NON-LINEAR ANALYSIS AND THE STRUCTURE OF FRECHET SPACES

Ed DUBINSKY -

Summary. These netes thy to alve a 4{favor ¢4 some necent research which
1 Lucddated some seeted connections between fwe apparently unrela-
has elucidated some unexpected connections between two apparently unreld
ted topics in Functional Analusis, nameli, Lnverse kunctcon theorems and Lhe

structune theory of Fréchet spaces.

This article is based on a series of lectures which I gave in December,
1981 at Universitd degli Studi di Lecce by invitation of Prof. V.B.Moscatel

11 for whose hospitality I am very grateful.

In these notes I would Tike to be rather informal, trying to give a flavor
of some recent research which has elucidated some unexpected connections
between two apparently unrelated topics in Functional Analysis. For the many
details which will be omitted, I refer to standard texts and/or the references

at the end.

INTRODUCTION.

A Fréchet space is a complete metrizable locally convex space. We will consider
some details Tater and the reader can consult [3] for a basic discussion of these
spaces, but for now I would like to mention three function spaces which are
examples: C7(T), H(C), HD). They are, respectively: the space of infinitely
differentiable functions on the unit circle with the topology of uniform con-
vergence of each derivative, the space of functicns analytic in the complex
plane with the compact - open topology and the space of functions analytic in the

open unit disk in the comnact - open tonology.

An interesting problem, which has connections to partial differential equations
and other functional equations, arises from consideration of a function F : U -

where U 1is a neighborhood of 0 1in a Fréchet space £ and f(0) = 0. The question

]
!

is: if y s "small enougn” can we always solve the equation f(x) = y? Putting

it another way, we ask if f(U) is again a neighborhood of 0 in E. As we will see,
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serious difficulties arise when we try to study this situation in the context of

a general Fréchet space.

A totally different object of investigation is the structure of Frechet spaces.
There we consider a fixed space £ and try to determine (up to isomorphism) all
of its subspaces and quotient spaces. There are many other similar kinds of

questions and this turnsoul Lo be rich area of study.

[t 1s a little bit surprising that there are important connections between these
two areas. These are being discovered in various current research activities and
it is my main purpose in these lectures to describe some of them. Thus, the discussicn
will be divided into three parts: inverse function theorems, structure theory, and

connections.

INVERSE FUNCTION THEOREMS.

We begin with f : U~ E with f(0) = 0 and we want to solve f(x) =y
for small y. Of course, there are important related questions. Is the solution
unique? Does it depend continuously on parameters? And so on. There are inters
esting things to say about such questions but, in these lectures, [ will censider

only the existence oroblem.

Our basic approach to solving f{(x) =y will bea Newton's method. This works
equally well when E s T-dimensional, n-dimensional or even an infinite dimen-
sional Banach space. The following picture describes the 1-dimensional situation

but Teads to formulas which work in the more general context:




The idea is to set us the recursion,

-1 \ o -
(1) Xopp = X ((F1 00 (y=Filx ) (px0) %o =0

[t is clear that if 1lim KU = x and f s continuous, then f(x) = y.
Do

Before we can use such a formula i1t 1s necessary to have a theory of differen
tiation which works in a Banach space. This is another vast subject and eventually
any investigation into non-Tinear phernomena will have to deal with it extensively.
For these lectures we take the short-cut of using the simplest definition and
anpealing to various regularity conditions (which we will not state explicitly)
that imply, in our context, that all definitions are equivalent. This same defi-

nition can and will be used when £ is & Fréchet space.

Thus we define the derivative of f at x & U to be the continuous linear

function f'(x) : E~ E which satifies
. f{x+tv)-f{x
f'{x)v = 1im Fxatv)-fix) (xel , veE),

for a proof).

We then have the following result (see [8]

THEOREM 1.

14 B 48 a Banach space and £'(0) 48 (nventible, then f(U) (s a nedghberhicod

o4 0.

This is a very nice result and has imnortant applications in partial differential
equations. Unfortunately (and this has implications for the applications) nothing
so broad is true in Fréchet spaces. It is useful to try to understand what qoes

wrong.

A first difficulty is that in Banach spaces it suffices to assume that f'{0)
is invertible because this imnlies that there is a whole neighborhood of 0, Wc U,
such that f'(x) is invertible for every xsW which latter property is what is

really needed. It is not hard to construct examples (I think there will be one in

almost every non- Banach Fréchet space) that show that no such implication holds.



Actually, this is only a minor annoyance because no important examples are lost if we
go the whole way and simply assume that f'(x) is invertible for all % in
some neighborhood of 0. Unfortunately, as the following example shows, this

is still not enough.

Let [ be the Fréchet space C(R) of continucus real- valued functions on
the real line R with the compact-open topology and let f : E » E be defined
by taking f(x)(t) = eX(t)-— 1. Then f(0) =0 and f 1s as reguiar as it could
be. Moreover, it is easy to compute f'(x) to obtain f'{x)v = ey so that the
inverse of f'(x) is f{-x). On the other hand, any neighborhood of 0 will

contain functions which take on values less than -1, but this is not possible

for a function in the range of f.

We will try to analyse more closely what is going wrona,with the goal of
getting some idea how to deal with this apparently chaotic situation. Let us see

what in the proof of Theorem 1 does not work when we pass to Fréchet spaces.

Once the existence of an inverse of f'(x), xeW, is established there are two
remaining issues in the proof of Theorem 1. First, we must guarantee that

xpew so that the formula for xD+1 can be used and second, once the seguence

(xp) is defined, we must show that it converges or, at least, is Cauchy. Both

concerns are dealt with using the same basic calculation:

\— el ( \—{ - v ‘{ - )
f(XD) Y f\XUJ (RD_'I) -F (xn_wj\xp XP_}}
1 1
- 4 it B \¥ _
5 f (xp_] + t(xp z<p—]),\><‘D xp" ) dt.
O

With aporopriate (and reasonable) reaularity assumptions on f, this leads to the

existence of positive constants C and 4 with

! - v s ¢ -y il
I f(xp) vl <= ¢ XX gl

and



D+ xp - "p p-1 D p-1
This means that if Xp - Xp—? is sufficiently small, then xr+1 will stay in W
and  x - x_ will be even smaller. Thus it suffices to make y-f(x ) =y
p+1 p 0

sufficiently small.

In a Fréchet space, however, the topology is defined by a sequence of norms

(1 - §|k) so that considerations of the above type lead only to relations of the

Tx o=xll <8l =x |
(2) I xp‘ﬂ Xpiik < I X[} XD_] | D‘(k} »

where o s a function determined by f and which is usually growing quite
rapidly with k. Unfurtunately, if o(k) s much larger than k, the interation
at each step leads to information about fewer norms and after finitely many steps,
o(k) = 0 and we have no information at all. Restrictions on the growth of o are

quite rare in the study of Fréchet spaces.

If E = Cm(T) and f is a partial differential operator, then o 1is related

)

to the order of the operator and || - [Ek is calculated in terms of the first k
derivates. For this reason we call the function o the Loss ¢ dendivatives function.
One of my major points in these lectures is that many phenomena occuring in the
theory of Frechet spaces can be related to this function, both conceptually and

in the actual details of calculations.

In the case of the inverse function theorem, there is a method for dealing with
the loss of derivatives. It is called the Nash-Moser method and it attacks the
problem directly by using an additional structure with which a Fréchet space may be

equipped.

Let (Sﬂ)p? 0

be a family of continuous Tlinear operators, Sq : B> E,
on a Fréchet space E, which satisfy the following conditions for k < j, x € E,
0 >0 and an appropriate constant C which depends only on k,j but not on

X,
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ERT P
(3)
i e k“.
x-S xl], < ce" x|
G kK — ]
Here (Il +1ly) is an increasing sequence of seminorms which define the topology

of E. (This will be discussed a Tittle more in the next section). We refer to

S )as a damily of smocthing operators which satisiies (3).
(&) 9] - ] q i ) \

W

The recursion relation (1) is just changed to

4 X =X - S (f'(x (v=f(x_} >0) x_ =0,
(4) 1 7 Xy ™ S (PO (-Flx)) (p0) X,

where the sequence {Op) must be chosen for the convenience of further calculations.

For example, it no Tonger follows necessarily that, if (4) is used and (xp) converges,
then the Timit is a solution of f(x) = y. This will be guaranteed by the second
inequality in (3) provided %iﬂ Gp =« , The calculations leading to (2) are then

repeated by using the first relation in (3) to cancel to effect of o. This turns

out to be fairly delicate and requires that GD does not grow too rapidly so that

a balance must be struck. A more serious restriction is that nothing works unless

there is a quite severe control on the arowth of o.

Nevertheless,it is possible to push through the calculations and we do get a
theorem which, although very special, does have many important applications. The
original idea is due to J. Nash [7], but J. Moser [6] was the first to realize
how useful it could be. Subsequent refinements have been made by many authors,
espéciai1y R. Hamilton, S. Yojasiewcz and E. Zehnder. The version given here is

due jointly to the last two authors [4].
THEOREM 2.

Let E  be a Frichet space which has a famify o4 smoothing cperatons which
satisgy (3) and Lex f @ U E be a continuous function on a neighbernhood U

o4 0 an B which has a derivative at each point in U. Let f(0) = 0 and

assume that there exist d > 0 and x e [1,2) such that {on all & >0 we



have constants Ck > 0 with

ROIPRES FT B (xeV)
e vl < Sl Xl gl vl +vl ) (xeU, veE)
. ' 1 i ? 1 | -
Gy =lx) = £ 0Vl < G bl gl vIES vl vl ) (oxevey).

Suppose moreoven that f'(x) has a ndght <nverse  L{x) 4o each xeU and
’ { | 1 f _.L!E ,“ ) e, vy
[lLtX)yf.k < ¢ (] k+dA-y!]d Y e (xel, yelU)

(here L5 again an Ancheasing sequence o4 semincams which defines

My o
the topology of E).

Then f(U) 45 a nedighborhood o4 0.

[t is interesting to note that the requirement 3<2 in Theorem 2 is essential.
In fact, in [4] there is given an example in which all of the hypotheses of the

theorem hold except that 3 = 2 and the conclusion of the theorem is false!

Of course, in order to even think of applying Theorem 2 it is necessary to
consider how the smoothing operators might be constructed. In the original ap-
plications of Nash and Moser, E 1is always Cw(T) and the smoothing operators are

obtained either by convolution or the truncation of Fourier series.

In looking over the literature on this subject, it seemed curious to me that
although many authors postulated wide classes of spaces for which Theorem 2 could
be used, the concrete examples of Fréchet spaces which were actually written
down were almost invariably (up to isomorphism) CW(T) or a space closely related

to it.

This is in fact the case even when it did not appear so. For example, in [4] the
authors use the Fréchet space H(C) of entire functions in one variable. But this

space is what we shall call later a "coordinate subspace" of CW(T) and in that
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case, analysis just carries over. It is like the situation in which you have
an inverse function theorem valid for functions in three variables. It is then
trivial to obtain (by holding one variable constant) a similar theorem for

functions of two variables.

In any case, [ tried to see if one could use a result Tike Theorem 2 for
Fréchet spaces very different from Cm(T). As we will see, the restriction to
essentially this one space was no accident and it is necessary to change things
quite a bit if we want to find an implicit function theorem valid in different

kinds of Fréchet space.

Before we can get very far with such a program , it is necessary to say

something about these spaces.

STRUCTURE OF FRECHET SPACES.

Recall that a Fréchet space is a complete, metrizable, locally convex space.
Equivalently, it is a vector space E which is complete under a certain trans-

lation invariant metric and on which is defined an increasing sequence of semi-

o

norms (sub-additive , positive scalar homogeneous real-valued functions) (ii-{m; L0

such that a sequence (x ) in E converges to x in E iff Tim{! xn—xﬂ =0
n
(k=0,1,2,...).

In all of our applications we will take the seminorms H-|[k to be norms

(that is, || x|| S0 Aff x - 0). Somewhat more complicated is the fact that

the Fréchet spaces we consider will all be nuclear. It is best to defer the

definition of nuclear until we are in a more concrete situation.

The basic references for all of our discussion of the structure of nuclear
Fréchet spaces will be [1],[5] and [10]. For us, the best starting point is to

Tist some examples:
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C (T) - The space o4 infinitely ditlerentiablo real -valued functions on the
unit cirele equipped with the topelogy of uniform convergence of cach
derivative.

H(C) - The space of complex-valued functions of one complex varndiable, analyiic
in the cemplex plane, equipped with The compact-vpen topolegy.

H(D) =~ The space o4 complex-valued functions cf one complex variable, analytdlc

in the open undt disk, cqudipped with the compact-cpen Lopology.

For each of these spaces we give one nossible choice of the norms which define

the topology.

Cm(T) !!XiIk = sup {ixp(t)| p :.0, ket e T -
H(C) '“X!Ek=sup¢!x(t)} lt] <k
HD) |l xil | = sup T]x(t)] & [t} < L

"k | ST

Each of these examples has what is called a coordinate representation or basis.

For example, in C (T) we can represent functions by their Fourier series and

so write,
CW(T) ={t = (gn) : (gn) is the sequence of Fourier coefficients of an element
of C(T)} =
_ k
:{F} = (En)  SuD {f:ni e ‘qu 4 < o s 1‘(:0,],2,...} .

n
where the second equality represents a standard fact about asymptotic behavior of
Fourier coefficients of differentiable functions. More is true. If we set

| ek log n

Il = soo e,

, where xeC™(T) and (¢,) s its sequence of Fourier
n

coefficients, then this definition of EI-i[k works just as well to define the

topology of Cm(T).

The same thing can be done for H(C) and H{(D) using power series expansions.



We obtain,

= = E . | f"-' = . EF; | e < © = 1,2,.. .}
H(C) = (e= () clbell | = sup fe | e : k=0,1,2,...]
n
o
HID) = (£ =(g ) el = suplg | e K ¢ w k=0,1,2,...]
L .zn =N k . i)n 2 T 3 :

Clearly we can abstract all this by writing down an infinite matrix of positive

n
numbers a = (ank) instead of ek 109 n, ekn or e X
Then the Fréchet space we obtain is given by
=1 F = - = ; o9 = 1| ¢ ...}
K{a) ={¢ (En) gl k SUD | gnl ank < ’ k=0,1,2,

and we only need assume that a . The condition that K(a) is nuclear

nk = an,k+1

can then be expressed as follows ;

vk ] such that

: . . . t . ‘
If en is the sequence which is 0 except in the n 1 coordinate where it

is 1, then each element of K(a) can be expanded as an infinte series in {er)
i

and considering the coefficient sequences gives K(a) back.
It is a simple but informative exercise to verify the details of this general

formulation for the three examples mentioned above.

The notion of coordinate representation leads to another notion that permits
us to construct other examples of nuclear Fréchet spaces. Let o = (un) be a
subsequence of the sequence IN of positive integers. If E s a nuclear Fréchet

space given via a coordinate representation, then (E) denotes all of those
[6)

elements of E whose corresponding sequence & has the property that En = 0

unless n is one of the terms of o .

Thus (K(a)) is K(b) where b =a
o nk o

n,k
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It is clear that (E)OL is again a nuclear Frechét space. It is complemented
in the sense that, if 8 = N« a, then E is isomorphic to the product (E)ux(E)B.
We call (E)u a coordinate subspace of E.

This completes the preliminaries for the structure theory and now I would
like to say something about the content of this theory. Generally speaking the
questions considered are of the following type. Given a nuclear Fréchet space
E and another one F, find guantitative conditions which determine whether F
is isomorphic to a subspace of E. Usually [ 1is a space which can be given
in a coordinate representation, say E = K(a). This may or may not be the case
for F. If it is, say F s isomorphic to K(b), then the condition is given

in terms of the matrices a,b. If not, then the condition is in terms of the

norms.

The structure theory involves much more than I have mentioned. It is possible
to replace subspace by quotient, or even complemented subspace. There are
investigations which try to determine what effect this has in guaranteeing that
F has a coordinate representation. Other approximation properties have been
studied and there is a lot of work in determining when concrete function spaces
fall under this theory. I have not tried to give a serious bibliography here.
Many results are quite recent and just now beginning to find their way into

print.

It will be useful for us to go a bit beyond these generalities and to give
at least one definite example of how the structure theory works. We consider
the possibility that a space K(b) is isomorphic to a subspace of Cm(T). We
will use the fact (mentioned above) that Cm(T) is isomorphic to K(a) where
ek Tog n nk.

ank

A necessary condition can be derived quite easily as follow. We have an
isomorphism A : K(b) - K(a) so (after passing to a subsequence on k if

necessary) we can write
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1,

| V4
Rkl < colx)

I xlf, < ¢C (xeK(b), k=1,2,...).

k+2

Applying this with x = e we can derive

I B

]I AenH nH k+3
h | 1 H

c, lae e Il ,. b | he

k1 ke n,k+2 C

A

1
H
i
{
i
i

A

(n,k=1,2,3,.
n'l k-2

W

Now if Aen is the sequence (5”) in K(a) we have
AV

I i1 - [ o \k - " ! k k
‘l AenH K sup |&:\)\ ) & k!(gﬂ) ’
v g
n
where gi is the largest value of v at which the sup occurs., (We use here the

k o :
fact that supia:[v <« for every k implies 1wm{a”}vk = 0).
v v v

Now using the property of sup we have, for any k,j,

k,J | N Jvd - J\J
1Egk|(9n) IEgJ:(gn) I@gjl(gn)
_n . _’n Lo

k .k — okk = .k
le k19 ) £ K 1(a)) e 51(g7)

gn n gn n gn n
from which we conclude that
: | Ae_|| :
k. j-k n"j j.j-k
(g)7" «——- < (g
" | Ae || "
n'k

Together with our first inequality, and writing only C for any positive

constant independent of n, we obtain,

b
1ok ess U Tes o Pnes
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which, passing to a subsequence,gives

S S A S :

bn,k—1 bnk

It is very interesting that this simple condition which we derived is also

sufficient and we have,

THEOREM 3.

A nuelean Fréchet space £ with a ccondinate representatici K(b) s Lsc-

- 00 .
moaphic to a subspace ¢f C (T) (44

(S

ajten passing to an appropriale subsequence

B

on k , we have, 4o every k

. 2
(b )
SUD < O .

nb ey Pk

A proof of this and many similar results can be found in [1]. What is even
more striking is that results of this kind with equally simple conditions can

be obtained without the assumption that E has a coordinate representation(see
[9],[11] and [12]).

One important consequence of this characterization is that neither H(D) nor
any of its coordinate subspaces is isomorphic to a subspace of C%(T). To see

this we use the fact that any coordinate subspace of H({D) 1is isomorphic to a

n
space  K(b) where bnk = e ME(E) and  (j(k)) is any subsequence of N.
This gives,
] 1 2 1
7 o (——— L. N S G — ;
(b ) RN CE D R T S N TUS IO TR D
n,J(k) e -
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Thus, if j(k) > 2j(k-1) this quantity is unbounded and passing to a

subsequence on k will not help. Therefore the condition of Theorem 3 is violated.

CONNECTIONS. -

Now we turn to the main topic of these lectures which is the description of
certain connections between the structure theory and inverse function theorems.

Our first remark is an observation that shows how special is the relation (3)

which the smoothing operators are assumed to satisfy.

If we have (3), then any xeEt, o >0 and k < 3 < & we would have,

-k ‘ j-i .
.« | I x-5 x|, < c{e”™" AT ).
”X‘[j_* || SOXHJ’+ |Ex Sex‘lj __C(r\ “IXHI\‘F I)IH ‘{.)
We can use calculus to show that the right hand side achieves its minimum value
when 1
xll (2-3) 2k
i ;)3, 4 /
0 = ) ;
Ll (6

and substituting this value for o with k =j-1, e=3j+1  yields

Con 2 .
I I | il ! ]
(lé th ) _<_ C M X!tj_’! | thJr]

This immediately implies the condition of Theorem 3 so, with the above discussion,

we may conclude that Theorem 2 does not hold for H(D). Actually we have the

following much stronger result of D. Vogt.

THEOREM 4. -

A nuclear Frichet space B has a family a4 smoothing operatons satisdyng (3) L4
and only 44 E (8 (somonplile to a coordirate subspace ¢4 C (T).
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Thus we see that Theorem 3 as presently formulated is not applicable to
a very wide class of Fréchet spaces, It turns out, however, that if we look
a little more closely at how the smoothing operators can be defined, the re
lation (3) can be derived. If we do this for CW(T) or H({ T )} we get (3),
but if we do it for another space, say H(D), we get a different relation

which can then be used to prove an inverse function theorem valid for H(D).

There is a method of constructing the smoothing operators. We begin with

a nuclear Fréchet space K(a) given in a coordinate representation. If (en)

. : th .
is the usual sequence of sequences which are 1 at the n coordinate and

0 elsewhere, then each ¢ = (gn) can be written ¢ = E gf ¢ , where this
Lo

series converges in the topology of K{a). Then we define S_: K(a) ~K{a),

9

¢ >0, by

and we may calculate for, k < j,

j k% axj
S £l = e = sup |- N (eup Ty U e
H OEEIJ Sup |€n| an up fvnl an k = (cup k ) I! g].k
n<o n<@ a n<¢ a
- — n - n
A similar calculation for & - Soa yields
ak
le - sl =< (sup ==l el
n>o aj J
n
k

_ o k .
If our space is C (T) then we can take a_ =N, sowe obtain exactly (2).

If the space is H(C) then (3) still holds since H(C) is a coordinate subspace

of Cw(T). If we use the above derivation for H((), we get a different inequality
which could still be used to prove Theorem 3, Actually, it is not so different.

We get the same inequality as in (3) except that o is replaced by e . Thus if

we replace S@ by S we get a family of smoothing operators for H(C)

Togo
satisfying (3).
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For H(D) however, this is impossibie as we have seen. The inequalities we

get are
(v - 7)o

21
IS, Xi|j <Ce 17y

K|

1
(= - =)0
s o ik

x-S xll, < Ce

Again replacing © by Togo we have our condition as foilows. For k < j, xek,

© >0 and an appropriate constant C which depends only on k,j but not on

X,0 there exists a family of smoothing operators S, such that
A
Fsxll, <ceotk 370 xll,
(3") 1.1
(5

Thus we see that H(D) does have a family of smoothing operators satisfying (3').

The ultimate goal then would be to find for each K(a) a relation like (3)
or (3') and then use it to prove a theorem like Theorem 2. This turns out to be
not so easy. So far I have only been able to do this for (3') and, although the
proof is not given so we cannot see the actual difficulties as they arise, a clue
will be provided by the form of the statement of Theorem 2' and how it differs

from Theorem 2.
THEOREM 2'. -

Let E be a Frlchet space which has a family o4 smocthing cperatens which
satisfy (3') and Let f : U+E  be a continmuows function on a neighborhood of O,

U in E which has a derivative at each point <n U.

Let  f(0) = 0 and assume that there exist do’d] > 0 and strletly (ncreasing

unbounded functicns a,AO,A] ¢ |0,2) > [0,2)  such that, 4on atl k > 0, we have

cons tants Ck > 0 with

” f(X)Hk f_CkaHq(k) (XEU)
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i|f‘(X)V‘|d f_COI!Vi[d (xell,vel)
1 0
] 1 | ; 2 N
| f(x+v)=f(x)-F (x)v]] . < C |l (x,x+vel)
'd — O [}
] d
0
Suppese gurnthen that f'(x) has a xight nvernse  L(x) fon each xelU  and
Loyl < C (] x| Wyl o+ yll ) (xeU,yeE).
| k — k | .‘y|| ] il l ) 3
Yoy 9 k)

Finally we suppose the 4ollowding relations held,

Then f(U) s a neighberhood o4 0.

There are important differencesbetween this result and Theorem 2 which go
beyond the difference between inequalities (3) and (3'). First observe that the
restrictions on f' and its approximation by a difference (essentially a condition
on f") need only be made for a single norm here while in Theorem 2 it was on
every norm and also the loss could only be from k to k+d, This relaxation is also
present for the conditions on f and L. In Theorem 2 it could only be a constant
Tinear loss of d while in Theorem 2' the loss (measured by « ’lo’ A]) can have
any gowth for large k but is mildly restricted for small k. Also in Theorem 2'
there is the strange requirement that do < % .

These variations are direct consequences of the proofs. About half of the
argument is the same for both theorems and probabilv will work for a wide class
of space K(a). The other half is quite different and seems to reflect fundamental
differences between spaces like Cm(T) and H(T) on the one hand and H(D) on
the other. This is very similar to other phenomena in the structure theory. It
appears that these basic differences will render it unlikely that a unified proof

valid for all spaces K(a) can be constructed.

There remains a major consideration in comparing Theorem<? and 2'. Although,
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on the face of it, the hypotheses in Theorem 2' are, at least in some respects,
weaker than those of Theorem 2, it is necessary to pin this down with examples.
Thus we would want to have a function on H(D) that satisfies the hypotheses of
Theorem 2' but not of Theorem 2. Such examples have not yet been discovered

and I would consider it to be a major question in this research.

On the other, unsuccessful attempts to find such examples have brought into
focus other phenomena which turn out to be important in this and other contexts.

I would 1ike to close these notes with a brief explanation.

Perhaps the simplest example of a non-linear function is what we might call
a binomial, which is defined as follows. Let B : ExE - E be bilinear, symmetric

and continuous. Then we define f : E - E by
f(x) = x + B(x,x).
We can calculate,

£ (x)v = 1im X+t v+B(x+t;,x+tv)-x-B(x,x) - v+2B(x,V).

oo

It is necessary to assume that f'(x) is invertible. That is, for each x in

a suitable neighborhood of 0, the operator v - v+2B(x,v) is invertible. Then

we would try to find a B such that the hypotheses of Theorem 2' hold but those

of Theorem 2 fail. Without going into details, I can say that one kind of
calculation Teads to the conclusion that B should satisfy the following condition,

which we might call separately bounded:

There 45 a kO such that fon every k  there 48 o(k) and Ck> 0 such that

Bl < Cll i kOHka (x,yeE)
(énd then, by symmetry, the same result would hold with X,y interchanged), but
that B should net satisfy the following condition which we might call jointly
bounded:

There 45 a k0 such that 4on every k  there 44 Ck > 0 such that



IRACH DN I Y I B2 (I (x,yeE).

However, we have the following somewhat surprising result from the structure

theory:

THEOREM 5.

In HD) and & coondinate subspaces, every continuous, symmetric, bilinear,
foe)

separately bounded funection L8 fointly bounded. TIn C (T) and each of (L5

coonddinate subspaces, this statement L5 false.

In the Tight of this result, I feel quite uncertain as to the exact reason
for the difference between Theorem 2 and Theorem 2'. Is the latter in some sense
stronger or are the hypotheses actually equivalent? Perhaps future research will

explain the matter.
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