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This article is based on a series of lectures which I gave in December,

1981 at Universita degli Studi di Lecce by invitation of Prof. V.B.Moscatel

li for \·,hose hospitality I am very qrateful.

In these notes I would like to be rather informal, tl'ying to glve a flavor

of some recent research which has elucidated some unexpected connections

between two apparently unrelated topics in Functional Analysis. For the many

details which will be omitted, I refer to standard texts and/or the references

at the end.

INTRODUCTI ON.

A Fréchet space is a comolete metrizable locally convex space. We will consider

some details later and the reader can consult l3] for a basic discussion of these

spaces, but far now I woulcl like to mention three function spaces which are

examoles: C(T), H([), H(ID). They are, l-espectively: the space of infinitely

differentiable functions on the unit circle with the topol09Y of uniform con­

vergence of each derivative, the space of functions analytic in the complex

plane with the compact - ODen topology and the space of functions analytic in the

open unit disk in the com~act - open topology.

An interesting problem, which has connections to partial differential equations

and other functional equations, arises from consideration of a function F: U " E

where U is a neighborhood of O in a Fréchet space E ~nd FIO) = O. The question

is: if y is "small enougn" can we all<ays salve the equation f(x) = y? Putting

it another way, we ask if flUI is again a neighborhood of O in E. As we will see,
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serious difficu1ties arise when we try to study this situation in the context of

a genera1 Fréchet space.

A total1y different object of investigation is the structure of Fréchet spaces.

There we consider a fixed space E and try to detenni ne (up to isomorphi5m) a11

of its subspaces and quotient spaces. There are many

questions and thi 5 turns OLI t to be rich area of study.

other simi1ar kinds of

It is a little bit surprising that there are important connections betl'leen these

two areas. These are being discovered in various current research activities and

it is my main purpose in these lectures to describe some of them. Thus, the discussion

wi11 be divided into three parts: inverse function theorems, structure theory, and

connections.

INVERSE FUNCTION THEOREMS.

We begin with f: U - E with fiO) = O and 11e want to solve f(x) = y

for smal1 y. Of course, there are important re1ated questions. Is the solution

unique? Ooes it depend continuous1y 0'1 parameters? And 50 0'1. There are inter~

esting things to say about such questions but, in these lect.ures, I l,i 11 considero

on1y the existence orob1em.

Our basic approach to solving f(x) = y wi11 be Nel,ton's method. This works

equa11y well when E lS 1-dimensiolla1, n-dimensiona1 or even an infinite dimen­

siona1 Banach space. The fo1lowing oicture describes the l-dimensiona1 situation

but 1eads t.o fOI-mu1as which work in the more generaI context:
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The idea is to set us the rl'cursion,

(l ) x = x
0+1 p

-l
((f'(x)) (y-f(x))

P P
( ) x.. = O
o~O -

p

I t i s cl ea r tha t if l im x
p

= x and f i sconti nuous, thl'n f(x) = y.

Before we can use such a formula it is necessary to have a theory of differen

tiation which works in a Banach SDacl'. This is another vast subject and eventually

any investigation into non-linear ohenomena will have to deal with it extensively.

Far these lectures Wl' take the short-cut of using the simplest definition and

apDealing to various regularity conditions (~Ihich we will not state explicitly)

that imply, in our context, that all definitions are equivalent. This same defi­

nition can and will be used when E is a Fréchl't space.

Thus we define the derivative of f at x e U to be the continuous linear

function f'(x): E..,. E

f' (x)v

which satifies

(xeU , veE).

We then ha ve the follo~ling result (see [8J for a proof).

THEOREM l.

rs E ù Cl /3'1nClcil ;po1Cl' Cl"d f'(O) .oif!t'e~t.i.bc~, t!ICI! f(U) L; Cl Ile/i.9ilb"~.i,o,,d

o) O.

This 1S a very nice result and has imoortant applications in partial differential

equations. Unfortunately (and this has imolications for the applications) nothing

so broad is true in Fréchet spaces. It is useful to try to ullderstand what aoes

\Vronq.

A first difficulty is that in Banach spaces it suffices to assume that f'(O)

is invertible because this implies tllat there i. a nhole neighborhood of O, Wc U,

such that f'(x) is invertible for every xeW vlhichiatte," property is \vhat is

i'eally needed, ]t is not hard to construct etamoles (I think there "ill be one in

almost eve,'y nnn- Banach Fréchet space) that ShOl'i tllilt no such implication holds.
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Actually, this is only a minor annoyance because no impor·tant examples are lost if Ive

go the l'ihole Vlay and simply assume that f'(x) is invertible for i,ll x in

some neighborhood of O. Unfortunately, as the following example ShOVlS, this

is still not enough.

Let E be the Fr@chet soace C(R) of cO'ltinuous real- valued functions on

compact-open topology and let

be. Moreover, it is easy to· compute f'(x) to obtain

is as regular as it could

f'(x)v = eXv so that the

be definedf : E ., E

fandf(O) = O- l. Then

the rea l l i ne R wi th the

by taking f(x)(t) = ex(t)

inverse of f'(x) is ft-x). nn the other hand, any neighborhood of O will

contain functions which take on values less t.han -l, but this is not possible

for a function in the range of f.

We will try to analyse more closely what is going wrong)Vlith the goal of

getting some idea how to deal with this' apparently chaotic situation. Let us see

what in the proof of Theorem l does not work when we pass to Fréchet spaces.

Once the existence of an inverse of f'(xl, xeW, is established there are two

remaining issues in the proof of Theorem l. First, we must auarantee that

x eW so that the formula for x can be used and second, once the sequence
p p+l

(x) is defined, we must shoVl that it converges or, at least, is Cauchy. 80th
p

concerns are deal t Ivith using the same basic calculation:

f(x )-y = f(x )-f(x l)-f'(x l)(x -x l)
p p p- p- p p-

l l
= 2 J

o
f"(x + t(x -x ))(x -x )2dt .

p-l P p-l P p-·l

With appropriate (and reasonable) regularity assumptions on f, this leads to the

existence of positive constants C and o with

li f (x ) - y i! <
p

2
CIl x - x Ilp p- l

and
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This means that if x - x
p p-l

is sufficiently small, then xp+l
wi11 stay in w

and x - x will be even smaller. Thus it suffices to make y-f(x) = y
p+l p o

sufficiently small.

In a Frèchet space, however, the topology is defined by a sequence of norms

(II Il k) so that considerations of the above type lead only to ,-elations of the

fOI-m

( 2)

where a lS a function determined by f and which is usually growing quite

rapidly with k. Unfurtunately, if a(k) is much larger than k, the interation

at each step leads to information about fewer norms and after finitely many steps,

a(k) = O and we ha ve no information at all. Restrictions on the growth of a are

quite rare 1n the study of Fréchet spaces.

ro
If E = C (T) and f is a oartial differential operator, then a is related

to the order of the operator and Il . il k is calculated in terrns of the first k

derivates. Far this reason we call the function C! the fOM 01 dc:~{.vL1-ti.\Ie; 611J1(:t~0I1.

One of rny rnajor points in these 1ectures is that rnany phenomena occuring in the

theory of Frèchet spaces can be related to this function, both conceptually and

in the actual details of calculations.

In the case of the inverse function theorem, there is a method far dealing with

the loss of derivatives. It is called the Nash-Moser method and it attacks the

problem directly by using an additional structure with which a Frèchet space may be

equipped.

Let (SO)0> O be a farnily of continuous linear operators, \ E -. E,

on a Frèchet space E, which satisfy the following conditions far k < J, X e E,

n > O and an appropriate constant C which depends only on k,j but not on

X,o:
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( 3)

Here (II ·lI k) is an increasing sequence of seminorms which define the topology

of E. (This will be discussed a little more in the next section). ~Ie refer to

(~) as a ~am-U'!I 06 .6l1100th.i.Hg ope~tLto,'l.ò lt'h~c.1t .6llUò,).tr.; (3).

The recursion relation (l) is just changed to

(4)
-l

x l = x - S (f'(x)) (v-f(x))
p+ p El P • P

p
( p~O) x = O,

o

(x ) converges,
p

by the secondy. This will be guaranteedf (x) =

(o ) must be chosen for the convenience of further calculations.
p

longer follows necessarily that, if (4) is used and

then the linlit is a solution of

where the sequence

For example, it no

inequality in (3) provided

repeated by using the first

l im O = 00
~.,.m p

relation in

The calculations leading to (2) are then

(3) to cancel to effect of o. Thi s turns

out to be fairly delicate and requires that o does not grow too rapidly so that
p

a balance must be struck. A more serious restriction is that nothing works unless

there is a quite severe contro l on the growth of o,

Nevertheless,it is possible to push through the calculations and we do get a

theorem which, although very special, does have many important applications. The

original i'dea is due to J. Nash [7], but J. t10ser [6] \'laS the fil-St to realize

how useful it could be. Subsequent refinements have been made by many authors,

especially R. Hamilton, S. rojasiewcz and E. Zehnder. The version given here is

due jointly to the last two authors [4].

THEOREN 2.

Le.t E be. a FJté.c.hu .6pac.e wh.i.c.h 11M a 6am.i.elj 06 òmaa.thA.119 <'pe!!ato!!; wh"eh

;atM6~.{ (3) al1d tu f: U -+ E be a C.0I1UHllOI16 ~LlI1Ct-.i.Oi'l 011 a i'lc-i.gltboJthood U

06 O A.ll E wh"ch ha!.> a deJt.i.vative. a:/: eae/l poiJ,;t .iJ1 U. Le.t f(O) = O aY1.d

lLMLlllle t/lat t/le'le exi.;:/: d > O aY1d À e [1,2) òUc.ft that nl'li. aU k > O we
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Il f(xlll k 2 ckll xii k+d (xeU)

II f'(x)vll k 2 Ck(11 xII k+dll vII o +11 vII k+d) (xeU, veE)

Il f(x+v) -fl(x) - f'(x)vll k 2 Ck(11 xII ktdll vII ~ +11 vii k+dil vii oì (x,x+veU).

(xeU, yeU)

(hVLe. (II· Il k)k > O À-6 aga.~l'! a'l '<'lIc/!.i!iU>.~ng ·ie.qUe.IIC.e. d .ie.m,(nCJuJl6 wh'<'c.I, de.n'<'nu.

.the. tn polog U o6 El .

The.n f(U) .<.6 a l1ughbo!<jwod 06 O.

lt is interesting to note that the requirement ).<2 in Theorem 2 is essential.

In fact, in [4J there is qiven an example in which all of the hypotheses of the

theorem hold except that ). = 2 and the conclusion of the theorem is false!

Of course, in order to even think of apolying Theorem 2 it is necessary to

consider how the smoothing operators might be constructed. In the original ap-
00

plications of Nash and Moser, E is always C (T) and the smoothing operators are

obtained either by convolution or the truncation of Fourier series.

In looking over the literature on this subject, it seemed curious to me that

although many authors postulated wide classes of spaces for which Theorem 2 could

be used, the concrete examples of Fréchet spaces which were actually written
~

do.m were almost invariably (up to isomorphism) C (T) or a space closely related

to i t.

This is in fact the case even when it did not appear so. FOI- example, in [4] the

authors use the Fréchet space H([) of entire functions in one variable. But this
00

space is what we shall call later a "coordinate subspace" of C (T) and in that.
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case, analysis just carri es over. It is like the situation in which you have

an inverse function theorem valid for functions in three variables. It is then

trivial to obtain (by holding one variable constantI a similar theorem for

functions of two variables.

In any case, I tried to see if one could use a result like Theorem 2 for
00

Fréchet spaces very different from C (T). As we will see, the restriction to

essentially this one space \~as no accident and it is necessary to change things

quite a bit if we want to find an implicit function theorem valid in different

kinds of Fréchet space.

Before we can get very far wi th such a program, i t i s necessary to say

something about these spaces.

,
STRUCTURE OF FRECHET SPACES.

Recall that a Fréchet space is a complete, metrizable, locally convex space.

Equivalently, it is a vector space E which is complete under a certain trans­

lation invariant metric and on which is defined an increasing sequence of semi­

norms (sub-additive , positive scalar homogeneous real-valued functions) (11'll
k

) bO

such that a sequence

(k=O.1.2 •... ).

(x )
n

in E converges to x i n

In a11 of our apolications we will take the seminorms Il ·11 k to be norms

(that is, Il xII k ~ O iff x ~ O). Somewhat more complicated is the fact that

the Fréchet spaces we consider will all be nuclear. It is best to defer the

definition of nuclear until we are in a more concrete situation.

The basic references for all of our discussion of the structure of nuclear

Fréchet spaces will be [1], ['i] and [lOJ. For us, the best starting point is to

list some examples:
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00

C (T) - The ,~pac.e 01 -l1'l~,i-"L-LfUlJ di_11c'ltLVLt..ù"tb.Ce.. IL(!.ccf-\"L'l.I'.(LC.d 61Ci?CC,ioit6 (Jl1 the

una c.iAc.f.e. e.qutpped wLfJt the'. tOPc:Co9lj oli un,i.6ùJtm t.:_OV1ve~~ìeJ1c.e 06 eaerl

deJt·tva:tt\Je. .

H([) Tile. ~pdee. 06 eDtrlpfcx-\JC'«ue.d 5UJ1~tiOiI.> 0& uyte cOlilpfe.x \Jnuabfe, dI1af!j:tte

.tll .the. eompte.x p.tane., e.qllA.ppe.d wi.tl, thc. compact-opell topoto91j.

H(ID) TfJe. ~pace oS compRe.x-\Ja{ued 6uvlc-ttoyt" 06 une. cOtrlpfe.~ \J<vuabfe., anaf.!juc

-tI' the apc.n (u'l.i.t d-wlz, equ"-ppe.d Wi;t]l the compact-open t.cpofoglj.

For each of these soaces we give one oossib1e choice of the norms which define

the topo1ogy.

00

Il xl! (lxP(t) I ,
( (T) = sup p = O, o •• ,k , t e Tik

" '.

H([) Il x Il = sup {Ix( t '11 It I < k}
k I •

k /

: Il xIl SUD (lx(t)1 i ti .'
H(ID) = < ---.- ./

k . k+ l

Each of these examo1es has what is ca 11 ed a coordinate representation or basis.
00

For example, in ( (T) we can rep,-esent functions by their Fourier series and

so write,

00

( (T) ={[, = ([, )
n « ) is the sequence of Fourier coefficients of an e1ement

~n

l k log n=«):suol[, e .""n ., n
n

< 00 k=0,1,2, ... 1 ,

where the second equa1ity represents a standard fact about asymptotic behavior of

Fourier coefficients of differentiab1e functions. More is true. If we set

k
Il xii k = suo 1<. I e

n n

10g n. where, is its sequence of Fourier

coefficients, then this definition of Il 'I!k works just as well to define the

topo1ogy of (oo(T).

The same thing can be done for H([) and H(ID) using power series expansions.
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We obtain,

H( [) ( i; n) : Il (II k I i; I kn
= (i;= .- sup e < 00

I n
n n.-

H(ID) {i; =(i;n) : l! r, Il k supli; I k
= = e < ro

nn

k=0 , l , 2, ... ì

k=0,1,2, ... ì

Clearly we can abstract all this by writing down an infinite matrix of positive
n--

numbers (a nk ) instead of k log n kn ka = e , e or e

Then the Fréchet space we obtain is given by

K(a) =(i; = suDI r, I a k < 00
n n

n
k=0, l , 2, ... )

and we only need assume that a < a . The condition thatnk - n,k+l

can then be expressed as follows :

K(a) is nuclear

Vk such that r.
n

a
nk

--- < ro
a .
n]

If e is the sequence which is O except in the
n

th
n coordinate where it

is l, then each element of K(a) can be exoanded as an infinte ser'ies in

and considering the coefficient sequences gives K(a) back.

(e )
, n'

It is a simple but informative exercise to verify the details of this general

formulation for the three examples mentioned above.

The notion of coordinate representation leads to another notion that permits

us to construct other examples of nuclear Fréchet spaces. Let IJ. = (IJ.) be a
n

subsequence of the sequence ~ of positive integers. If E is a nuclear Fréchet

space given via a coordinate representation, then (E) denotes all of those
IJ.

elements of E whose corresponding sequence 1;

unless n is one of the terms of IJ. •

has the property that 1; = O
n

Thus (K(a))
IJ.

lS K( b) where a
a n,k
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It is c1ear that (E) is again a nuclear Frechèt space. It is complemented
I).

in the sense that, if 8 = N e" 1)., then E is isomorphic to the product (E) x(E) .
I). 8

We cal1 (E) a coordinate subspace of E.
I).

This completes the preliminaries for the structure theory and now I would

like to say something about the content of this theory. Genera1ly speaking the

questions considered are of the following type. Given a nuc1ear Fréchet space

E and another one F, find quantitative conditions which determine whether F

is isomorphic to a subspace of E. Usua1ly E is a space which can be given

in a coordinate representation, say E = K(a). This may or may not be the case

for F. If it is, say F is isomorphic to K(b}, then the condition is given

in terms of the matrices a,b. If not, then the condition is in terms of the

norms.

The structure theory invo1ves much more than I have mentioned. It is possible

to replace subspace by quotient, or even comp1emented subspace. There are

investigations which try to determine what effect this has in guaranteeing that

F has a coordinate representation. Other approximation properties have been

studied and there is a lot of work in determining when concrete function spaces

fa11 under this theory. I have not tried to give a serious bibliography here.

Many results are quite recent and just now beginning to find their way into

print.

It wi1l be useful for us to go a bit beyond these generalities and to give

at least one definite exaOlple of how the structure theory works. We consider

the possibility that a space K(b) is isoOlorphic to a subspace of Coo(T). We

wi 11 use the
k loga = e

nk

fact (Olentioned above) that
n k

= n .

00

C (T) is isoOlorphic to K(a) where

A necessary condition can be derived quite easi1y as fonow. We have an

i somorphi SOl A: K( b) -+ K( a)

necessary) we can write

so (after passing to a subsequence on k if
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(xeK(b), k;1,2, ... ).

Applying this with x = e vie can deri ve
n

Il Aenll k+l Il e Il' b C
4 Il Ae n Il k+3l I n \+2 n,k+2

< = < k
C3

Il Aenll k lI enll k_l
b
n, k-l Il Aenll k-2k

(n,k=l ,2,3, ... )

Now if Ae is the sequence (t;n) in K( a) we have
n v v

Il Aen Il k It;lll } k k
= sup ; It; kI(gn)vv gn

where
k

is the largest value of v at which the sup occurs. (We use here thegn
n k

fact that suplt; Iv < 00 for every k implies
v v

Now using the property of sup we have, for any

k .
l1;gj!(9~)j l1;ajl(g~)jIt;gkl (g/

n n 'n
k k < <- k k - j k

It;gkl(gn) légkl (gn) légj!(gn)
n n n

from which we conclude that

limlénl} ; O).
\} v

k, j ,

Il Ae Il .
n J

Il Aenll k

Together with our first inequality, and writing only C for any positive

constant independent of n, we obtain,

b
l n,k+2 ~ (gk+3)5
C b ~

n,k-l

Il Aen Il k+8
<

Il Aen Il k+3

b
< C _n,_~~

b n,k+2
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which, passing to a subsequence,gives

----.( C

bn,k-l

bn,k+l----

It is very interesting that this silllple condition which vie derived is a1so

sufficient and we have,

THEOREM 3.

A Y1Ltc1.e.M F/técJu&t .6pace E <vali a (:ooll.dina.te. ~~IJ/te6 c.nta.t-(~o;( K( b) v., v.,o-
00

mO!lpfUc .to a .6u.b.6pace 06 C (T) i.65, a6.t~ pMo.i.J1g .to cm app/topt~i.a;(:c .6(tbòc.quellce.

0J1 k, we. have, 6o/t e.v~U k

sup
n

(b
nk

)2
---

b bn,k-1 n,k+1

< co

A proof of this and many simi1ar results can be found in [lJ. What is even

more striking is that resu1ts of this kind with equa1ly silllple conditions can

be obtained without the assumption that E has a coordinate representation0ee

[9J, [11] and [12J).

One important consequence of this characterization is that neither H(ID) nor

any of its coordinate subspaces is isomorphic to a subspace of "C (T). To see

this we use the fact that any coordinate subspace of H(ID) is isornorphic to a
()

n

space K(b) where b
nk

= e j(k) and (j(k}) lS any subsequence of ~.

This gives,

bn,j(k-1) bn,j(k+l)
= e

()

n j(k-l)
. + l

----- -
j ( k+ l )

2
-jfkT )

> e

2 )
( k )J ,
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Thus, if j(k) > 2j(k-1) this quantity is unbounded and passing to a

subsequence on k wil1 not help. Therefore the condition of Theorem 3 is vio1ated.

CONNEcnONS. -

NoI' l'e turn to the main topic of these 1ectures which is the description of

certain connections between the structure theory and inverse function theol'ellls.

Our first remark is an observation that shows how special 15 the re1ation (3)

which the sllloothing operators are assumed to satisfy.

If l'e have (3), then any xeE, (.) > O and k < j .: l'e would have,

Ilxll·' IIS xll.+ IIx-S xii· • C(0
j

-
kllxll k +lJ

j
-< Ilxll ).

J- 0'J lJ J-'i.

We can use calcu1us to show that the right hand si de achieves its minilllum value

when

o ~ (

and substituting this value

Il xii (H)__l!:-__ )

Il xii k (j-k)

for (3 wi th k

9.-k

=j -l , 9.~j+ l yie1ds

2
(II xIl .) • C Il xII . l Il xII· lJ - J- J+

This immediately imp1 ies the condition of Theorem 3 so, witl1 the above discussion,

l'e may conclude that Theorem 2 does not ho1d far H(lD). Actually Vie have the

fal10wing much stronger result of O. Vogt.

THEOREM 4. -

00

C (T).
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Thus we see that Theorern 3 as presently formulated is not appl icable to

a very wide class of Fréchet spaces. It turns aut, however, that if we look

a little rnore closely at h01'1 the srnoothing operators can be defined, the l",fè
<o

lation (3) can be derived. If we do this far C (T) or H( [) we get (3),

but if we do it for another space, say H(ID), we get a different relation

I,hich can then be used to pl"OVe an inverse function theorern valid for H(ID).

There is a rnethod of constructing thesmoothing operators. We begin with

a nuclear Fréchet space K(a) given in a coordinate representation. If (e )
n

is the usual sequence of sequences which are l at the
th

n coordinate and

o elsewhere, then each

seri es converges in the

El > O, by

~ = (sn) can be written

topology of K(a). Then we

:;: L (, e
n<o n n

t,=~t;nen'

define S
8

where this

K(a),K(a),

and we rnay calculate for, k < j,

a
j k aj

a
j

Il Sé1lj i~n I Isn I
n l'

Il si! k= sup = sup a ._-" < (sup --t)n n kn<8 n<8 a n<() an n

A similar calculation for , - S E yields
'" El'

< (su p
n>9

w
If our space is C (T) then we can take

k
a
_':_.-) ii sii j'

a
j

n
k ka = n , so we obtain exactly (3).
n

lf the space is H([) then (3) still holds since H([) is a coordinate subspace
00

of C (T). lf we use the above derivation for H([), we get a different inequality

which could still be used to prove Theorern 3. Actually, it is not

We get the same inequality as in (3) except that n is replaced by

so di fferent.
Ele Thus if

we replace

satisfying

So
(3) .

by S
lago

we get a family of smoothing operators far
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For H(ID) however, this is impossible as we have seen. The inequalities we

get are

Il 50 xIl j < C

<

l- -)0
k Il xII· .

J

(3' )

Again replacing 0 by 10g0 we ha ve our condition as follows. For k < j, xeE,

o > ° and an appropriate constant C which depends only on k,j but not on

x,0 there exists a family of smoothing operators 50 such that

( l l \
Ilsex ll j <C0k-Jlll xll k

1 1(-;- - k)
Il x-Sexl\ k ~ C 0 J Il xl1j

Thus we see that H(ID) do€s have a family of smoothing operators satisfying (3').

The ultimate goal then would be to find for each K(a) a relation like (3)

or (3') and then use it to prove a theorem l ike Theorem 2. Thi s turns out to be

not so easy. So far I ha ve only been able to do this for (3') and, although the

proof is not given so we cannot see the actual difficulties as they arise, a clue

wi 11 be provided by the form of the statement of Theorem 2' and how i t differs

from Theorem 2.

THEOREM 2'. -

Lu E be. a Fttéc.hu opac.e. w/uc.h ha..6 a 6QJ)l.i.e.y 06 .61noc.dUng opeJ"..a.tc'lto W/t.i.cfl

oa.tM,61J 13') aYld tu f : U... E be. a COIIX.Ù1lLOUl.> nLtHc.-UOI! 011 a nugl1bo 1tllOud 06 o,

U .i.Y1 E W/Udl hM a de.Jt.i.vw.vc. a.t e.ach poÙI.t ÙI U.

IJ.l1bOUYlde.d 6ul'1c.-uoln "').0').1 : [0,00) ...

C.0I'16.ta1'1.to C
k

> O w.i..th

ouc.h .t/lat, 601t ali k > O, ,ve. IUlVe.

(xeU)



Il f(x+v)-f(x)-f'(x)vl! d
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Il f'(x)vll d ~ Coli vii d
l o

C Il Il 2< l V I
- O-

d
o

S((ppo-~e 6((l1.-tile!t t!J((t f' (x) hM (( rvi_gi~t -i.>lVe.tM~ L(x)

(xeU,veE)

(x,x+veU)

Il L(x)yll k ~ Ck( Il xii À Il yll d +11 yll ), )
o(k) I 1(k)

Fi.Yla.Uy we6uppOf>e .che 6oUow-i.ng ltei((.til.'Vk\ h.otd,

(xeU,yeE) .

1
), (O) < d , ),1(0) < d

1
, d < -2 'o - o - o

Then f(U) .i..6 a. ne.i.gh.boltllOod 06 o.

a(d1)<d.- o

There are important differencES between th-is resu1 t and Theo,-elll 2 which go

beyond the difference between inequalities (3) and (3'). Fi,-st observe that the

restrictions on f' and its approximation by a difference (essential1y a condition

on f") need on1y be made for a sing1e norm here whi1e in Theorem 2 it was on

every norm and a1so the 105S cou1d on1y be from k to k+d. This relaxation is a1so

present for the conditions on f and L. In Theorem 2 it could on1y be a constant

1inear 10ss of d whi1e in Theorem 2' the 10ss (measured by a '\' ),1) can have

any gowth for 1arge k but is mi1dly restricted for sma1l k. A1so in Theorem 2'
l

there is the strange requirement that d <-
o 2'

These variations are direct consequences of the proofs. About half of the

argument is the same for both theorems and probabi1y wil1 work for a wide c1ass

of space K(a). The other half is quite different and seems to renect fundamental
00

differences between spaces like C (T) and H([) on the one hand and H(ID) on

the other. This is very simi1ar to other phenomena in the structure theory. It

appears that these basic differences wi11 render it un1ike1y that a unified proof

valid for a11 spaces K(a) can be constructed.

There remains a major consideration in comparing Theorems2 and 2'. A1though,
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on the face of i t, the hypotheses i n Theorem 2' an~, at least in some respects,

weaker than those of Theorem 2, i t i s necessary to pin this down I-Ii th examples.

Thus we would want to ha ve a function on H(ID ) that satisfies the hypotheses of

Theorem 2' but not of Theorem 2. Such examples ha ve not yet been discovered

and I would consider it to be a major question in this research.

On the other, unsuccessful attempts to find such examples have brought into

focus other phenomena which turn aut to be important in this and other contexts.

I \~ould like to close these notes with a brief explanation.

Perhaps the simplest example of a non-linear function is what we might call

a binomial, which is defined as follows. Let B : ExE + E be bilinear, symmetric

and continuous. Then we define f: E + E by

f(x) = x + B(x,x).

We can calculate,

f' (x)v = lim x+t v+B(x+tv,x+tvt-x-B(x,x). = v+2B(x,v).
t

t--

(x,yeE)

It.is necessary to assume that f'(x) is invertible. That is, far each x in

a suitable neighborhood of O, the operator v + v+2B(x,v) is invertible. Then

we would try to find a B such that the hypotheses of Theorem 2' hold but those

of Theorem 2 fail. Without going into details, I can say that one kind of

calculation leads to the conclusion that B should satisfy the following condition,

which we might call oH.fXVl.a.tcJ.y bottnded:

Il B(x,y)11 k 2 ckll xii k Il yll k
o

Cand then, by symmetry, the same result would hold with x,y interchanged), but

that B should nat satisfy the following condition which we might call ja;n~y

battnde.d:

ThV!. e. .v., a k
o

~llch that 6alt e.Ve.ltlJ k
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Il B(x,y) il k :: Ck Il xii k Il y!1 k
o o

(x,yeE).

However, we ha ve the following somewhat surprising result from the structure

theory:

THEOREt-i 5.

M.pa!l.iLteJ.y bO(ll1de.d QUI·lC.tiOl1 Ù jO.L,"tJ'.y bOlU1ded. Irl

c.aoJtcUna:te ~u.b~pacel, .th,u., .l.ta:tcmen.t ,u., ÙaUl'..

In the light of this result, I feel quite uncertain as to the exact reason

for the difference between Theorem 2 and Theorem 2'. Is the latter in some sense

stronger or are the hypotheses actual1y equivalent? Perhaps future research wil1

explain the matter.
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