FiQE-JE=TMa v IE
whose fiber derivatives are 1.
A HORIZONTAL SECTION is a section
Y
H:E~J'E B
Hence the following diagram is commutative
N J'E .
2T N
E 01 JE
: 3 A
1dt E
p
R S
M

2 PROPOSITION.

The maps o and 8 between the set of connections and the set of

horizontal sections, given by

Q¢
o
s
n
<
-

where H 1is the unique horizontal section such that

Ay

and g : H - = id - H o o0l ,

are inverse bijections.

Henceforth we will consider F and H  as mutually related .
Hence giving a connection is the choice of a point for each affine fiber of
J'E, getting in this way an identification of the affine fibers with their vector

spaces.
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3 PROPOSITION.
The setj‘ of all connections is the affine space of the sections of the

affine bundle nO}E, whose vector space is the space of sections of the vector

bundle nOlE .

4 Let us remark that ¥ [7] and T have the same vector space.

PROPOSITION.
Each one of the following commutative diagrams determine the same isomorphism,

whose derivative is 1, between the two affine spaces T andj% :

nu

1dTM X T .
i —7 i W
a) ™ xMJ E ™ xM(T M ?E TE)
C <>
TE - Yy v T E
H x id
™ .
b) E xMT M > J'E xM TM
H C
i
TE

v v 3§
Henceforth we will write T, T and H for 7, T and H

5 PROPOSITION.
Let ¢ : R - E be a curve. The following conditions are equivalent.

a) Ho o0l o j'c =

m
xI
(o]
(@]

C

a')Hohodc

1l

Ho(c,d(poc)=dc

b) ro j'c
b'yrodc

1l [
() o
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Hence a curve ¢ : R > E is HORIZONTAL if the previous conditions hold.
6 PROPOSITION.

Let n be a vector bundle. Let T be a connection.

The following conditions are equivalent.

a) r:J'E-J'E is a vector bundle morpnism on M.
a') r: TE - WTE is a vector bundle morphism on TM.
b) H:E - J'E is a vector bundle morphism on TM,
b') H :hTE - TE is a vector bundle morphism on TM.

Hence a connection (horizontal section) is LINEAR if the previous condi

tions hold.

7 PROPOSITION.

Let r' and ' be two linear connections of n' and n" , respectively
The tensor product of ©~' and r" is the connection T on n' &n"

associated with the horizontal section
H=t’3 (HI EH")
Hence the following diagram is commutative

M

1 u 5\ i 1 ~
E 8, £ > ﬁJ (E @Mh )
H' @ H" \ / t
v Ja "
J'E QM £
8 PROPOSITION.

Let © be a linear connection on n
The dual connection of » is the linear connection r* on n+ associated

. . . . * . . .
with the unique horizontal section H , which makes commutative the following

diagram
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J'E xMJ'E* y T'M
T(H,H*) T 0

*
14 .
E xME M .

9 PROPOSITION.

Let T be a linear connection on n . Let v : M- E be a section .

= (i . 1y
We get Vv o= (1dT*M a li{) 0T 0]

Hence the following diagram is commutative

J'E 3 y M a vTE
'1v id @ |
’ ™ " L
+
M 5 T b
A &E E
7oV

10 PROPOSITION.

Let n=1tM and let g : TM Xy TM -~ R beanon degenerate symmetrica]

bilinear map.

The Riemannian connection o induced by g 1is associated with the unique

linear section

H:TM - J'TH

such that
a) the following diagram is commutative .
JUTM Xy, 3T 2 5T M
I(H,H) Jo
TM p M

I
(o]

b) the torsion 0



. PALAIS,

. HERMANN,

. LIBERMANN,

. OUZILOU,

. E. SALVIOLI,

.MODUGNO-G.STEFANI,

REFERENCES

Foundations of global non-linear Analysis,Benjamin,
New York, 1968.

Vector bundles in Mathematical Physics, Vol.
Benjamin, New York, 19270,

Connexions d'ordre supérieur et tenseur de structure.
Atti Conv. Int. Geom. Diff., Bologna, 156/.

Expression symplectique des probliémes variationzlles.
Symposia Mathematica, Vol. WIV, Acc. Press, 1974,

On the theory of geometric objects.
J. Diff. Geom. 7 (1972) 257-278.

Some results on second tangent and cotanuent sp
to appear.

o))

Ces.,



