Lemma 3.1. Se $f \in \mathcal{H}_G$ è E-orstagonale a $\widetilde{\mathcal{H}}$ allora $f_2^{(0)} = 0$ e $f_1^{(0)} = c$ y se y > a.

Con l'aiuto di questo lemma la dimostrazione del seguente teorema diventa del tutto simile a quella del teorema 6.6 pag. 126 di [6].

Teorema 3.1. Sia $K=\mathbb{H}_G$ Θ \mathbb{H} , allora per ogni λ nel risolvente di A , l'ope ratore $(\lambda I-A)^{-1}$ trasforma la palla unitaria di K in un sottoinsieme compatto di \mathbb{H}_G .

n.4. La rappresentazione per traslazioni; spazi di entrata e di uscita.-

Definiamo i seguenti spazi:

$$\begin{cases}
\mathfrak{D}_{+} = \{f \in \widetilde{\mathcal{H}} / \sigma(f) \in \mathbb{D}_{+}\} \\
\mathfrak{D}_{-} = \{f \in \widetilde{\mathcal{H}} / \sigma(f) \in \mathbb{D}_{-}\}
\end{cases} \tag{4.1}$$

 \mathfrak{P}_+ e \mathfrak{P}_- coincidono con gli spazi chiusi generati dai dati del tipo (3.7) e (3.8) rispettivamente; valgono inoltre i seguenti fatti:

 $\mathfrak{D}_{+}+\mathfrak{H}_{-}=\widetilde{\mathfrak{H}},\mathfrak{D}_{+}$ è ortogonale a \mathfrak{D}_{-} , inoltre \mathfrak{D}_{+} , $\widetilde{\mathfrak{H}}$ U(t) soddisfano le condizioni (i)(ii)(iii) di § 2 a pag. 12 di [6], in quanto σ risulta essere un'iso metria di $\widetilde{\mathfrak{H}}$ (con energia E) sullo spazio libero \mathfrak{H} (con energia E) che traforma \mathfrak{D}_{+} rispettivamente in \mathbb{D}_{+} .

Ora seguendo [6] poiché \mathfrak{D}_+ e \mathfrak{D}_- non sono in \mathcal{H}_E' proiettiamo \mathcal{H}_G su tutto \mathcal{H}_E' mediante la proiezione E-ortogonale:

$$Q' : \mathcal{H}_{C} \to \mathcal{H}_{E}'$$

$$Q'f = f + \sum_{j} a_{j} f_{j}^{+} + \sum_{j} b_{j} f_{j}^{-}$$
(4.2)

dove
$$a_{j} = \frac{E(f, f_{j}^{+})}{\lambda_{j}^{2}}$$
 e $b_{j} = \frac{E(f, f_{j}^{-})}{\lambda_{j}^{2}}$.

Considerazioni analoghe a quelle fatte in [4] provano che per $\mathfrak{D}_{\pm}=Q'\mathfrak{D}_{\pm}$ valgono i seguenti fatti:

 \mathfrak{D}_{\pm}' sono chiusi in \Re_E' e soddisfano le condizioni (i)(ii)(iii) di § 2 a pag.12 di [6], Q' è una E-isometria iniettiva di \mathfrak{D}_{\pm} in \mathfrak{D}_{\pm}' ; inoltre

$$\mathcal{H}_{\mathsf{F}}^{\mathsf{i}} = \mathcal{H}_{\mathsf{P}}^{\mathsf{i}} \quad \mathcal{D} \quad \mathcal{H}_{\mathsf{C}}^{\mathsf{i}} \tag{4.3}$$

dove \mathcal{H}_p' è lo spazio generato dai dati $f \in \mathcal{H}_l$ tali che A(f) è nullo in \mathcal{H}_E' ed X_c' è il complemento E-ortogonale delle autofunzioni di A in H_E' . Risulta: \mathcal{H}_C' C U U(t) \mathcal{D}_+'

Troveremo ora le rappresentazioni per traslazione di $\mathfrak{D}_{\pm}^{\prime}$ e $\mathfrak{D}_{C}^{\prime}$ su $\mathfrak{M}_{C}^{\prime}$ provando così che U(t) ha uno spettro assolutamente continuo su $\overline{UU(t)\mathfrak{D}_{\pm}^{\prime}}$ e pertanto $\overline{UU(t)\mathfrak{D}_{\pm}^{\prime}}$ $\underline{c}\mathfrak{M}_{C}^{\prime}$.

Se f è un dato C_0^{∞} nullo per $y \le a$ e dipendente solo da y definiamo

$$\tilde{f}(z) = \sum_{\gamma \in \Gamma_{\infty} | \Gamma} f(\gamma z) D(\gamma)$$
 (4.4)

dove $D(\gamma) = (cz+d)^n$ se $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$; \hat{f} è allora un dato automorfo di peso n sul semipiano π che coincide con f sul dominio fondamentale F: se $z \in F$ e $\gamma \neq id$ allora $\gamma z \notin F$ e quindi

$$Im(\gamma z) < a \tag{4.5}$$

Per \int_{0}^{∞} come in (4.4) possiamo definire $\sigma(\tilde{f})$ secondo le formule (3.3) in quanto \tilde{f} è definita su tutto il semipiano, inoltre poiché \tilde{f} coincide con f

sul dominio fondamentale F si ha:

$$E(\tilde{f}) = E(f)$$

$$U(t)\tilde{f} = U(t)f$$
(4.6)

su F.

Definiamo ora per f e f come sopra:

$$R_{+}f = \mathbb{R}_{+}(\sigma(f))$$

$$R_{+}f = \mathbb{R}_{+}(\sigma(f))$$

$$R_{+}f = \mathbb{R}_{+}(\sigma(f))$$

Ricordiamo che \mathbb{R}_{+} denota l'operatore: $(g_1,g_2) \rightarrow \text{cost } (\partial_r g_1(r) - g_2(r))$.

Valgono i seguenti fatti (che discendono da analoghi fatti per la rappresentazione IR su IH):

$$\alpha$$
) || R_f || = E(f) (da (3.5))

$$\alpha$$
) || R₊T || = E(T) (da (3.5))
 β) || R₊ U(t)f = T(t) R₊f (da(3.9))

γ) R_⊥ mappa B_⊥ su tutto lo spazio delle funzioni a quadrato sommabile con supporto in \mathbb{R}_{\perp} .

Proviamo che R_f = R_f per $f \in \mathfrak{D}_{\underline{}}$.

Se $f_0 = \{y > \phi(y), -y > \phi'(y)\}$ la soluzione di (2.1) con dato iniziale è data da: $u_{0}(z,t) = y \frac{n+1}{2} \phi(y e^{-t})$

quindi per $t \ge 0$ anche $U(t)f_0$ si annulla per $y \le a$ ne segue da (4.5) e (4.6) che per t > 0:

$$\widetilde{U(t)}f_0 = U(t)f_0 = U(t)f_0$$
 su F.

Quindi $R_+U(t)$ $f_0 = R_+U(t)$ f_0 per $t \ge 0$ e $y \ge a$; poiché inoltre $\sigma(f_0)$ dipende solo sa y, ancora una volta l'unicità della soluzione dell'equazione delle onde mello spazio libero con valore iniziale fissato garantisce che

$$T(t) R_{+} f_{0} = T(t) R_{+} f_{0}^{\circ}$$

per ogni $t \ge 0$ ed s $\ge \log a$, da cui si deduce che tale uguaglianza vale per ogni se quindi che

$$R_{+} f = R_{+} f$$
 per $f \in \overline{UU(t)}$

E' ovvio inoltre che vale l'uguaglianza:

$$\|R_{+}^{\gamma}f\| = E(f)$$
.

In modo analogo a (4.7) si definiscono:

$$R_{f} = \mathbb{R}_{\sigma(f)}$$

$$R_f = IR_(\sigma(f))$$

Ricordando le espressioni di \mathbb{R}_{\downarrow} e $\mathbb{R}_{_}$:

$$(\mathbb{R}_{+}^{\sigma(f)})(r) = -\frac{1}{2}(\partial_{r}\sigma_{1}(f)(r) - \sigma_{2}(f)(r))$$

$$(\mathbb{R}_{+}^{\sigma(f)})(r) = -\frac{1}{2}(\partial_{r}\sigma_{1}(f)-r) + \sigma_{2}(f)(-r))$$

ogni elemento d' $\in \mathfrak{D}'$ si può scrivere:

$$d'_{+} = d_{+} + p$$

dove $d_+ \in \mathcal{D}_+$ e peP, inoltre si ha $\mathcal{E}(d_+') = \mathcal{E}(d_+)$ e poiché $||R_+p|| = \mathcal{E}(p) = 0$ $\forall p \in P \land \mathcal{D}_+$, ha senso definire:

$$R_+ d_+' = R_+ d_+$$

E' chiaro a questo punto che R_+ (R_-) definisce una \mathfrak{D}_+ -rappresentazione \mathfrak{D}_- -rappresentazione) per traslazione di uscita (di entrata).