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case, analysis just carries over. It is like the situation in which you have
an inverse function theorem valid for functions in three variables. It 1s tnhen
trivial to obtain (by holding one variable constant) a similar theorem for

functions of two variables.

In any case, I tried to see if one could use a result iike Theorem 2 for
Fréchet spaces very different from Cm(T). As we will see, the restriction to
essentially this one space was no accident and it 1s necessary to change things
quite a bit if we want to find an implicit function theorem valid in different

kinds of Fréchet space.

Before we can get very far with such a program , it 1s necessary to say

something about these spaces.

STRUCTURE OF FRECHET SPACES.

Recall that a Fréchet space 1s a complete, metrizable, locally convex space.
tquivalently, 1t 1s a vector space E which is complete under a certain ftrans-
Tation invariant metric and on which is defined an increasing sequence of semi-

norms (sub-additive , positive scalar homogeneous real-valued functions) (iﬁ-{h} L0

such that a sequence (x ) in E converges to x in E iff Tim{! xn—xn , =0
n
(k=0,1,2,...).

In all of our applications we will take the seminorms | - | to be norms

K
(that is, || xl|, =0 iff x = 0). Somewhat more complicated is the fact that

k
the Fréchet spaces we consider will all be nuclear. It is best to defer the

definition of nuciear yntil we are in a more concrete situation.

The basic references for all of our discussion of the structure of nuclear
Fréchet spaces will be [1],[5] and |10]. For us, the best starting point is to

l11st some examples:



C (T) =~ The space of infncilely diiierentiadblo real -valued functions on the
undit cirnele equipped with the topclogy of undgorm convergence of each
desrivaiive.,

H(C) - The space of complex-valued functions o4 one complex varndable, analylic
in the cemplex plane, equipped wilh the compact-open topology.

HD) =~ The space o4 complex-valued Aunctions c¢f one complex variable, analytic

in the open undct disk, equipped with the compact-open Lopologu.

For eacnh of these spnaces we give one nossible choice of the norms which define

the topology.

C(T) : Il x|l = Sup {ixp(t)| :p =0, ...,k, teT i'
H(T) I xl = Sup {Ix(t)] lt] < k)
hD) : Il xl = sup Cx(E)] ¢ lt] < —

Tk o T =k

Each of these examoles has what is called a coordinate representation or basis.

For examplie, in C (T) we can represent functions by their Fourier series and

SO write,
Cm(T) ={f = (gn) ; (gn) is the sequence of Fourier coefficients of an element
of C (T)} =
| k
:{E = (E ) . SUD EE i e ]Dg ! < @ k:O,],E,..,} 3

N s
N

where the second equality represents a standard fact about asymptotic behavior of

Fourier coefficients of differentiable functions. More is true. If we set

-

C

k log n 00 . :
I]x]|k = SUD }n[ e N where xeC (T) and (¢,) s its sequence of Fourier
n

coefficients, then this definition of || «|i, works just as well to define the

k
topology of Cm(T).

The same thing can be done for H(C) and H{D) using power series expansions.



We obtain,
H(C) = {g= (g ) i &ll , = sup &, AL k=0,1,2,.
1 i k : ﬂ} 3 3 % -3
N
L
) ! e K , |
HD) = (£ =(c) (el =suple ] e < <o,  k=0,1,2,...)

N

Clearly we can abstract all this by writing down an infinite matrix of positive

n
numbers a = (ank) instead of ek 109 n, ekﬂ or e «
Then the Fréchet space we obtain 1s given by
- = 1 - | % -0 . 1
K(a) ={: () |l || = Sup| gﬂl a < : k=0,1,2,

and we only need assume that a . The condition that K{a) 1is nuctear

nk-i an,k+1

can tnen be expressed as follows !

¥k -:{j such that L - nk ¢ o
— n a .
nJ
. . : . th * *
If e 1S the sequence which 1s 0 except in the n coordinate where 1t

n
is 1, then each element of K(a) can be expanded as an infinte series in {er)

i
and considering the coefficient sequences gives K(a) back.

[t 1s a simple but informative exercise to verify the details of this general

formulation for the three examples mentioned above.

The notion of coordinate representation leads to another notion that permits

us to construct other examples of nuclear Fréchet spaces. Let o = (un) be a

subsequence of the sequence IN of positive integers. If E 1is a nuclear Fréchet

space given via a coordinate representation, then (E) denotes all of those
)

elements of E whose corresponding sequence & has the property that En = ()

unless n 1is one of the terms of o .

Thus (K(a)) is K(b) where b = a :
. nk “n,k
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[t is clear that (E)a is again a nuclear Frechét space. It 1s compiemented

in the sense that, if R = N« a, then E is isomorphic to the product (E) X(E)R.

(X

We call (E)& a coordinate subspace of E.

This completes the preliminaries for the structure theory and now I would
Iike to say something about the content of this theory. Generally speaking the
questions considered are of the following type. Given a nuclear Fréchet space
E and another one F, find quantitative conditions which determine whether F
1s isomorphic to a subspace of E. Usually E 1is a space which can be given
in a coordinate representation, say E = K(a). This may or may not be the case
for F. If 1t 1s, say F 1s isomorphic to K(b), then the condition is given
1n terms of the matrices a,b. If not, then the condition is in terms of the

norms.

The structure theory involves much more than I have mentioned. It is possible
to replace subspace by quotient, or even complemented subspace. There are
investigations which try to determine what effect this has in quaranteeing that
F has a coordinate representation. Other approximation properties have been
studied and there is a lot of work in determining when concrete function spaces
fall under this theory. I have not tried to give a serious bibliography here.
Many results are quite recent and just now beginning to find thelir way into

print.

It will be useful for us to go a bit beyond these generalities and to give

at least one definite example of how the structure theory works. We consider
the possibility that a space K(b) 1s isomorphic to a subspace of Cm(T). We
will use the fact (mentioned above) that Cm(T) is isomorphic to K(a) where

ek 10g n K

a , = =n .

nk

A necessary condition can be derived quite easily as follow. We have an
isomorphism A : K(b) - K(a) so (after passing to a subsequence on k if

necessary) we can write
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2

I ka < 'ﬂ xh f_Ck|[ka+2 (xeK(b), k=1,2,...
Applying this with x = e we can derive
LA I ?j | I
1 _I* EnHkH o ?QH K+2 ) bn,k+2 . Ci ’[Aen - k+3
3 - - —
C A | | I
k | en“k | end k-1 bn,k—1 tMlen“k-Z
Now if Ae is the sequence (gﬂ) in K(a) we have
AV IR
, o n ko Kk
[he | = sup [£1 = Je 1(g)
V gr‘

k. .
where g 1s the largest value of v at which the sup occurs.

n

K
fact that sup[gZ[u <« for every k 1impl

W

ies

Now using the property of sup we have, for any

Ky J Jvd _ J
legkla)”  lesl(an)”  Tesl(ay)
N . n ) n
k. k — o kk - J. Kk
£ kl(g) () e 51(gY)
Qn n Qn n 9n
from which we conclude that
. | Ae || . .
K.j-k n'" J J.J-kK
g )" <~ < (9]
| Ae Il

V

K5 J s

. M
lim{z |v
u

K

- 0).

(n,k=1,2,3,..

(We use here the

Together with our first inequality, and writing only C for any positive

constant independent of n, we obtain,

] | he, |

e

C

n, k+2 k+3 .5 k+8

b

b

n,k-1 H Ae H
N

K+3

—
e
e
[ A
i
(g

)
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which, passing to a subsequence,gives

b D |
A LS
bn,k-1 bnk

It is very interesting that this simple condition which we derived 15 also

sufficient and we have,

THEOREM 3.

A nuclean Fréchet space E  with a coorndinate nepresentation K(b) 45 «s0-

a0

moaphic Lo a subspace of C (T) (44, aftern passing Lo an approprcate subseguence

on K , we have, jor everny K

A proof of this and many similar results can be found in [17. What is even

- -t

more striking is that results of this kind with equally simple conditions can

be obtained without the assumption that E
9],[11]  and [12]).

has a coordinate representation(see

One 1important consequence of this characterization is that neither H(ID) nor

any of its coordinate subspaces 1s isomorphic to a subspace of Cl(T). To see

this we use the fact that any coordinate subspace of H({D)

8!
N

i Wt mm = -

=€ j{k) and  (j(k)) s any subsequence of N,

1S 1somorphic to a

4

space  K(b) where b

This gives,

e

]
TR R T DR 12 D B TV IR NN TCE SIS
b , b ., .. © - €
n,J(k=1) "n,J(k+1)

2 ! N 2
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Thus, if Jj(k) > 23(k-1) this quantity is unbounded and passing to a

subsequence on k will not help. Therefore the condition of Theorem 3 is violated.

CONNECTIONS . -

Now we turn to the main topic of these lectures which is the description of
certain connections between the structure theory and inverse function theorems.
Our first remark is an observation that shows how special is the relation (3)

which the smoothing operators are assumed to satisfy.
[f we have (3), then any xet, o > 0 and k < j < ¢ we would have,

l_k
x o« 1S x! .+ Il x=S l_{CE}J

j-t

[l #0770 ).

L

We can use calculus to show that the right hand side achieves 1ts minimum value

when ]

I x]l - (2-3)
O = ( ) .
!

iix1[k (j_k)
and substituting this value for o with k =j-1, =3+1  yields

TR |
(llii"ilij) < C HXiij_]

Xl s

This immediately implies the condition of Theorem 3 so, with the above discussion,
we may conclude that Theorem 2 does not hold for H({D). Actually we have the

following much stronger result of D. Vogt.

THEOREM 4. -



