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Thus, if Jj(k) > 23(k-1) this quantity is unbounded and passing to a

subsequence on k will not help. Therefore the condition of Theorem 3 is violated.

CONNECTIONS . -

Now we turn to the main topic of these lectures which is the description of
certain connections between the structure theory and inverse function theorems.
Our first remark is an observation that shows how special is the relation (3)

which the smoothing operators are assumed to satisfy.
[f we have (3), then any xet, o > 0 and k < j < ¢ we would have,

l_k
x o« 1S x! .+ Il x=S l_{CE}J

j-t

[l #0770 ).

L

We can use calculus to show that the right hand side achieves 1ts minimum value

when ]

I x]l - (2-3)
O = ( ) .
!

iix1[k (j_k)
and substituting this value for o with k =j-1, =3+1  yields

TR |
(llii"ilij) < C HXiij_]

Xl s

This immediately implies the condition of Theorem 3 so, with the above discussion,
we may conclude that Theorem 2 does not hold for H({D). Actually we have the

following much stronger result of D. Vogt.

THEOREM 4. -
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Thus we see that Theorem 3 as presently formulated is not applicable to
a very wide class of Fréchet spaces. It turns out, however, that if we look

a little more closely at how the smoothing operators can be defined, the re

lation (3) can be derived. If we do this for C (T) or H{ € ) we get (3),
but if we do it for another space, say H(D), we get a different relation

which can then be used to prove an inverse function theorem valid for H(D).

There is a method of constructing the smoothing operators. We begin with

a nuclear Fréchet space K(a) given in a coordinate representation. If (en)

: . th :
is the usual sequence of sequences which are 1 at the n coordinate and

0 elsewhere, then each ¢ = (gn) can be written ¢ = E gr ¢ , where this
Y

series converges in the topology of K(a). Then we define S : K(a) »K(a),

N

o > 0, by

and we may calculate for, k < J,

j 2 a}]
S £l = sup |f | = sup |¢ = e (eup ——) £l
” @Ellj up i‘:n| aﬂ Up 'ﬁﬂ[ aﬂ k < (f‘up k ) I‘ ‘i].k
n<o n<e a n<g  a
- - n -~ N
A similar calculation for & - Soa yields
k
3
e - sl < (sup =)} el
n>o aj J
N
. 0 k k .
[f our space 1s C (T) then we can take an =N , so we obtain exactly (3).

If the space is H(C) then (3) still holds since H(C) is a coordinate subspace
of Cm(T). [f we use the above derivation for H((), we get a different inequality

which could still be used to prove Theorem 3. Actually, 1t is not so different.

r|‘_".
i,

We get the same inequality as in (3) except that 0o is replaced by e . Thus if

we replace S by S we get a family of smoothing operators for H(()

O logo
satisfying (3).
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For H(D) however, this is impossiblie as we have seen. The inequalities we

get are '

|
(v - 7)o
”S K”.‘:Cek J ¥
o -

[]x-SGx![k < Ce

Again replacing O by logé we have our condition as foilows. For k < j, xek,

[

® >0 and an appropriate constant C which depends only on k,j but not on

X 46 there exists a family of smoothing operators S_ = such that
(] 1.
. v s/
Isxll s <otk ™ 311 xl,
(3%) (-
| x-S x||, <Co" ‘ x|
| o "k SR

Thus we see that H(D) does have a family of smoothing operators satisfying (3').

The ultimate goal then would be to find for each K(a) a relation Tike (3)
or (3') and then use it to prove a theorem like Theorem 2. This turns out to be
not so easy. So far I have only been able to do this for (3') and, although the
proof is not given so we cannot see the actual difficulties as they arise, a clue

will be provided by the form of the statement of Theorem 2' and how it differs

from Theorem 2.
THEOREM 2'. -

Let E  be a Fréchet space which has a family o4 smocthing cperatons which

satisqy (3') and Let f : U-E  be a continuous function on a nelghborhood of 0O,

U «n E which has a derivative at each point <in U.

Let f(0) = 0 and assume that there ex.ist d(}’d] > 0 and strilctly {ncreasing

unbounded Aunctions a,) ,\ 10,2) > 0,2} such that, gon el k > 0, we have

o |

cons tants Ck > 0 wdith

OOl < CAPxIE g (xeU)
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FEOOvl g = C vl (xel,vel)
1 0
l J 1 i 2 -
| F(x+v)-F(x)=F" (x)v] <« C || v (x,x+vel)
ud — 0"
] d
0
Suppose gurthern that f'(x) has a right <nverse  L(x) Lon each xeU  and
Loyl < sty Dyl #livll, ) (xeloyek).
o(k) 1 (k)

Then f(U) s a neighberhood o4 0.

There are important differences between this result and Theorem 2 which go
beyond the difference between inequalities (3) and (3'). First observe that the
restrictions on f' and its approximation by a difference (essentially a condition
on f") need only be made for a single norm here while in Theorem 2 it was on
every norm and also the loss could only be from k to k+d. This relaxation is also
present for the conditions on f and L. In Theorem 2 it could only be a constant
linear loss of d while in Theorem 2' the loss (measured by o ,i , h]) can have

0
any gowth for large k but is mildly restricted for small k. Also in Theorem 2'

there 1s the strange requirement that do < % :

These variations are direct consequences of the proofs. About half of the
argument 1s the same for both theorems and probabily will work for a wide class
of space K(a). The other half is quite different and seems to reflect fundamental
differences between spaces like Cm(T) and H(T) on the one hand and H(D) on
the other. This is very similar to other phenomena in the structure theory. It

appears that these basic differences will render it unlikely that a unified proof

valid for all spaces K(a) can be constructed,

There remains a major consideration in comparing Theorem<? and 2'. Although,
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on the face of it, the hypotheses in Theorem Z2' are, at least in some respects,
weaker than those of Theorem 2, it is necessary to pin this down with examples.
Thus we would want to have a function on H(D) that satisfies the hypotheses of
Theorem 2' but not of Theorem 2. Such examples have not yet been discovered

and I would consider 1t to be a major question in this research.

On the other, unsuccessful attempts to find such examples have brought into
focus other phenomena which turn out to be important in this and other contexts.

I would like to close these notes with a brief explanation.

Perhaps the simplest example of a non-linear function is what we might call
a binomial, which is defined as follows. Let B : ExE - E be bilinear, symmetric

and continuous. Then we define f : E -~ E by
f(x) = x + B(x,x).

We can calculate,

f'(x)v = 1im X+t ?+B(K+EE’X+EFI:E-B(X’X) = v+2B(Xx,Vv).

T

[t is necessary to assume that f'(x) 1s invertible. That is, for each x in

a suitable neighborhood of 0, the operator v - v+2B(x,v) 1s invertible. Then

we would try to find a B such that the hypotheses of Theorem 2' hold but those

of Theorem 2 fail. Without going into details, I can say that one kind of
calculation leads to the conclusion that B should satisfy the following condition,

which we might call separately bounded:

There 45 a ko such that gon everny k  there 45 o(k) and Ck} 0 such that

m—

I B(x,y) ], < Ckl!XlikOH yll (x,yeE)

(énd then, by symmetry, the same result would hold with x,y interchanged), but

that B should not satisfy the following condition which we might call joantluy
bounded :

There 44 a |<0 such that 4fon every k there 44 Ck > 0 such that



1BOGy < 6 IExdh Tyl (x,yek).

However, we have the following somewhat surprising result from the structure

theory:

THEOREM 5.

In H{D) and <t cocadonate subspaces, every conlonuous, symmetric, bilinear,
()
separately beunded function 48 joantly bounded. In C (T) and each of L5

coordinate subspaces, this staiement L5 false,

In the Tight of this result, I feel quite uncertain as to the exact reason
for the difference between Theorem 2 and Theorem 2'. Is the latter in some sense

stronger or are the hypotheses actually equivalent? Perhaps future research will

explain the matter.
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