n. O. Preliminari.-

Il piano di Poincaré π è il semipiano superiore:

$$\pi = \{z = x+i \ y \in (1/y) > 0, -\infty < x < +\infty\}$$

su esso opera il gruppo G delle trasformazioni lineari fratte:

$$z \longrightarrow \frac{a z + b}{c z + d}$$

con $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$ \in SL(2, \mathbb{I} R). Un sottogruppo discreto di SL(2, \mathbb{I} R) $\stackrel{\circ}{e}$ SL(2, \mathbb{I} Z); un

dominio fondamentale per $SL(2,\mathbb{Z})$ è il sottoinsieme F di π , così definito:

$$F = \{z = x + i \ y \in \mathbb{C}/ -1/2 < x < 1/2, x^2 + y^2 > 1\}$$

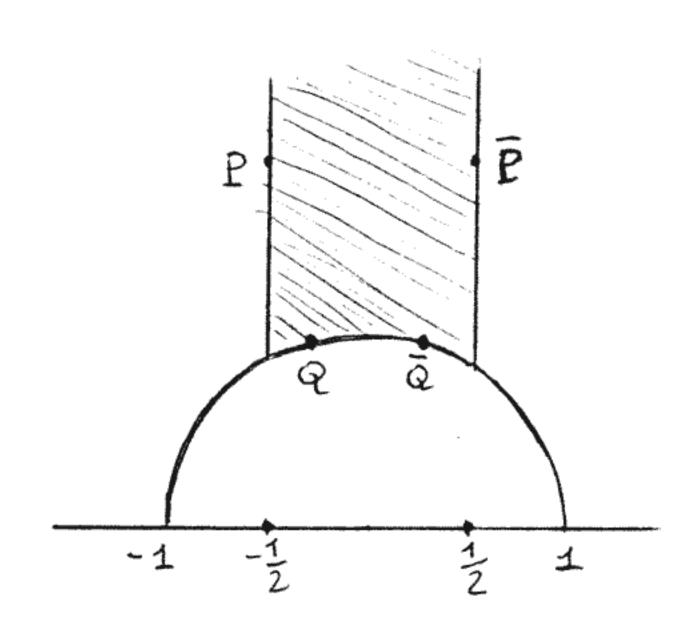


fig. 1

la trasformazione $z \to z + 1$ trasforma P in \bar{P} ; la trasformazione $z \to -1/z$ trasforma Q in \bar{Q} (fig. 1). La chiusura \bar{F} si può riguardare come una varietà \Im allorché si pensino identificatii punti P, \bar{P} e Q, \bar{Q} della frontiera di F.

Una funzione u definita su π si dice automorfa di peso n (n intero) se per ogni $z \in \pi^{(i)}$ e per ogni $\dot{\gamma} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\in SL(2,\mathbb{Z})$, risulta:

$$u(\gamma z) = (\hat{c} z + d)^{-n} u(z)$$
.

Si può pensare ad una funzione automorfa di peso n, come una funzione definita sul dominio F e soddisfacente le seguenti condizioni al bordo (c.b.):

(i)
$$\partial_y u (x, \sqrt{1-x^2}) = -(x-i \sqrt{1-x^2})^n \partial_y u(-x, \sqrt{1-x^2})$$

(ii)
$$(\partial_x u) (\frac{1}{2}, y) = (\partial_x u)(-\frac{1}{2}, y)$$

(iii)
$$(\partial_x u) \left(-\sqrt{1-y^2},y\right) \bar{v}(-\sqrt{1-y^2},y) = (\partial_x u)(\sqrt{1-y^2},y)\bar{v}(\sqrt{1-y^2},y)$$

Si introduce il seguente prodotto scalare (,) nello spazio \mathcal{L} delle funzioni $C_0^{\infty}(F)$ (funzioni $C_0^{\infty}(F)$ (funzioni $C_0^{\infty}(F)$ a supporto compatto) soddisfacenti le condizioni (c.b.):

$$(u,v) = \int_{F} u(x,y) \overline{v}(x,y) y^{-n-2} dx dy$$

L'operatore L_o definito da:

$$L_0(u) = y^2(\partial_x^2 u + \partial_y^2 u) + i n y(\partial_x u + i \partial_y u)$$

per ogni $u \in \mathcal{L}$, risulta essene simmetrico rispetto al prodotto scalare (,) sopra definito.

Per motivi che appariranno evidenti nel seguito, noi prenderemo in considerazione l'operatore $L = L_0 + (\frac{n+1}{2})^2$.

Con $L_2(F)$ denoteremo poi il completamento di \mathcal{L} rispetto alla norma $\| u \| = (u,u)^{\frac{1}{2}}$ (per ogni $u \in \mathcal{L}$).

n.1. Spettro di L. -

Si denoti con F il sottoinsieme di F:

$$F_0 = \{(x,y) \in F / y \le a\}$$

dove a è un numero reale ≥ 2 , e sia $F_1 = F - F_0$; un semplice calcolo, dà la seguente espressione per -(Lu,u):

(1.1)
$$-(Lu,u) = \int_{F} \{y^{-n}(|\partial_{x}u|^{2} + |\partial_{y}u|^{2}) -i \text{ n } y^{-n-1}(\partial_{x}u)\overline{u} - (\frac{n+1}{2})^{2} \frac{|u|^{2}}{y^{n+2}}\} dxdy$$

Per ogni ue L si ponga: