serious difficulties arise when we try to study this situation in the context of

a general Fréchet space.

A totally different object of 1nvestigation 1s the structure of Frechet spaces.
There we consider a fixed space b and try to determine (up to isomorphism) all
of 1ts subspaces and quotient spaces. There are many other similar kinds of

questions and this turnsoul to be rich area of study.

[t 15 a Tittle D1t surprising that there are Tmportant connections between tnese
two areas. Tnhese are being discovered in various current research activities and
it 1s my main purpose in these lectures to describe some of them. Thus, the discussicn
will be divided into three parts: inverse function theorems, structure theory, and

connections.

INVERSE FUNCTION THEOREMS.

We beginwith f : U~-E with f(0) = 0 and we want to solve f(x) =y
for smatl y. Of course, there are important related questions. Is the solution
unique? Does 1t depend continuously on parameters? And so on. There are inters
esting things to say about such guestions but, in these lectures, [ will consider

only the existence nroblem.

v willl be Newton's method. This works

T

H

Our basic approach to solving f{x)
equally well when E 1s 1-dimensional, n-dimensional or even an infinite dimen-
sional Banach space. The following picture describes the l-dimensional situation

but leads to formulas which work in the more general context:




The idea 1s to set us the recursion,

[t 1s clear that if 1im xD = x and f 1s continuous, then f{x) = y.
n

Before we can use such a formula 1t 1s necessary to have a theory of differen
tiation which works in a Banach space. This is another vast subject and eventually
any investigation into non-linear phenomena will have to deal with it extensively.
For these lectures we take the short-cut of using the simplest definition and
anpealing to various regularity conditions (which we will not state explicitly)
that 1mply, in our context, that all definitions are equivalent. This same defi-

nition can and will be used when E is a Fréchet space.

Thus we define the derivative of f at x & U to be the continuous linear

function f'(x) : E » E wnich satifies

Frix)v = Tim —2nBYiTIAA (xelU , veE)

We then have the following result (see [8] for a proof).

THEOREM 1.

s

1{ E 45 a Banach space and £'(0) is (nventibie, then f(U) (s a neighborhicod

This 1s a very nice result and has important applications in partial differential
equations. Unfortunately (and this has implications for the applications) notning
SO broad 1s true in Fréchet spaces. [t is useful to try to understand what coes

wrong.

A farst difficulty is that in Banach spaces it suffices to assume that f'(0)
1s invertible because this imnlies that there is a whole neivghborhood of 0, W e U,
such that f'(x) is invertible for every xeW which latter property is what is
really needed. It is not hard to construct examples (1 think there will be one in

almost every non- Banach Fréchet space) that show that no such implication holds.



Actually, this 1s only a minor annoyance because no important examples are lost if we
go the whole way and simply assume that f'(x) is invertible for all x in
some neighborhood of 0. Unfortunately, as the following example shows, this

is still not enough.

Let E be the Fréchet space C(R) of continucus real- valued functions on
the real 1ine R with the compact-open topology and let f : E » £ be defined

. X{t P | o . .
by taking f{x)(t) = e ( )-— 1. Then f(0) =0 and f s as regular as it could

exu 50 that the

fal

be. Moreover, it is easy to compute f'(x) to obtain f'{x)v

H

inverse of f'(x) is f{-x). On the other hand, any neighborhood of O will
contain functions which take on values less than -1, but this is not possible

=y

for a function in the range of f.

We will try to analyse more closely what is going wrong,with the goal of
getting some i1dea how to deal with this apparently chaotic situation. Let us see

what in the proof of Theorem 1 does not work when we pass to Fréchet spaces.

Once the existence of an Inverse of {'(x), xeW, 1s established there are two
remaining 1ssues in the proof of Theorem 1. First, we must guarantee that

xpew so that the formula for xD+1 can be used and second, once the seguence

{xp) 15 defined, we must show that 1t converges or, at least, is Cauchy. Both

concerns are dealt with using the same basic calculation:

oy = flx )-f “Fy V(X -
f(XDJ Y faXpJ (hD—T) f (kﬁ_wﬁxxp XP_]J
. *"] £ Fot(x - ) “dt
=5 xp_1 (xp Ap*1)’“xn Kp“1)
5 |

With appropriate (and reasonable) reaularity assumptions on f, this leads to the

existence of positive constants C and & with

iiz

1

Cf *' < ‘ - X
| f(x ) -yl < ¢ Xo T %o

and



D+ | p' - P p-1" D D]
This means that 1f KD - xp_] is sufficiently small, then xr$1 will stay 1in W
and xp+] - xD will be even smaller. Thus it suffices to make y—f(xo) =y

sufficiently small.

In a Fréchet space, however, the topology 1s defined by a sequence of norms

(]} - §|k) so that considerations of the above type lead only to relations of the

form
¥ I o 1
(2) X - x i, <8 I x =X

where o 1is a function determined by f and which is usually arowing quite
rapidly with k. Unfurtunately, 1f o(k) 1is much larger than k, the interation
at each step leads to information about fewer norms and after finitely many steps,
o(k) = 0 and we have no information at ail. Restrictions on the growth of o are

quite rare in the study of Fréchet spaces.

If E = Cm(T) and f 15 a partial differential operator, then o 15 related

to the order of the operator and

— =g

. I?k is calculated in terms of the first k
derivates. For this reason we call the function o the Loss ¢4 denivatives functeon.
One of my major points in these lectures 1s that many phenomena occuring in the

theory of Frechet spaces can be related to this function, both conceptually and

in the actual details of calculations.

In the case of the inverse function theorem, there is a method for dealing with
the loss of derivatives. It i1s called the Nash-Moser method and it attacks the

problem directly by using an additional structure with which a Fréchet space may be

equipped.

Let (Sﬂ)ph N be a family of continuous Tinear operators, S. B~ E,

on a Fréchet space E, which satisfy the following conditions for k <J, X €€k,

o > 0 and an appropriate constant C which depends only on k,j but not on

X, 0



1=K
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(3)
| k -
| x-S x|, < Co Jf X 1.
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Here (1] -“k} is an increasing sequence of seminorms which define the topology

of E. (This will be discussed a Tittle more in the next sectionj. We refer to

(S.) as a 4amily of smocthing operators which satisiics (3).

The recursion relation (1) 1s just changed to

-1,
. - - g (-f-""' ( \f - \ ~ / = O:_
(4) o1 Xy T S (0N T x) (p>0) x_
where the sequence {Gp) must be chosen for the convenience of further calculations.
For exampie, 1t no longer follows necessarily that, if (4) is used and (xp) converges,
then the Timit is a solution of f(x) = y. This will be guaranteed by the second
inequality in (3) provided éiﬂ @p = o _ The calculations lTeading to (2) are then

repeated by using the first relation in (3) to cancel to effect of o. This turns

out to be fairly delicate and requires that GD does not grow too rapidly so that

a balance must be struck. A more serious restriction is that nothing works unless

there 1s a guite severe controi on the growth of o.

Nevertheless,it is possible to push through the calculations and we do get a
theorem which, although very special, does have many important applications. The
original idea is due to J. Nash [7], but J. Moser [6] was the first to realize
how useful 1t could be. Subsequent refinements have been made by many authors,
esgécia??y R. Hamilton, S. Yojasiewcz and E. 7Zehnder. The version given here 1s

due jointly to the last two authors [4].

THEOREM 2.

Let b be a Frlchet space which has a pamily o4 smoothing cpernatons which
satishy  (3) and Let f @ U= £ be a continuous 4function on a neighberhood U
o4 0 un b which has a derctvative at ecach point <n U. Let f(0) =0 and

==

assume that there exist d >0 and i e [1,2) such that 4{on all k > 0 we



have constants C'K > 0 wAith

10O, < lixl, (xeU)
i ] " 1 M g". .r H el e [
H i (K)V][k.ﬁ_(a<(” Kh k+d!|v1]£}FLj Vi k+d) LhELs vthﬂ
) ' i ? 4 I
I EOav) =Rlx) = £ v < GO Vb vl iVl ) (oxeved).

Suppose moreover that f'(x) has a night <nverse L(x) for each xeU and

Yyl | I | ~ ST
H th)yi:k_i Ckid KH k+dd-y! d Y lk+d} (XFU, yEU)

(here (] - LS AGAAN an ANCheasing sequence o4 Semincams which dedines

Hlﬁ:)k > 0

—_—

the topology of E).

Then f(U) 45 a nedlghborhood vf 0.

[t is interesting to note that the requirement <2 in Theorem 2 is essential.
In fact, 1n [4] there 15 given an example in which all of the hypotheses of the

theorem hold except that x = 2 and the conclusion of the theorem is false!

Of course, in order to even think of applying Theorem 2 it is necessary to
consider how the smoothing operators might be constructed. In the original ap-

nlications of Nash and Moser, E 1is always C (T) and the smoothing operators are

obtained either by convolution or the truncation of Fourier series.

In Tooking over the literature on this subject, it seemed curious to me that
although many authors postulated wide classes of spaces for which Theorem 2 could
be used, the concrete examples of Fréchet spaces which were actually written

)

down were almost invariably (up to isomorphism) C (T) or a space closely related

to 1t.

This 1s in fact the case even when it did not appear so. For example, in [4] the
authors use the Fréchet space H(C) of entire functions in one variable. But this

space 1s what we shall call later a "coordinate subspace" of CW(T) and 1n that
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case, analysis just carries over. It is like the situation in which you have
an inverse function theorem valid for functions in three variables. It 1s tnhen
trivial to obtain (by holding one variable constant) a similar theorem for

functions of two variables.

In any case, I tried to see if one could use a result iike Theorem 2 for
Fréchet spaces very different from Cm(T). As we will see, the restriction to
essentially this one space was no accident and it 1s necessary to change things
quite a bit if we want to find an implicit function theorem valid in different

kinds of Fréchet space.

Before we can get very far with such a program , it 1s necessary to say

something about these spaces.

STRUCTURE OF FRECHET SPACES.

Recall that a Fréchet space 1s a complete, metrizable, locally convex space.
tquivalently, 1t 1s a vector space E which is complete under a certain ftrans-
Tation invariant metric and on which is defined an increasing sequence of semi-

norms (sub-additive , positive scalar homogeneous real-valued functions) (iﬁ-{h} L0

such that a sequence (x ) in E converges to x in E iff Tim{! xn—xn , =0
n
(k=0,1,2,...).

In all of our applications we will take the seminorms | - | to be norms

K
(that is, || xl|, =0 iff x = 0). Somewhat more complicated is the fact that

k
the Fréchet spaces we consider will all be nuclear. It is best to defer the

definition of nuciear yntil we are in a more concrete situation.

The basic references for all of our discussion of the structure of nuclear
Fréchet spaces will be [1],[5] and |10]. For us, the best starting point is to

l11st some examples:



