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Thus, if j(k) > 2j(k-1) this quantity is unbounded and passlng to a

subsequence on k wil1 not help. Therefore the condition of Theorem 3 is vio1ated.

CONNEcnONS. -

NoI' l'e turn to the nlain topic of these 1ectures which is the description of

certain connections between the structure theory and inverse function theol'ellls.

Our first remark is an observation that shows how special is the re1ation (3)

which the snloothing operators are assumed to satisfy.

If l'e have (3), then any xeE, (.) > O and k < J < t l'e would have,

Ilxll·< IIs xll.+ IIx-S xii. < C(0j-kllxllk+lJj-< Ilxll ).
J- 0'J lJ J - 'i.

Vie can use calcu1us to show that the right hand si de achieves its minimulll value

when l

Il x Il 2 (H)
2-k

o ~ ( )--- ,
Il x Il k (j-k)

and substituting this value for (3 wi th k ~j -l , 2~j+ l yie1ds

(II x Il . )2 < C Il x Il . l Il x II· l
J - J- J+

•

This immediately imp1 ies the condition or Theorem 3 so, witll the above discussion,

l'e may conclude that Theorem 2 does not ho1d for H(lD). Actua1ly Vie have the

fol1owing much stronger result of O. Vogt.

THEOREM 4. -

00

C (T).
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Thus we see that Theorern 3 as presently formulated is not appl icable to

a very wide class of Fréchet spaces. It turns aut, however, that if we look

a little rnore closely at hm', the srnoothing operators can be defined, the l"e
<o

lation (3) can be derived. If we do this for C (T) or H( [) we get (3),

but if we do it for another space, say H(D), we get a different relation

I,hich can then be used to pl"OVe an inverse function theorern val id for H(D).

There is a method of constructing thesmoothing operators. We begin with

a nuclear Fréchet space K(a) given in a coordinate representation. If (e )
n

is the usual sequence of sequences which are l at the
th

n coordinate and

o elsewhere, then each

ser1es converges in the

El > O, by

~ = (sn) can be written

topologyof K(a). Then we

t,=~çnen'

define S
El

where this

K(a),K(a),

- [ (e
n<() n n

and we may calculate far, k < J,

sup
n<El

sup
n<El

•

a
j

n___o

k
a

n

aJ
l'

< (sup --t)
n<() a

n

A similar calculation for c - S E yields
"" El'

•< (sup
n>9

w
If our space lS C (T) then we can take

k
a

n..,--) li l'. dS!j"
a

j

n
k ka - n , so we obtain exactly (3).
n

lf the space is H([) then (3) still holds •
S l nce H([) lS a coordinate subspace

00

of C (T). lf we use the above derivation for H([), we get a different inequality

which could still be used to prove Theorern 3. Actually, it is not so different.

We get the same inequality as in (3) except that o is replaced by e0
. Thus if

we replace

satisfying

So
( 3) .

by S
lago

we get a family of smoothing operators far
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For H(ID) however, this 1S illlPOssible as we have seen. The inequalities we

get are

Il 5 x Il . < Co J

<

l
- -)0

k Il xli· .
J

Again replacing 0 by 10g0 we have our condition as follows. For k < J, xeE,

o > ° and an appropriate constant C which depends only on k,j but not on

x,0

( 3 ' )

there exists a family of smoothing operators 5o such tha t

Thus we see that H(ID) do€s have a family of smoothing operators satisfying (3').

The ultimate goal then would be to find for each K(a) a relation like (3)

or (3') and then use it to prove a theorem l ike Theorem 2. Thi s turns out to be

not so easy. 50 far I ha ve only been able to do this for (3') and, although the

proof is not given so we cannot see the actu~l difficulties as they arise, a clue

wi 11 be provided by the form of the statement of Theorem 2' and hO~1 i t differs

from Theorem 2.

THEOREM 2'. -

Lu E be. a Flléchu opace. wluch hM a nOJnay (> 6 .61noc.tJUng opeJ"o.ft.tc'lto WfJ.i.cll

oa..ti..6ny 13') and.tu f : U... E be. a COIIX.Ù1lLOUl.l oLULc.ti.on 011 a nugl1bo 1tllOud 06 o,

U .i.n E wlucl, hM a deJùva.ti..vc a.t each po.i.n.t ù, U.

IJ.I1bounde.d 6unc.ti.oln "').0').1 : [0,00) ...

con6tan.to C
k

> O w~

ouch .t/lat, 601t a.il k > O, ,ve. IUlve.

(xeU)
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Il f'(x)vll d ~ coli vii d
l o

(xeU,veE)

Il f(x+v)-f(x)-f'(x)vll d
l

C Il Il 2< l V I
- O-

d
o

(x,x+veU)

L(x)

Il L(x)yll k ~ Ck( Il xii À Il yll d +11 yll À )

o(k) I 1(k)
(xeU,yeE) .

À (O)
o

1
< d, ).1(0) < dl , d < -2'- o - o a(dl)<d.- o

TheJ1 f (U) .<..6 a. ne..l!jhboILllOOd O6 O.

There are important differencesbetween th-is resu1t and Theorelll 2 which go

beyond the difference between inequa1ities (3) and (3'). Fi"st observe that the

restrictions on f' and its approxinlation by a difference (essentia11y a condition

on f") need on1y be made for a single norm here whi1e in Theorem 2 it was on

every norm and a1so the 10ss cou1d only be from k to k+d. This relaxation is a1so

present for the conditions on f and L. In Theorem 2 it could only be a constant

1inear 10ss of d while in Theorem 2' the 10ss (measured by a '\' À1) can have

any gowth for 1arge k but is mildly restricted for small k. A1so in Theorem 2'
lthere is the strange requirement that do < ~ .

These variations are direct consequences of the proofs. About half of the

argument is the same for both theorems and probabi1y wil1 work for a wide c1ass

of space K(a). The other half is quite different and seems to renect fundament.al
00

differences between spaces like C (T) and H([) on the one hand and H(ID) on

the other. This is very simi1ar to other phenomena in the structure theory. It

appears that these basic differences will render it unlikely that a unified proof

valid for a11 spaces K(a) can be constructed.

There remains a majo,' consideration in comparing Theorem,2 and 2'. Although,
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on the face of it, the hypotheses in Theorem 2' an" at least in some respects,

weaker than those of Theorenl 2, it is necessary to pin this down with exalliples.

Thus we would want to ha ve a function on H(ID) that satisfies the hypotheses of

Theorem 2' but not of Theorem 2. Such examples ha ve not yet been discovered

and I would consider it to be a maJor question in this research.

On the other, unsuccessful attempts to find such examples have brought into

focus other phenomena which turn aut to be important in this and other contexts.

I I~ould like to close these notes with a brief explanation.

Perhaps the simplest example of a non-linear function is what we might call

a binomial, which is defined as follows. Let B : ExE + E be bilinear, symmetric

and continuous. Then we define f: E + E by

f(x) - x + B(x,x).

We can calculate,

f' (x)v - l i m
t--

x.!!_v+B (x+tv ,x+tv t-x -B( x, x)
t

- v+2B(x,v).

(x,yeE)

It is necessary to assume that f'(x) is invertible. That is, far each x in

a suitable neighborhood of O, the operator v + v+2B(x,v) IS invertible. Then

we would try to find a B such that the hypotheses of Theorem 2' hold but those

of Theorem 2 fail. Without going into details, I can say that one kind of

calculation leads to the conclusion that B should satisfy the following condition,

which we might call H.fXUl.a.tc1.y bOtLnded:

Il B(x,y)11 k 2 ckll xii k Il yll k
o

(and then, by symmetry, the same result would hold with x,y interchanged), but

that B should not satisfy the following condition which we might call jo;n~y

bOtLnde.d:

ThV!.e. -<..6 a k
o

~llch ;that 60lt e.Ve.ltlj k C
k

> O ~l(c.h tha-t
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Il B(x,y) il k < Ck Il xii k Il y!1 k
o o

(x,yeE).

However, we ha ve the following somewhat surprlslng result from the structure

theory:

THEOREt-i 5.

M.pa/l.i0teJ.y bO(ll1de.d tlUJ"lC:t<:.O'" Ù jo.L.l.tJ'.y bOtU1ded. Il.'l

caoJtcUna:te ~u.b~pacej, .th.u., .j.ta:tcmen.t .u., j)auc.

00

C IT) al.'ld e.ac.h o6w

In the light of this result, I feel quite uncertain as to the exact reason

for the difference between Theorem 2 and Theorem 2'. Is the latter in some sense

stronger or are the hypotheses actual1y equivalent? Perhaps future research will

explain the matter.
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