parte totalmente ordinata ammette sup. : se Φ è tot. ordinata e Φ c $\Phi_{\mathscr{F}}$, il sup Φ è il filtro generato dall' $U\mathscr{F}$). Per il Teorema di Zorn $\Phi_{\mathscr{F}}$ ammette un elemento massimale che è l'ultrafiltro cercato.

cvd

Non si conoscono dimostrazioni effettive (cioé non basate sull'assioma della scelta) di questo teorema.

Osservazione 1. - Vi è una bigezione tra gli ideali massimali, gli ultrafiltri, gli omomorfismi a 2 valori e le misure a due valori. Infatti se Fè un

ultrafiltro, il suo duale è un ideale massimale,
$$h(A) = \begin{cases} 1 & \text{se } A \in \mathcal{F}(1,0\epsilon A) \\ 0 & \text{se } A \notin \mathcal{F} \end{cases}$$
 è un omomor

fismo a 2 valori e m(A) = $\begin{cases} 1 & \text{se A } \in \mathcal{F} \\ 0 & \text{se A } \notin \mathcal{F} \end{cases}$ è una misura a 2 valori e viceversa.

§5 - Legame con gli anelli algebrici.

 $\not 0 \neq A$ con (+,.) è detto anello (in senso algebrico) se e solo se

(R1)
$$A + B = B + A$$
 (commutatività di +)

(R2)
$$A + (B+C) = (A+B) + C$$
 (associatività di +)

(R3) Dato A e C 3! B 🤞 A+B = C (esistenza dello zero e dell'opposto)

(R4)
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$
 (associatività di .)

(R5)
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 {distributività

$$(R6) (A+B) \cdot C = A \cdot C+B \cdot C$$

Dai primi 3 segue che $\exists 0$ (zero) $\varepsilon \varnothing \vartheta'$ A+0 = A.

Un elemento $1 \in \mathcal{A}$ è detto <u>l'unità</u> di $\mathcal{A} \iff A \cdot 1 = A = 1 \cdot A$ $\forall A \in \mathcal{A}$.

L'anello è commutativo ←→ A·B = B·A.

L'anello è un <u>anello Booleano</u> se contiene l'unità e A·A = A \ \forall A.

Esempio di anello Booleano è l'anello degli interi modulo 2 cioé {0,1} con :

In un anello Booleano si ha (1) A+A = 0 (2) A+B=0 \Longrightarrow B=A, (3)A B=BA.

DIM.- (1) (1+A)(1+A) = (1+A)
$$\Longrightarrow$$
 (1+A)+(A+A)=1+A \Longrightarrow per 1a R3) A+A=0

- (2) Segue che (1) e da R3) per l'unicità dell'elemento B.
- (3) $(A+B)(A+B) = A+B \implies A^2 + BA + AB + B^2 = A+B \implies BA+AB = 0 e$ e dalla(2) segue AB = BA.

cvd

PROP. 10 - Ogni algebra Booleana è un anello Booleano con le seguenti definizioni di addizione e di moltiplicazione:

$$A + B = A \triangle B$$

 $A \cdot B = A \cap B$

Viceversa ogni anello Booleano è un'algebra Booleana con le seguenti operazioni:

$$A \cup B = A + B + A B$$

$$A \cap B = A \cdot B$$

$$- A = 1 + A$$

In entrambi i casi gli zeri (e le unità) coincidono. (Per la dim. cfr. [1] pag. 53).

§6 - Campi d'insiemi ridotti e perfetti.

DEFINIZIONE 14 - Se \mathscr{A} è un campo di sottoinsiemi di X, diremo che \mathscr{A} è <u>ridot</u><u>to</u> se \mathscr{A} separa i punti di X, cioé