RIGIDITA' DI VARIETA' HERMITIANE COMPATTE (*)

Domenico PERRONE

Abstract.

In this paper using a "vanishing theorem" of Calabi and Vesentini [1], we obtain a condition in order that the complex analytic structure of a compact hermitian manifold be locally rigid.

Nozioni Preliminari.

Sia X una varietà complessa compatta kähleriana avente dim X = n, con tensore metrico $g = (g_{\alpha \overline{\beta}})$.

Siano

$$\Box = \bar{\partial} \theta + \theta \bar{\partial}$$
 e $\bar{\Box} = \partial \bar{\partial} + \bar{\theta} \partial$

i laplaciani complessi operanti sulle (p,q) forme su X a valori com plessi,

$$\Delta = d\delta + \delta d = (3 + \overline{\delta})(\theta + \overline{\theta}) + (\theta + \overline{\theta})(3 + \overline{\delta})$$

il laplaciano reale.

Lichnerowicz [4], ha definito l'operatore laplaciano $\overset{\sim}{\Delta}$ sui p tensori T in questo modo:

$$(\overset{\sim}{\Delta} T)_{\alpha_1 \cdots \alpha_p} = - \nabla^{\rho} \nabla_{\rho} T_{\alpha_1 \cdots \alpha_p} + R_{\alpha_k \rho} T_{\alpha_1 \cdots \alpha_p} - R_{\alpha_k \rho} T_{\alpha_k \rho} T_{\alpha_1 \cdots \alpha_p}$$

con ∇_{ρ} derivata covariante, $\nabla^{\rho} = g^{\rho\alpha}\nabla_{\alpha}$, $R_{\alpha}{}_{k^{\rho}} \alpha_{\ell}^{\sigma}$ componenti del tenso-

re di curvatura e R componenti del tensore di Ricci. $\alpha_{\mathbf{k}}^{\ell}$

^(*) Lavoro eseguito nell'ambito del gruppo GNSAGA DEL C.N.R.

- è la generalizzazione del laplaciano reale \triangle di G. de Rham de finito sui tensori antisimmetrici.
- $\overset{\sim}{\Delta}$ conserva la simmetria o antisimmetria eventuale di T, commuta con la contrazione ed è autoaggiunto.

Essendo X dotata di una struttura kähleriana, allora si prova (cfr.[5]) che

$$\Delta = 2 \square = 2 \overline{\square} .$$

Su X si può quindi definire per i tensori T del tipo (p,o) l'operatore $\overset{\bullet}{\square}$:

$$(\Box T)_{\alpha_1 \cdots \alpha_p} = -g^{\rho \overline{\tau}} \nabla_{\overline{\tau}} \nabla_{\rho} T_{\alpha_1 \cdots \alpha_p} + R_{\alpha_k \overline{\tau}} g^{\overline{\tau} \rho} T_{\alpha_1 \cdots \rho \cdots \alpha_p} +$$

$$-R_{\alpha_{k}\bar{\tau} \alpha_{\ell}\bar{\nu}}g^{\bar{\tau}\rho}g^{\bar{\nu}\sigma}T_{\alpha_{1}\cdots \rho\cdots \sigma \alpha_{p}},$$

- è la generalizzazione del laplaciano complesso \Box definito sui ten sori (p,o) antisimmetrici.
- Con Θ denoteremo il fascio dei germi dei campi di vettori olomor fi tangenti a X, e con $H^Q(X, \Theta)$ (q = 1,...,n) i gruppi di coomologia con coefficienti in Θ (per maggiori dettagli si rinvia a [1] cap.2).

Sia M una varietà (connessa) e $\mathcal V$ un fibrato differenziabile su M con proiezione $\pi: \mathcal V \to M$ e tale che ogni fibra $V_t = \bar \pi^1(t)$ ($t \in M$) di $\mathcal V$ sia una varietà analitica complessa n-dimensionale, la cui struttura complessa è compatibile con la struttura differenziabile di $\mathcal V_t$ indotta dalla struttura differenziabile di $\mathcal V$.

Lo spazio fibrato $\mathbf{V} = \{V_t/t \in M\}$ lo diremo <u>famiglia differenzia-bile di varietà complesse n-dimensionali</u>, se: per ogni punto $p \in \mathbf{V}$ esiste un intorno U di p e un omeomorfismo differenziabile p di U in $\mathbf{C}^n \times \pi(U)$ tale che per ogni p to p e una approximation p e una a

plicazione biolomorfa di $U \cap V_t$ in $\mathfrak{C}^n \times \{t\}$.

Riferendoci a un punto base oeM, la varietà complessa $V_t = \bar{\pi}^1(t)$, teM, la diremo una deformazione di $V_o = \bar{\pi}^1(o)$.

Una famiglia differenziabile $\mathcal{N} \xrightarrow{\pi} M$ di varietà complesse n-dimensionali la diremo <u>banale</u>, se per qualche punto oeM esiste una applicazione differenziabile di $\mathcal{V} \to V_0 = \bar{\pi}^1(o)$ che applica ogni fibra $V_t = \bar{\pi}^1(t)$, teM, biolomorficamente in V_0 ; la diremo invece <u>localmente banale</u> in oeM, se esiste un intorno N di o in M, tale che la famiglia $\bar{\pi}^1(N) \to N$ è banale.

Rigidità di varietà hermitiane compatte.

Il seguente lemma è dovuto a Calabi e Vesentini (cfr.[1] pag. 487). <u>LEMMA</u> . Sia X varietà kähleriana compatta di Einstein avente dim_CX=n. Siano $\lambda_1 \cdots \lambda_N$ (N = $\frac{1}{2}$ n(n+1) i valori propri in ogni punto di X del la trasformazione lineare

$$Q : \xi_{\alpha\beta} \to R^{\rho}_{\alpha\beta} \quad \xi_{\alpha\beta} \tag{1}$$

operante sui tensori simmetrici di tipo (2,0) .

Supponiamo $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_N$ e sia $\lambda = \inf\{\lambda_1(x) : x \in X\}$. Se R denota la curvatura scalare costante, abbiamo R \geqslant n(n+1) λ ed inoltre

(a) se
$$\lambda \ge 0$$
 e R > 0, allora $H^q(X, \mathbf{Q}) = \{0\}$ per ogni q > 0;

(b) se
$$\lambda < 0 < R$$
 e $R+n\lambda > 0$, allora $H^{q}(X, \Theta) = \{0\}$ per ogni
$$q > -\frac{n \lambda}{R+n\lambda}$$
;

(c) se R < 0, allora
$$0 < \frac{R}{\lambda} \le n(n+1)$$
 e $H^{Q}(X, \Theta) = \{0\}$

per ogni q <
$$\frac{R}{n \lambda} - 1$$
.

OSSERVAZIONE 1. Il gruppo $H^{q}(X, \mathbf{\Theta})$ è legato con le deformazioni della struttura complessa di X. Infatti quando per una varietà complessa compatta X si ha $X^{1}(X,\mathbf{\Theta})=\{0\}$, allora per un criterio di Frölicher e Nijenhuis (cfr.[5], pag. 45) <u>la struttura complessa di X è localmente rigida</u>, cioé ogni famiglia $\mathbf{V} \xrightarrow{\pi} M$ di varietà complesse n-dimensionali $V_{t} = \bar{\pi}^{1}(t)$, teM, con fibra $V_{0} = \bar{\pi}^{1}(0)$ analiticamente isomorfa a X, è localmente banale in 0.

Per varietà hermitiane compatte, proviamo il seguente teorema di rigidità.

TEOREMA . Sia X varietà kähleriana compatta di Einstein n-dimensiona le, con curvatura scalare R, avente

$$\lambda > \frac{R}{2n}$$
 se $R < 0$, $\lambda > -\frac{R}{2n}$ se $R > 0 > \lambda$.

Sia X' varietà complessa compatta hermitiana m-dimensionale tale che

- (i) X' e X siano isospettrali per il laplaciano $\square_{(p,q)}$ con (p,q) = (0,0),(1,0),(0,1),(0,2).
- (ii) l'operatore Q' (operatore (l) riferito a X') ammetta come autosoluzione relativa a λ_1' un tensore $\eta = (\eta_{\alpha\beta})$ il quale verifichi per ogni $x \in X'$ la condizione:

$$\left[\left(\stackrel{\sim}{\square} \right)_{\alpha\beta} \bar{\eta}_{\alpha\beta} \right]_{Re} \geq \left(\frac{R}{n} + 2\lambda \right) \eta_{\alpha\beta} \bar{\eta}_{\alpha\beta} - \left[\left(g^{\rho} \bar{\tau} \nabla_{\rho} \eta_{\alpha\beta} \right) \bar{\eta}_{\alpha\beta} \right]_{Re}^{(1)} .$$
 (2)

In queste ipotesi si prova che X' è localmente rigida.

DIMOSTRAZIONE. Intanto dalle ipotesi fatte su λ , segue facilmente che, X ha struttura complessa localmente rigida.

⁽¹⁾ Se z è un numero complesso con $[z]_{Re}$ indicheremo la parte reale di z.

Infatti

se $\lambda > \frac{R}{2n}$ (R < 0), dal punto (c) del lemma, abbiamo $H^1(X, \mathbf{\Theta}) = \{0\}$; se $\lambda > -\frac{R}{2n}$ (R > 0 > λ), allora $\tilde{\mathbf{e}}$ anche $\lambda > -\frac{R}{n}$, quindi dal punto (b) del lemma abbiamo $H^1(X, \mathbf{\Theta}) = \{0\}$.

Pertanto dall'osservazione l segue che X è localmente rigida. La matrice hermitiana su X' sia data, in coordinate locali (z^{α}) , da

$$ds^2 = 2 \sum_{\alpha,\beta=1}^{m} g_{\alpha\bar{\beta}} dz^{\alpha} dz^{\bar{\beta}} ; \qquad \text{a} \qquad ds^2 \qquad \text{possiamo as}$$
 sociare la (1,1) forma fondamentale $\omega = \sqrt{-1} \sum_{\alpha,\beta=1}^{m} g_{\alpha\bar{\beta}} dz^{\alpha} \wedge dz^{\bar{\delta}} .$

Essendo la varietà hermitiana X' isospettrale a X per $\square_{(0,0)}$,

$$\left(\overset{\boldsymbol{\sim}}{\square} \boldsymbol{n} \right)_{\alpha\beta} = - g^{\rho \overline{\tau}} \nabla_{\overline{\tau}} \nabla_{\rho} \boldsymbol{\eta}_{\alpha\beta} + R_{\alpha \overline{\tau}} g^{\overline{\tau}\rho} \boldsymbol{\eta}_{\rho\beta} + R_{\beta \overline{\tau}} g^{\rho \overline{\tau}} \boldsymbol{\eta}_{\alpha\rho}$$

$$- \ R_{\alpha \overline{\tau} \beta \bar{\nu}} \ g^{\bar{\tau} \rho} \ g^{\bar{\nu} \sigma} \eta_{\rho \sigma} \ - \ R_{\beta \bar{\tau} \alpha \bar{\nu}} \ g^{\bar{\tau} \rho} g^{\bar{\nu} \sigma} \eta_{\rho \sigma} \ .$$

Essendo X' varietà kähleriana di Einstein n-dimensionale con cur-

vatura scalare R, il tensore di Ricci $R_{\alpha\bar{\beta}}$ verifica $R_{\alpha\bar{\beta}} = \frac{R}{2n} g_{\alpha\bar{\beta}}$, pertanto

$$\left(\begin{array}{c} \sum_{\eta} \eta \right)_{\alpha\beta} = -g^{\rho \overline{\tau}} \nabla_{\overline{\tau}} \nabla_{\rho} \eta_{\alpha\beta} + \frac{R}{2n} g_{\alpha \overline{\tau}} g^{\overline{\tau}\rho} \eta_{\rho\beta} + \frac{R}{2n} g_{\beta \overline{\tau}} g^{\rho \overline{\tau}} \eta_{\alpha\rho} + \frac{R}{2n} g_{\beta \overline{\tau}} g^{\rho$$

$$-2R_{\alpha}^{\rho}_{\beta}^{\sigma}_{\beta}^{\sigma}_{\rho\sigma} = -g^{\rho\overline{\tau}}\nabla_{\overline{\tau}}\nabla_{\rho}\eta_{\alpha\beta} + \frac{R}{n}\eta_{\alpha\beta} + 2R^{\rho}_{\alpha\beta}^{\sigma}\eta_{\rho\sigma}.$$

Dalla condizione (2), per ogni $x \in X'$, abbiamo:

$$\frac{R}{n} \eta_{\alpha\beta} \bar{\eta}_{\alpha\beta} - \left[(g^{\rho \bar{\tau}} \nabla_{\bar{\tau}} \nabla_{\rho} \eta_{\alpha\beta}) \bar{\eta}_{\alpha\beta} \right]_{Re} + 2\lambda \eta_{\alpha\beta} \bar{\eta}_{\alpha\beta} \leq \left[(\vec{\Box} \eta)_{\alpha\beta} \bar{\eta}_{\alpha\beta} \right]_{Re} =$$

$$= -\left[\left(g^{\rho \bar{\tau}} \nabla_{\bar{\tau}} \nabla_{\rho} \eta_{\alpha \beta}\right) \bar{\eta}_{\alpha \beta}\right]_{Re} + \frac{R}{n} \eta_{\alpha \beta} \bar{\eta}_{\alpha \beta} + 2\left[\left(R^{\rho} \sigma_{\alpha \beta} \eta_{\rho \sigma}\right) \bar{\eta}_{\alpha \beta}\right]_{Re}$$

ossia

$$\left[\left(R^{\rho}_{\alpha\beta}^{\sigma} \eta_{\rho\sigma} \right) \bar{\eta}_{\alpha\beta} \right]_{Re} \ge \lambda \eta_{\alpha\beta} \bar{\eta}_{\alpha\beta} . \tag{3}$$

D'altronde $R^{\rho}_{\alpha\beta}^{}$ $\eta_{\rho\sigma}^{} = Q'(\eta_{\alpha\beta}) = \lambda_1' \eta_{\alpha\beta}^{}$ per ogni $x \in X'$, per cui la (3) diventa $\lambda_1' \eta_{\alpha\beta}^{} \bar{\eta}_{\alpha\beta}^{} > \lambda \eta_{\alpha\beta}^{} \bar{\eta}_{\alpha\beta}^{}$ per ogni $x \in X'$, ed essendo $\eta_{\alpha\beta}^{} \bar{\eta}_{\alpha\beta}^{} > 0$, ne segue che

$$\lambda^{\dagger} = \inf\{\lambda_1^{\dagger}(x) : x \in X^{\dagger}\} > \lambda$$
.

Pertanto la condizione (2) geometricamente significa che lo spettro di Q' si trova dopo λ .

Essendo $\lambda' \geq \lambda$, abbiamo:

se $\lambda > \frac{R}{2n}$ (R < 0), anche $\lambda' > \frac{R}{2n}$ e quindi dal punto (c) del lemma $H^1(X', \Theta') = \{0\}$ cioé X' è localmente rigida; se $\lambda > -\frac{R}{2n}(R > 0 > \lambda)$, può aversi $\lambda' > 0$ (R > 0) oppure $\lambda' > -\frac{R}{2n}$ (R > 0 > λ'), quindi dal punto (a) oppure dal punto (b) del lemma segue che X' è localmente rigida.

OSSERVAZIONE 2. In particolare se il tensore simmetrico $\eta = (\eta_{\alpha\beta})$ è a derivata covariante nulla, affinché si verifichi la condizione (2) del Teorema è sufficiente che η sia anche autosoluzione di con valore proprio $\mu > (\frac{R}{n} + 2\lambda)$.

BIBLIOGRAFIA

[1] E. Calabi-E. Vesentini On compact, locally symmetric kähler manifolds - Ann. of Math. 71, 472-507 (1960). [2] H. Donnelly Minakshisundaram's coefficients on kähler manifolds - Proc. of Symp.in Pure Math. 27,195-203 (1975). [3] P. Gilkey Spectral geometry and the kähler condition for complex manifolds. Inv. Math. 26, 231-258 (1974). [4] A.Lichnerowicz Propagateurs et commutateurs - Publ. Math. Inst. Hautes Etudes Sc.n°10 Paris 1961. [5] J. Morrow - K. Kodaira Complex manifolds - Holt-Rinehart

and Winston New York 1971.

Approvato su proposta del Prof. E. Vesentini (Scuola Normale Superiore di Pisa)