$$
0 \rightarrow h T^{*} \mathrm{E} \hookrightarrow T^{*} \mathrm{E} \rightarrow \mathrm{Ex}_{M^{E^{*}}} \rightarrow 0
$$

Then there is a unique homomorphism over E

$$
U T^{*} E \rightarrow E X_{M} E^{*}
$$

such that the following diagram is commutative

Such a map is an isomorphism \quad
We will often make the identification

$$
v T^{*} E \cong E x_{M} E^{-*}
$$

9 We define the map

$$
山_{E}: \nu T^{*} E \rightarrow E^{*}
$$

by the composition
$\nu T^{*} E \rightarrow E X_{M} \bar{E}^{*} \xrightarrow{\pi^{2}} E^{*}$

Then we get the commutative diagram

and the homomorphism

is an isomorphism on fibers.

3 - THE SECOND TANGENT AND COTANGENT SPACES OF A MANIFOLD.
1 As a particular case of the previous results, let us consider

$$
n \equiv\left(T M, \Pi_{M}, M\right) \quad \text { or } \quad n \equiv\left(T^{*} M, o_{M}, M\right)
$$

Then we get the following spaces
$h T T M=T M X_{M} T M$
$\nu T T M=T M x_{M} T M$
$h T T^{*} M=T^{*} M X_{M} T M$
$\checkmark T T^{*} M=T^{*} M x_{M} T^{*} M$
$h T^{*} T M=T M X_{M} T^{*} M$
$\nu T^{*} T M=T M X_{M} T^{*} M$
$h T^{*} T^{*} M=T^{*} M X_{M} T^{*} M$
$v T^{*} T^{*} M=T^{*} M X_{M} T M$
and the following maps

$$
\begin{aligned}
& \left(\eta_{T M}{ }^{2} \pi_{M 1}\right) \equiv h: T T M \rightarrow h T T M \\
& \checkmark T T M \rightarrow T \text { TM } \\
& \left(\pi_{T^{*}} M^{\top}{ }^{\top}{ }^{\rho}{ }_{M}\right) \equiv h: T T^{*} M \rightarrow h T T^{*} M \\
& h T^{*} T M \rightarrow T^{*} T M \\
& \nu: T^{*} T M \rightarrow \nu T^{*} T M \\
& h T^{*} T^{*} M \rightarrow T^{*} T^{*} M \\
& v: T^{*} T^{*} M \rightarrow T^{*} T^{*} M \\
& 山_{T M}: \nu T T M \rightarrow T M \\
& H_{T}{ }^{*} \mathrm{M}: \cup T T^{*} \mathrm{M} \rightarrow T^{*} \mathrm{M} \\
& \Perp_{T}{ }^{*} M: v T^{*} T M \rightarrow T^{*} M \\
& \operatorname{Hi}_{T}{ }^{*} M: \nu T^{*} T^{*} M \rightarrow T M
\end{aligned}
$$

2 Taking into account that

$$
h T T M=\nu T T M \quad \text { and } \quad \nu T^{*} T M=h T^{*} T M \text {, }
$$

we define the following maps

$$
v: T T M \rightarrow T T M
$$

given by

$$
T T M \xrightarrow{h} h T T M=\nu T T M \rightarrow T T M
$$

and

$$
h: T^{*} T M \rightarrow T^{*} T M
$$

given by

$$
T^{*} T M \stackrel{\nu}{\rightarrow} v T^{*} T M=h T^{*} T M \rightarrow T^{*} T M
$$

3 PROPOSITION.
a) The vertical endomorphism is the unique map
which makes commutative the following diagram:

b) The horizontal endomorphism

$$
h: T^{*} T M \rightarrow T^{*} T M
$$

is the transpose of the vertical endomorphism $v: T T M \rightarrow T T M$, as
$\left(T^{*} T M, \rho_{T M}\right.$, $\left.T M\right)$ is the dual of $\left(T T M, \pi_{T M} T M\right) \quad-$

4 PROPOSITION.
a) ($\left.T T M, h, T M X_{M} T M\right)$ (T TM, $n, T M x_{M} T M$)
is the pull-back bundle of
with respect to the exchange endo-
morphism ex: $T M X_{M} T M \rightarrow T M X_{M} T M$.

The induced map is an involutive automorphism such that the following diagram is commutative

b) ($\left.T T^{*} M, h, T^{*} M X_{M} T M\right)$
($\left.T^{*} T M, \nu, T M X_{M} T^{*} M\right) \quad$ with respect to the exange map ex : $T^{*} M x_{M} T M \rightarrow T M x_{M} T^{*} M$. $s \equiv(e x)^{*}: T T^{*} M \rightarrow T^{*} T M$
The induced map
is an isomorphism such that the following diagram is commutative

b)' Reversing all the terms of b), we get the inverse isomorphism

$$
S^{-1}: T^{*} T M \leftrightarrow T T^{*} M .
$$

c) $\left(T T^{*} M, h, T^{*} M x_{M} T M\right)$
is the pull-back bundle of $\left(T^{*} T^{*} M, v, T^{*} M X_{M} T M\right)$ with respect to the map

The induced map

$$
i \equiv\left(i d_{T^{*} M} \times\left(-i d_{T M}\right): T^{*} M x_{M} T M \rightarrow T^{*} M x_{M} T M .\right.
$$

is an isomorphism (the SYMPLECTIC ISOMORPHISM)such that the following diagram is commutative

c)' In an analogous way we get the isomorphism

$$
\omega \otimes S^{-1}: T^{*} T M \leftrightarrow T^{*} T^{*} M
$$

5 DEFINITION.
The SYMMETRIC SUBMANIFOLD of TTM is

$$
s T T M \equiv\{\alpha \in T T M \mid s(\alpha)=\alpha\} \quad .
$$

4 - Lie derivative of tensors.
1 Let \mathcal{M} be the category, whose objects are manifolds and whose morphisms are diffeomorphisms.

Let

$$
{ }^{T}(r, s): M \rightarrow M
$$

