Introduction

The tangent and cotangent spaces of a bundle are well known. But their affine structure is not sufficiently analised. We study deeply this structu re, showing its fundamental role in many classical operations, suggesting new points of view, which we want to use in further works on Analytical Mechanics and Field Theory.

Let $n \equiv(E, p, M)$ be a bundle. We show that the tangent (cotangent) space $T E\left(T^{*} E\right)$ has an affine structure on the horizontal space $h T E \equiv E x_{M} T M$, (vertical space, $\nu T^{*} E \equiv T^{*} E / h T^{*} E$) besides the vector structure on $E(\xi 1,2)$. Specializing the previous results to $E \equiv T M$ and $E \equiv T^{*} M$, we get a syste matical table of canonical structures, in particular we see the excnange and symplecticisomophisms as pull-back maps (§3).
We give an intrinsical definition and we find an explicit intrinsical expression of the Lie derivative of a tensor, by means of the tangent functor (§4).

We define a pseudo-connection on n identifying each affine fiber of TE with its vector space, or, equivalently, choicing a "zero" on each affine fiber. Then we get immediately an affine structure on the space of all connections.We define the linear connections, requiring the previous identifications to be bilinear on the horizontal tangent space.

We get a functional construction of the tensor product of two linear connections and of the dual of a linear connection. In the case $E \equiv T M$ we can explain the classical notions by the previous results (55).

In the following all manifolds and maps are C^{∞}. We leave to the reader the coordinate expression of formulas and the proof of some proposition.

1 - the tangent space of a bundle.

Let $n \equiv(E, p, M)$ be a C^{∞} bundle.
1 DEFINITION.
The TANGENT BUNDLE OF E is the vector bundle

$$
\tau E \equiv\left(T E, \pi_{E}, E\right) .
$$

The TANGENT BUNDLE OF n is the vector bundie

$$
\tau \eta \equiv(T E, T p, T M) \quad \perp
$$

The following diagram is commutative.

2 DEFINITION.
The HORIZONTAL BUNDLE OF TE is the pull-back vector bundle

$$
\left.h \tau E \equiv h T E, \Pi^{\prime}, E\right),
$$

where
$h T E \equiv E X_{M} T M-$
The map
$h \equiv\left(\pi_{E}, T p\right): T E \rightarrow h T E$
in the unique map which makes commutative the following diagram

3 DEFINITION.
The VERTICAL BUNDLE OF TE is the subbundle of τE, kernel of h on E

$$
\nu \tau E \equiv\left(\nu T E, \Pi_{E}, E\right) \perp
$$

4 The following diagram is commutative

and the following sequence is exact

$$
0 \rightarrow \nu T E \rightarrow T E \xrightarrow{h} h T E \rightarrow 0,
$$

hence we have a canonical isomorphism

$$
h T E \leftrightarrow T E / \nu T E .
$$

5 PROPOSITION.
We get
$\nu T E=\bigsqcup_{e \in E}\left\{d c_{e}(0)\right\}$
where

$$
\{c e\} \equiv\{c: R \rightarrow E \mid c(0)=e, p o c=p(c(0)\}
$$

Such curves $c: \mathbb{R} \rightarrow E$ are called VERTICAL.
6 DEFINITION.
The TANGENT BUNDLE OF E, ON TE, is the pull-back bundle

$$
\tau_{h} E \equiv(T E, h, h T E) .
$$

The VERTICAL BUNDLE OF TE, ON hTE, is the pull-back bundle
where

$$
\begin{aligned}
& \bar{\tau}_{h} E \equiv(\bar{v} T E, \bar{h}, h T E), \\
& \bar{v} T E \equiv T M X_{M} \vee T E \quad \text { and } \quad \bar{h} \equiv i d_{T M} \times{ }^{7}{ }_{E} .
\end{aligned}
$$

Hence the following diagram is commutative

7 PROPOSITION.
The bundle

$$
\bar{\tau}_{h} E \equiv(T E, h, h T E)
$$

is an affine bundle, whose vector bundle is

$$
\bar{\tau}_{h}{ }^{E} \equiv(\bar{\tau} T E, \bar{h}, h T E)
$$

PROOF .
Let $\quad(e, u) \in E X_{M} T M$.
We get

$$
h^{-1}(e, u)=\left\{\alpha \in T_{e} E \mid T p(\alpha)=u\right\}
$$

Since $\quad T_{e} p: T_{e}^{E} \rightarrow T_{p(e)}^{M}$ is a linear map, then $h^{-1}(e, u)$ is an affine space, whose vector space is $\operatorname{Ker} T_{e} p=\bar{v} T_{e} E \quad$

Hence $T E$ is an affine bundle on $h T E$ and a vector bundle on E. Let us remark that we can consider the two difference maps, with respect to the two previous structures

$$
\text { diff:TE } x_{h T E}{ }^{T E} \rightarrow \bar{\nu} T E \quad \text { and } \quad \text { diff:TEX }{ }_{h T E} T E \rightarrow \nu T E
$$

and the following diagram is commutative

8 PROPOSITION.
Let $n \equiv(E, p, M)$ be an affine bundle, whose vector bundle is $\bar{n} \equiv(\bar{E}, \bar{p}, M)$. There is a unique diffeomorphism

$$
\checkmark T E \longleftrightarrow E X_{M} \bar{E}
$$

such that, for each vertical map $c: \mathbb{R} \rightarrow E$, the following diagram is commutative

Such a diffeomorphism is an isomorphism over E \quad

We will make often the identification

$$
\checkmark T E \cong E X_{M} \bar{E}
$$

9 We define the map

$$
\begin{array}{ll}
\text { by the composition } & \mu_{E}: \dot{\cup} T E \rightarrow \bar{E} \\
& \vee T E \rightarrow E X_{M} \bar{E} \xrightarrow{\pi^{2}} \bar{E} .
\end{array}
$$

Then we get the commutative diagram

and the homomorphism

is an isomorphism of fibers.

10 PROPOSITION.
Let $n \equiv(E, p, M)$ be a vector bundle. Then $\equiv(T E, T p, T M)$ has a natural structure of vector bundle.

PROOF.

$$
\text { Let } \alpha, \beta \in T E \text { be such that } \quad T p(\alpha)=T p(\beta) \text {. }
$$

There exist c

$$
p \circ c_{x}=p=c_{B} \text { and } \quad d c_{x}(0)=\alpha, d c_{B}(0)=\beta .
$$

We can define

$$
c \equiv c_{\alpha}+c_{B}: \mathbb{R} \rightarrow E \text {, for which we get }
$$

$p \circ c_{\alpha}=p \circ c=p \circ c_{\beta} \quad$ and $\quad T p(\alpha)=T p \circ d c=T p(\beta)$.
Since $d \gamma(0)$ depends only on α and β, we can put

$$
\alpha+\beta \equiv d c(0)
$$

11 PROPOSITION.
Let $n^{\prime} \equiv\left(E^{\prime}, P^{\prime}, M\right)$ and $n^{\prime \prime} \equiv\left(E^{\prime \prime}, p^{\prime \prime}, M\right)$ be vector bundles.
There is a unique map

$$
t: T E^{\prime} T M T E^{\prime \prime} \longrightarrow T\left(E^{\prime} \otimes E^{\prime \prime}\right)
$$

such that the following diagram is commutative

for each $c^{\prime}: \mathbb{R} \rightarrow E^{\prime}$ and $c^{\prime \prime}: \mathbb{R} \rightarrow E^{\prime \prime}$ such that

$$
p^{\prime} \circ c^{\prime}=p^{\prime \prime} \circ c^{\prime \prime} .
$$

This map is a surjective linear homomorphism over $T M$.
2. - THE COTANGENT SPACE OF A BUNDLE.

Let $n \equiv(E, p, M)$ be a C^{∞} bundle.
1 DEFINITION.
The COTANGENT BUNDLE OF E is the vector bundle

$$
\tau^{*} E \equiv\left(T^{*} E, \rho_{E}, E\right) \quad-
$$

2 DEFINITION.

The HORIZONTAL BUNDLE OF $T^{*} E$ is the pull-back vector bundle
where

$$
\begin{aligned}
& h T^{*} E \equiv\left(h T^{*} E, \Pi^{1}, E\right), \\
& h T^{*} E \equiv E X_{M} T^{*} M
\end{aligned}
$$

Hence the following diagram is commutative

3. PROPOSITION.

The transpose map of $h: T E \rightarrow h T E$ over E is an infective map

$$
\mathrm{h} \mathrm{~T}^{*} \mathrm{E} \rightarrow \mathrm{~T}^{*} \mathrm{E}
$$

The following diagram is commutative

PROOF.
In fact $h T^{*} E$ is the dual of $h T E$ and h is surjective. 4 PROPOSITION.

The inclusion $h T^{*} E \rightarrow T^{*} E$ identifies $h T^{*} E$ with the orthogonal of $T E$. PROOF .

In fact \quad TE is the kernel of h.
5 DEFINITION.
The VERTICAL BUNDLE OF $T^{*} E$ is the quotient vector bundle
where

$$
\begin{aligned}
\vee T^{*} E & \equiv\left(\nu T^{*} E, \tilde{\rho}_{E}, E\right) \\
& \vee T^{*} E \equiv T^{*} E / h T^{*} E
\end{aligned}
$$

The following sequence is exact and the diagram commutative

6 DEFINITION.

The cotangent bundle of E, ON $\cup T^{*} E$, is

$$
\tau_{\nu}^{*} E \equiv\left(T^{*} E, \nu, \nu T^{*} E\right) .
$$

The HORIZONTAL BUNDLE OF $T^{*} E, O N \quad U T^{*} E$, is the pullback vector bundle
where

$$
\begin{aligned}
& \vec{\tau}_{V}^{*} E \equiv\left(\bar{h} T^{*} E, \bar{V}, \nu T^{*} E\right) \\
& \bar{h} T^{*} E \equiv \nu T^{*} E X_{E} h T^{*} E \quad \text { and } \quad \bar{v} \equiv \Pi^{\prime} \quad
\end{aligned}
$$

Hence the following diagram is commutative

7 PROPOSITION.
The bundle

$$
\tau_{\nu}^{*} E \equiv\left(T^{*} E, \nu, \nu T^{*} E\right)
$$

is an affine bundle, whose vector bundle is

$$
\stackrel{\tau}{\tau}_{v}^{*} E \equiv\left(\bar{h} T^{*} E, \bar{\vee}, \nu T^{*} E\right) .
$$

PROOF .
Let

$$
[B] \in \quad T_{e}^{*} E
$$

We get

$$
v-1[\varepsilon]=\left\{\alpha \in T_{\mathrm{e}}^{*} \mathrm{E} \mid \nu(\alpha)=[6]\right\} .
$$

Since $v_{e}: T_{e}^{* E} \rightarrow \nu T_{e}^{*} E$ is a linear map, then $v^{-1}[\beta]$ is an affine space, whose vector space is Ger $\nu_{e}=h T_{e}^{* E}$.

Hence $T^{*} E$ is an affine bundle on $\cup T^{*} E$ and a vector bundle on E.
8 PROPOSITION.
Let $n \equiv(E, p, M)$ be an affine bundle, whose vector bundle is $\bar{n} \equiv(\bar{E}, \bar{p}, M)$. Let

$$
\nu^{*}: T^{*} E \rightarrow E X_{M} E^{*}
$$

be the transpose map of the inclusion

$$
E x_{M} \bar{E} \cong \nu T E \longrightarrow T E-
$$

The following sequence is exact

$$
0 \rightarrow h T^{*} E \leftrightarrow T^{*} E \rightarrow E X_{M^{E}} E^{*} \rightarrow 0
$$

Then there is a unique homomorphism over E

$$
\nu T^{*} E \rightarrow E X_{M} \bar{E}^{*}
$$

such that the following diagram is commutative

Such a map is an isomorphism .
We will often make the identification

$$
v T^{*} E \cong E \times_{M} E^{-*}
$$

9 We define the map

$$
山_{E}: \nu T^{*} E \rightarrow E^{*}
$$

by the composition
$\vee T^{*} E \rightarrow E x_{M} E^{*} \xrightarrow{\Pi^{2}} \bar{E}^{*}$
Then we get the commutative diagram

and the homomorphism

is an isomorphism on fibers.

3 - THE SECOND TANGENT AND COTANGENT SPACES OF A MANIFOLD.

1 As a particular case of the previous results, let us consider

$$
n \equiv\left(T M, \Pi_{M}, M\right) \quad \text { or } \quad n \equiv\left(T^{*} M, o_{M}, M\right)
$$

Then we get the following spaces
$h T T M=T M x_{M} T M$
$\checkmark T T M=T M x_{M} T M$
$h T T^{*} M=T^{*} M x_{M} T M$
$\nu T T^{*} M=T^{*} M x_{M} T^{*} M$
$h T^{*} T M=T M X_{M} T^{*} M$
$v T^{*} T M=T M X_{M} T^{*} M$
$h T^{*} T^{*} M=T^{*} M X_{M} T^{*} M$
$\nu T^{*} T^{*} M=T^{*} M x_{M} T M$
and the following maps

$$
\begin{aligned}
& \left(\pi_{T M}{ }^{2} T H_{11}\right) \equiv h: T T M \rightarrow h T T M \\
& \nu T T M \rightarrow T T M \\
& \left(\pi_{T^{*}} M_{\partial}^{\top \rho} M\right) \equiv h: T T^{*} M \rightarrow h T T^{*} M \\
& h T^{*} T M \rightarrow T^{*} T M \\
& \nu: T^{*} T M \rightarrow v T^{*} T M \\
& \mathrm{~h} \mathrm{~T}^{*} \mathrm{~T}^{*} \mathrm{M} \rightarrow \mathrm{~T}^{*} \mathrm{~T}^{*} \mathrm{M} \\
& \Perp_{T M}: \cup T T M \rightarrow T M \\
& v: T^{*} T^{*} M \rightarrow T^{*} T^{*} M \\
& H^{*} M: v T^{*} T M \rightarrow T^{*} M \\
& v T T^{*} M \rightarrow T T^{*} M \\
& H T^{*} M: \cup T T^{*} M \rightarrow T^{*} M \\
& \Psi_{T}{ }^{*} M: \nu T^{*} T^{*} M \rightarrow T M
\end{aligned}
$$

2 Taking into account that

$$
h T T M=\nu T T M \quad \text { and } \quad v T^{*} T M=h T^{*} T M
$$

we define the following maps

$$
\nu: T T M \rightarrow T T M
$$

given by

$$
\begin{aligned}
T T M \xrightarrow{h} h T T M & =v T T M \rightarrow T T M \\
h: T^{*} T M & \rightarrow T^{*} T M
\end{aligned}
$$

and
given by

$$
T^{*} T M \stackrel{\nu}{\rightarrow} v T^{*} T M=h T^{*} T M \rightarrow T^{*} T M
$$

3 PROPOSITION.
a) The vertical endomorphism is the unique map
which makes commutative the following diagram:

b) The horizontal endomorphism

$$
n: T^{*} T M \rightarrow T^{*} T M
$$

is the transpose of the vertical endomorphism $v: T T M \rightarrow T T M$, as $\left(T^{*} T M, \rho_{T M}, T M\right)$ is the dual of $\left(T T M, \pi_{T M} T M\right) \quad-$

4 PROPOSITION.
a) ($\left.T T M, h, T M x_{M} T M\right)$
(T T M, h, T $M x_{M} T M$)
is the pull-back bundle of
with respect to the exchange endo-
morphism

The induced map ex: $T M X_{M} T M \rightarrow T M X_{M} T M$.
is an involutive automorphism such that the following diagram is commutative

$$
s \equiv(e x)^{*}: T T M \rightarrow T T M
$$

b) ($\left.T T^{*} M, h, T^{*} M X_{M} T M\right)$
$\left(T^{*} T M, \nu, T M X_{M} T^{*} M\right)$

The induced map ex : $T^{*} M x_{M} T M \rightarrow T M x_{M} T^{*} M$. $s \equiv(e x)^{*}: T T^{*} M \rightarrow T^{*} T M$
is an isomorphism such that the following diagram is commutative

b)' Reversing all the terms of b), we get the inverse isomorphism

$$
S^{-1}: T^{*} T M \leftrightarrow T T^{*} M .
$$

c) $\left(T T^{*} M, h, T^{*} M X_{M} T M\right)$ $\left(T^{*} T^{*} M, v, T^{*} M X_{M} T M\right)$ with respect to the map

The induced map

$$
i \equiv\left(i d_{T^{*}} M \times\left(-i d_{T M}\right): T^{*} M x_{M} T M \rightarrow T^{*} M x_{M} T M .\right.
$$ $\omega \equiv i^{*}: T T^{*} M \hookrightarrow T^{*} T^{*} M$

is an isomorphism (the SYMPLECTIC ISOMORPHISM)such that the following diagram is commutative

c)' In an analogous way we get the isomorphism

$$
\omega \odot S^{-1}: T^{*} T M \leftrightarrow T^{*} T^{*} M \quad
$$

5 DEFINITION.
The SYMMETRIC SUBMANIFOLD of T TM is

$$
s T T M \equiv\{\alpha \in T T M \mid s(\alpha)=\alpha\} \quad .
$$

4 - Lie derivative of tensors.
1 Let \mathcal{M} be the category, whose objects are manifolds and whose morphisms are diffeomorphisms.

Let

$$
T_{(r, s)}: M \rightarrow M
$$

be the covariant functor defined as follows:
a)

$$
T(r, s) M \equiv \underset{S}{ } T M
$$

b) if

$$
f: M \leftrightarrow N \quad \text { is a diffeomorphism, }
$$

then

2 Let M and N be manifolds.
Let $\quad \phi: R \times M \rightarrow N$
be a map (defined at least locally). Then

$$
\partial \phi: M \rightarrow T N
$$

is the map given by

$$
\partial \phi(x)=T_{X}(0,1) .
$$

3 Let M be a manifold.

Let	$u: M \rightarrow T M$	be a vector field and
let	$C: R \times M \rightarrow M$	
be the (locally defined)		

group of local diffeomorphisms generated by u.
Namely we have

$$
u=\partial c .
$$

$\begin{array}{lll}\text { Let } & v: M \rightarrow T_{(}(r, s)^{M} & \text { be a tensor field. } \\ \text { Let } & C v: R \times M{ }^{T}(r, s)^{M} & \text { be the (locally defined) }\end{array}$
map, given, $\forall \lambda \in R$, by the tensor field

$$
(C v)_{\lambda} \equiv T(r, s) C_{\lambda}^{-1} \circ \vee \circ C_{\lambda}: M \rightarrow T(r, s)^{M}
$$

Let us remark that $\partial(C v)$ takes its values in the subspace

Then we can give the following definition.
4 DEFINITION.
The LIE DEFIVATIVE of $v: M \rightarrow T(r, s)^{M}$ with respect to $u: M \rightarrow T M$ is the tensor field

$$
L_{u} v \equiv \Perp_{(r, s)^{M}} \circ \partial(C v): M \rightarrow T_{(r, s)^{M}} \doteq
$$

5 LEMMA
Let $u: M \rightarrow T M$ be a section. There is a unique map

$$
\alpha(T u): T^{*} M \rightarrow T^{*} T M
$$

such that the following diagram is commutative and exact in $\mathrm{T}^{*} \mathrm{M}$

6 PROPOSITION.
We have

PROOF .
It suffices to give the proof for $v: M \rightarrow T_{(1,0)^{M}}$ and $\left.v: M \rightarrow T_{(0,1}\right)^{M}$. In the first case, we get
hence

$$
\begin{aligned}
& C_{v}=\left(T_{2} C^{-1}\right) \circ\left(\pi^{\prime}, v\right) \circ\left(\pi^{1}, C\right): R \times M \rightarrow T M, \\
& a\left(C_{v}\right)=\left(T_{2} C^{-1}\right) \circ\left(\Pi^{\prime}, T_{v}\right) \circ\left(\pi^{\prime}, T_{1} c\right)(0,1)= \\
& =\left(\left(\partial T_{2} C^{-1}\right) \circ \pi_{T M}+T_{2} T_{2} C_{0}^{-1}\right) \circ(T v) \circ \partial C= \\
& \left.=\left(s \circ T \partial C^{-1}\right) \circ \Pi_{T M}+i d_{T T M}\right) o(T v) \circ u= \\
& =-s o T u o v+T v o u \text {. }
\end{aligned}
$$

In the second case, we get

$$
C v=\left(T_{2}^{*} C\right) \circ\left(\pi^{1}, v\right) o\left(!^{1}, C\right): R \times M \rightarrow T^{*} M
$$

hence

$$
\begin{aligned}
\partial(C v) & =\left(T T_{2}^{*} C\right) \circ\left(T^{1}, T v\right) \circ\left(\pi^{1}, T_{1} C\right)(0,1)= \\
& =\left(\left(\partial T_{2}^{*} C\right) \circ \Pi_{T M}+T_{2} T_{2}^{*} C_{0}\right) \circ(T V) \circ \partial C= \\
& =\left(-s \circ \alpha\left(T_{2} \partial C\right) \circ \Pi_{T M}+i d_{T T^{*}}\right) \circ(T v) \circ u= \\
& =-s o \alpha(T u) \circ v+T v o u \quad \therefore
\end{aligned}
$$

Let us remark that both tensors in (*) are on the same affine fiber on h ${ }^{T T}(r, s)^{M}$.

5 Connection on a bundle.
Let $n \equiv(E, p, M)$ be a bundle.
1 DEFINITION.
A PSEUDO-CONNECTION on n is an affine bundle morphism on $h T E$

$$
\bar{r}: T E \rightarrow \bar{\nu} T E
$$

whose fiber derivatives are 1.

A PSEUDO-HORIZONTAL SECTION is a section

$$
H: h T E \rightarrow 7 E \quad \perp
$$

Hence the following diagram is commutative

Let us remark that $\Gamma: T E \rightarrow \bar{V} T E$ is characterized by the map $\Gamma^{\prime}: T E \rightarrow \nu T E$ given by $T E \quad \Gamma \bar{v} T E \xrightarrow{n^{2}} \vee T E$.

2 PROPOSITION.
The maps α and B between the set of pseudo connections and the set of pseudo-horizontal sections, given by

$$
\alpha: \Gamma \rightarrow H,
$$

where H is the unique horizontal section such that $\Gamma 0 H=0$, and

$$
B: H \rightarrow \Gamma \equiv i d_{T E}-H O h,
$$

are inverse bijection
Henceforth we will consider Γ and H as mutually related. Hence giving a pseudo-connection is the choice of a point for each affine fiber of $T E$, getting in this way an identification of the affine fibers with their vector spaces.

3 PROPOSITION.
Let $c: R \rightarrow E$ be a map. The following condition are equivalect :
a) $H \circ h \circ d c \equiv H O(c, d(p o c)!=d c$
b) $-0 d c=0$.

4 DEFINITION.
A curve $c: R \rightarrow E$ is HORIZONTAL if the previous conditions are satisfied.
5. PROPOSITION.

The set J of all pseudo-connections is the affine space of the sections of the affine bundle ${ }^{T}{ }_{h} E$, whose vector space is the space of the sections of the vector bundle $\bar{\tau}_{h}{ }^{E} \quad$.
6. PROPOSITION.

The following conditions are equivalent
a) $\Gamma: T E \rightarrow \bar{\top} T E$
b) $H: h T E \rightarrow T E$

is a linear	morphism on E
is a linear	morphism on E.

Moreover, if such conditions are verified, then we get

$$
T E=h T E \oplus_{E} \quad \cup T E
$$

PROOF .
$a)<b$ trivial.

For the splitting it suffices to take into account the two exact sequences on E

$$
\begin{aligned}
& 0 \rightarrow \text { VTE } \rightarrow \text { TE } \xrightarrow[\rightarrow]{h} \text { hTE } \rightarrow 0 \\
& 0 \rightarrow \text { hTE } \xrightarrow{H} \text { TE } \Gamma^{\prime} \text { UTE } \rightarrow 0 \rightarrow
\end{aligned}
$$

7 DEFINITION.
A CONNECTION (HORIZONTAL SECTION) is a pseudo connection(pseudo-horizontal section) satisfyng the condition(a), (b) -

Hence giving a connections allows us to make a comparison between "close" fibers of E.

8 PROPOSITION.
Let n be a vector bundle. Let Γ be a connection.
The following conditions are equivalent
a) $\Gamma: T E \rightarrow \bar{v} T E$ is a vector bundle morphism on $T M$
b) $H: h T E \rightarrow T E$ is a vector bundle morphism on $T M$.

9 DEFINITION.

A connection (horizontal section) is LINEAR if the previous conditions hold. Hence giving a linear connection allows us to make a comparison between "close" fibers of E by means of isomorphisms.

10 The set \mathcal{F}_{l} of all linear connections is an affine subspace of \tilde{J}, whose vector space is the space of bilinear sections of $\bar{\tau}_{h} E$ (this vector space is naturally isomorphic to the space of sections $\left.M \rightarrow T^{*} M \otimes E^{*} \otimes E\right)$.

11 PROPOSITION.
Let Γ^{\prime} and Γ^{\prime} be two linear connections on η^{\prime} and $\eta^{\prime \prime}$, respectively.

The map $H \equiv t o\left(H^{\prime} \otimes H^{\prime \prime}\right): h T\left(E^{\prime} \otimes E^{\prime \prime}\right) \rightarrow t\left(E^{\prime} \otimes E^{\prime \prime}\right)$ is a linear connections on $\eta^{\prime} \otimes \eta^{\prime \prime}$.

Hence the following diagram is commutative:

12 DEFINITION.

The TENSOR PRODUCT of ${ }^{-1}$ and ${ }^{\prime \prime}$ is the connection associated with the horizontal section H previously defined.

13 PROPOSITION.

Let r be a linear connection on n There is a unique linear connection r^{*} on n^{*} such that the following diagram is commutative

where $b: E X_{M} E^{*}-R$ is the inner product and $\dot{b}=\pi^{2} 0 T D_{\text {. }}$
14 DEFINITION.
The DUAL connection of r is the connection associated with the horizonta? section H^{*} previously defined

15 DEFINITION.
Let r be a linear connection on $n \equiv \tau M$.
The TORSION of Γ is the bilinear map
$\theta \equiv \|_{T M} O(H-s$ O HO ex) : TMx $T M \rightarrow T M$.
The connection Γ is SYMMETRICAL if $0=0$.

16 DEFINITION.

A QUADRATIC SPRAY is a second order differential equation

$$
X: T M \rightarrow T T M
$$

which is factorizable by a symmetrical linear horizontal section as follows

\therefore
17 PROPOSITION.
The previous diagram determines a bijection between quadratic sprays and symmetrical linear connections

The quadratic sprays are homogeneous with degree two
18 DEFINITION.
Let Γ be a linear connection on $n \equiv(E, p, M)$.
Let $v: M \rightarrow$ bbe a section and let $u: N \rightarrow T M$ be a vector field.
The COVARIANT DERIVATIVE of v with respect u is the section

$$
\square_{u} v \equiv \Pi_{E} \text { O roTvou:M } \rightarrow E \quad
$$

Hence the following diagram is commutative

Let us remark that we have

$$
\nabla_{u} v=\Gamma_{E} 0 \quad \text { o a } \quad \text { voc), }
$$

where $\quad C: R \times M \rightarrow M$ is the group of local diffeomorphisms generated by u.

19 PROPOSITION.
Let - be a linear connection on $n \equiv(E, p, M)$.

We have

$$
\begin{aligned}
& \nabla_{f u}=f \nabla_{u} v \\
& \nabla_{u+u^{\prime}} v=\nabla_{u} v+\nabla_{u}{ }^{\prime} v \\
& \nabla_{u}\left(v+v^{\prime}\right)=\nabla_{u} v+\nabla_{u} v^{\prime} \\
& \nabla_{u}(f v)=f \nabla_{u} v+(u, f) v
\end{aligned}
$$

If $U C M$ is open, then

$$
\nabla_{u / v} v_{/ v}=\left(\nabla_{u} v\right) / u .
$$

If * is the dual connection of P, we have

$$
\left.u^{\sim} \omega v\right\rangle=\left\langle\nabla_{u} \omega, v\right\rangle+\left\langle\omega, \nabla_{u} v\right\rangle .
$$

If is the tensor product of the linear connection Γ^{\prime} and $\Gamma^{\prime \prime}$, we nave

$$
\nabla_{u}\left(v^{\prime} \otimes v^{\prime \prime}\right)=\nabla_{u} v^{\prime} \otimes v^{\prime \prime}+v^{\prime} \otimes \nabla_{u} v^{\prime \prime} \div
$$

20 PROPOSITION.
Let : be a linear connection on $n \equiv$ т M.
We have $\nabla_{u} v=\nabla_{v} u+L_{u} v+\theta o(u, v)$.
PROOF .
$\nabla_{u} v-\nabla_{v} u=\Pi_{T M} 0-0(\operatorname{Tv} 0 u-s o \operatorname{Tv} 0 u)+\theta 0(u, v)=L_{u} v+\theta o(u, v)$
PROPOSITION.
Let $g: T M X_{M} T M \rightarrow R$ be a non degenerate symmetrical linear map. Let us denote by the same notation the associated maps
$g: T M \rightarrow R$,
$g: M \rightarrow T_{(0,2)}{ }^{M}$ and
$g: T M \rightarrow T^{*} M$.

Each one of the following conditions characterize the same symmetrical linear connection T on $\tau \mathrm{M}$.
a) The following diagram is commutative

b) The following diagram is commutative

$$
\begin{array}{cc}
T T M X_{T M} T T M & \dot{g} \\
(H, H) & 0
\end{array}
$$

c) We have

$$
u g=0
$$

$\forall u: M \rightarrow T M$.
d) The following diagram is commutative

$$
\begin{array}{ccc}
T M x_{M} \top M & H & T T M \\
i d_{T M} \times g^{-1} & & \\
T M x_{M} T^{*} M & H^{*} & \\
& & T T^{*} M
\end{array}
$$

C. GODBILLON, Géometrie différentielle et mécanique analytique, Hermann, Paris, 1969.
R. ABRAHAM, Foundations of Mechanics, Benjamin, New York, 1967.
S. LANG,

Differential Manifolds, Addison-Wesley, London, 1972.
K.YANO-S.ISHIHARA, Tangent and cotangent bundles, Dekker, New York,1973.
P.DOMBROWSKI, On the geometry of the tangent bundle, J. Reine Angew. Math. 210, 1962, 73-88.
M.MENICHETTI-M.MODUGNO, Fibrati topologici con fibra strutturata, Quad.Ist. Mat. Lecce, Q. 3, 1978.

