1 - THE TANGENT SPACE OF A BUNDLE.

Let $n \equiv (E,p,M)$ be a C^{∞} bundle.

1 DEFINITION.

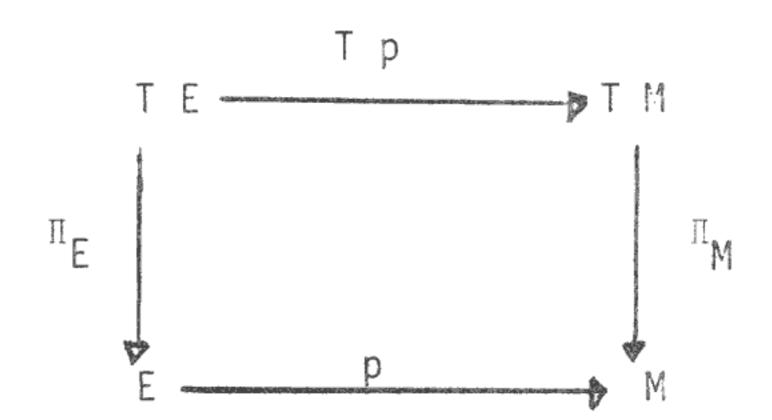
The TANGENT BUNDLE OF E is the vector bundle

$$τ Ε ≡ (TΕ, πΕ, Ε)$$
.

The TANGENT BUNDLE OF n is the vector bundle

$$τ η ≡ (TE,Tp,TM)$$
.

The following diagram is commutative.



2 DEFINITION.

The HORIZONTAL BUNDLE OF TE is the pull-back vector bundle

$$h$$
 τ $E \equiv h$ T E , Π' , E),

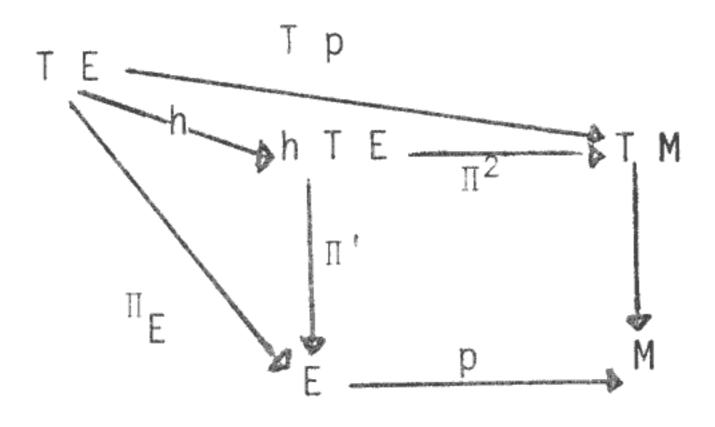
where

$$h T E \equiv E \times_{M}^{TM}$$

 $h \equiv (\Pi_{E}, T p) : T E \rightarrow h T E$

The map

in the unique map which makes commutative the following diagram



3 DEFINITION.

The VERTICAL BUNDLE OF TE is the subbundle of \tau E, kernel of h on E

The following diagram is commutative

and the following sequence is exact

$$0 \rightarrow v T E \rightarrow T E \xrightarrow{h} h T E \rightarrow 0$$
,

hence we have a canonical isomorphism

5 PROPOSITION.

where

$$\{c_{e}\} \equiv \{c : \mathbb{R} \to E \mid c(o) = e, p \circ c = p(c(o))\}$$
.

Such curves $c : \mathbb{R} \to E$ are called VERTICAL.

6 DEFINITION.

The TANGENT BUNDLE OF E, ON hTE, is the pull-back bundle

$$\tau_h^E \equiv (TE, h, hTE)$$
.

The VERTICAL BUNDLE OF TE, ON hTE, is the pull-back bundle

$$\tau_h^E \equiv (\bar{v} TE, \bar{h}, hT E),$$

where

 $\overline{v} T E \equiv T M x_M v T E$ and $\overline{h} \equiv i d_{TM} x_{F}$.

Hence the following diagram is commutative

PROPOSITION.

$$\bar{\tau}_h E \equiv (T E, h, h T E)$$

is an affine bundle, whose vector bundle is

$$\tau_h E \equiv (\bar{\tau} T E, \bar{h}, h T E)$$

PROOF.

Let
$$(e,u) \in E \times_M T M$$
.

We get
$$h^{-1}(e,u) = \{\alpha \in T_e E \mid T p(\alpha) = u\}$$

Since $T_e p : T_e E \to T_{p(e)} M$ is a linear map, then $h^{-1}(e,u)$ is an affine space, whose vector space is $Ker T_e p = \overline{v} T_e E$.

Hence TE is an affine bundle on hTE and a vector bundle on E.

Let us remark that we can consider the two difference maps, with respect to the two previous structures

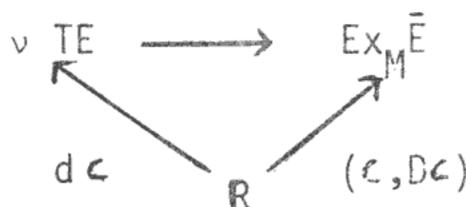
$$\overline{\text{diff:TE}} \times_{\text{hTE}} TE \rightarrow \overline{\text{vTE}}$$
 and $\text{diff:TE} \times_{\text{hTE}} TE \rightarrow \text{vTE}$

and the following diagram is commutative

8 PROPOSITION.

Let $n \equiv (E,p,M)$ be an affine bundle, whose vector bundle is $\bar{n} \equiv (\bar{E},\bar{p},M)$. There is a unique diffeomorphism

such that, for each vertical map $c: \mathbb{R} \to E$, the following diagram is commutative



Such a diffeomorphism is an isomorphism over E .

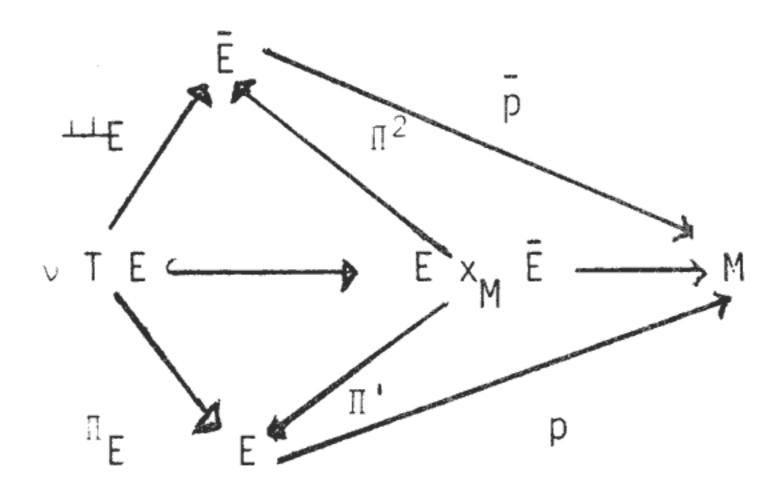
We will make often the identification

$$v T E \stackrel{\sim}{=} E x_M \vec{E}$$
.

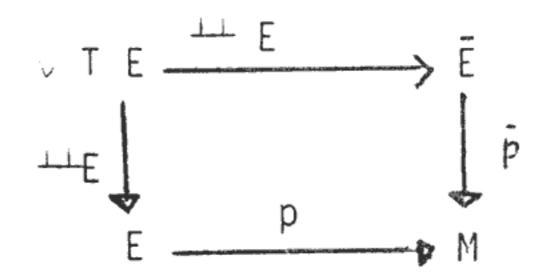
We define the map

by the composition

Then we get the commutative diagram



and the homomorphism



is an isomorphism of fibers.

10 PROPOSITION.

Let n = (E,p,M) be a vector bundle. Then n = (TE, Tp,TM) has a natural structure of vector bundle.

PROOF.

Let
$$\alpha, \beta \in T \to be$$
 such that $T p(\alpha) = T p(\beta)$.

There exist
$$c_{\alpha}: \mbox{\it IR} \rightarrow \mbox{\it E}$$
 and $c_{\beta}: \mbox{\it IR} \rightarrow \mbox{\it E}$ such that

$$p \circ c_{\alpha} = p \circ c_{\beta}$$
 and $d c_{\alpha}(0) = \alpha$, $d c_{\beta}(0) = \beta$.

We can define
$$c = c_{\alpha} + c_{\beta} : \mathbb{R} \to E$$
, for which we get

$$p \circ c_{\alpha} = p \circ c = p \circ c_{\beta}$$
 and $T p(\alpha) = T p \circ d c = T p(\beta)$.

Since $d_{\gamma}(0)$ depends only on α and β , we can put

$$\alpha + \beta \equiv d c(0)$$

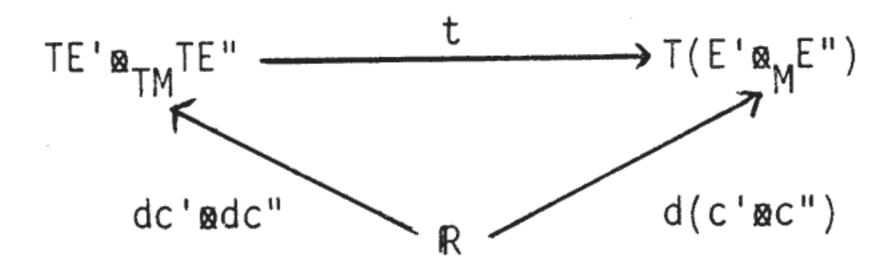
11 PROPOSITION.

Let $n' \equiv (E',p',M)$ and $n'' \equiv (E'',p'',M)$ be vector bundles.

There is a unique map

t: TE'
$$\boxtimes$$
 TE" \longrightarrow T(E' \boxtimes M E")

such that the following diagram is commutative



for each $c': \mathbb{R} \to E'$ and $c'': \mathbb{R} \to E''$ such that

$$p' \circ c' = p'' \circ c''$$
.

This map is a surjective linear homomorphism over TM .

2. - THE COTANGENT SPACE OF A BUNDLE.

Let $n \equiv (E,p,M)$ be a C^{∞} bundle.

1 DEFINITION.

The COTANGENT BUNDLE OF E is the vector bundle

$$τ^*E \equiv (T^*E, ρ_E, E)$$
 .

2 DEFINITION.

The HORIZONTAL BUNDLE OF T^*E is the pull-back vector bundle

$$h \tau^* E \equiv (hT^*E, \Pi^1, E),$$

 $h T^* E \equiv E \times_M T^* M$

where