ALGEBRE BOOLEANE E MISURE FINITAMENTE ADDITIVE

E. BARONE

Introduzione. - Questi appunti, tratti principalmente da Roman Sikorski: Boolean Algebras (nel seguito richiamato con [1]), hanno lo scopo di provare che una misura finitamente additiva m definita su un campo d'insiemi $\mathscr A$, può essere riguardata come una misura σ -additiva (cfr.§ l e 2 per le def.) se si considera definita su un'altro campo $\mathscr A$ * isomorfo ad $\mathscr A$. Precisamente: dato il campo d'in siemi $\mathscr A$, si considera l'insieme $[\mathscr A]$ degli ultrafiltri su $\mathscr A$, detto spazio di Stone di $\mathscr A$ (cfr.§ 7); posto

$$h(A) = \{\beta \in A\} : A \in \beta\} = A^*$$
 per ogni $A \in A$,

risulta definito un omomorfismo h di A in $\mathscr{P}(\mathscr{A})$ e $\mathscr{A}^* = h(\mathscr{A})$ è un campo iso morfo ad $\mathscr{A}.\mathscr{A}^*$ considerata come base degli aperti su \mathscr{A} , induce una topologia che rende \mathscr{A} spazio topologico compatto e totalmente sconnesso ed \mathscr{A}^* coincide con il campo dei sottoinsiemi di \mathscr{A} contemporaneamente aperti e chiusi (clopen). Su \mathscr{A}^* si può definire una misura ponendo

$$m^*(A^*) = m(A)$$
 $\forall A \in \mathscr{A}$.

Poiché se $\emptyset \neq A_n \in \mathcal{A}^*$ e $A_n \cap A_m = \emptyset$, necessariamente $\prod_{n=1}^{\infty} A_n \notin \mathcal{A}^*$, si ha che m^* è una misura σ -additiva, che può essere prolungata sul σ -campo \mathcal{A}_{σ}^* generato da \mathcal{A}^*

Questa costruzione permette di ricavare informazioni per le misure, traendole dalla teoria delle σ -misure su σ -campi. A titolo di esempio se denotiamo con R il codomino della misura m, risulta

$$\overline{R}_{m} = \{\overline{m}^{*}(A^{*}) : A^{*} \in \mathcal{A}^{*}\} = \{\overline{m}^{*}(A) : A \in \mathcal{A}^{*}\}$$

e quindi ogn \mathbf{i} informazione sul codominio di una σ -misura è un'informazione su $\overline{\mathbb{R}}_{\mathbf{m}}$.

Nel § 12, interamente dedicato alle applicazioni del teorema di rappresentazione di Stone alla teoria della misura, si fa vedere tra l'altro una possibile genesi delle funzioni misurabili rispetto ad un'algebra, introdotte e studiate da G.H.Greco

in [8].

Questi appunti sono il contenuto di alcuni seminari tenuti dall'Autore presso l'Università di Lecce.

Lecce, 28/3/1982

§ 1. Premesse e definizioni.-

DEFINIZIONE 1. - Un'algebra Booleana è un insieme $\mathscr{A} \neq \emptyset$ in cui sono definite due operazioni binarie U, \cap ed una unaria -, che hanno grosso modo le proprietà del l'unione, dell'intersezione e del complementare di sottoinsiemi di un insieme dato.

Formalmente un'algebra deve verificare i seguenti assiomi:

(A1)
$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$ commutatività

(A2) A U(B U C) - (A U B)UC
$$A \cap (B \cap C) = (A \cap B) \cap C$$
 associatività

(A3)
$$(A \cap B) \cup B = B$$
 $(A \cup B) \cap B = B$ assorbimento

(A4)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ distributività

(A5)
$$(A \cap -A) \cup B = B$$
; $(A \cap -A) \cap B = B$

Porremo inoltre per definizione

DEFINIZIONE 2.-(1) A c B(o B>A) $\stackrel{\text{def}}{\Longleftrightarrow}$ A \cap B = A \longleftrightarrow A U B = B e si prova che c è una relazione d'ordine parziale su \mathscr{A} .

L'(A3) può allora essere interpretato come

(2)
$$A \cap B \subset B$$
 e $B \subset A \cup B$

e 1'(A5) come:

(3)
$$A \cap -A \subset B \subset A \cup -A$$

DEFINIZIONE 3. - Poiché si può provare che $A \cap -A = B \cap -B$ $\forall A, B \in \mathscr{A}$, $A \cap -A$ non dipende dalla scelta di A e sarà denotato con O e chiamato \overline{zero} di \mathscr{A} . Analogamente poiché A U -A non dipende dalla scelta di A $\in \mathscr{A}$, sarà denotato con O e chiamato O mato unità di \mathscr{A} .

Dalla (3) segue che $\forall A \in \mathscr{A}$:

$$(4)$$
 0 **c** A **c** 1

e l'(A5) può essere scritto

(5)
$$0 \cup B = B$$
 $1 \cap B = B$.

DEFINIZIONE 4. - Un'algebra Booleana si dice degenere se e solo se è formata da un unico elemento. In tal caso 0 = 1.

PRINCIPIO DI DUALITA'. - Negli assiomi (Al) - (A5), U e O giocano un ruolo simmetrico, pertanto se una proprietà è vera, da questa se ne può ottenere un'altra (vera) detta la <u>duale</u> della prima, sostituendo all'U l'O e viceversa.

Si dovrà inoltre sostituire

$$1 \rightarrow 0 \qquad 0 \rightarrow 1 \qquad c \rightarrow D \qquad D \rightarrow C$$

per come sono stati definiti.

= C U B = C.

Con riferimento alla relazione d'ordine ← osserviamo che

(6) A U B = min {C :
$$\frac{A}{B}$$
 c C } = sup {A,B}

(7)
$$A \cap B = \max \{C : C \subset \frac{A}{B}\} = \inf\{A, B\}$$

Per provare la (6) basta osservare che

1)
$$\frac{A}{B}$$
 c A U B; 2) se poi $\frac{A}{B}$ c C allora A U B c C e quindi A U B = sup {A,B}; per la 2) basta provare che da $\frac{AUC = C}{BUC = C}$ segue (A U B) U C = C: (A U B)UC = (AUC)UB=

In breve possono essere provate molte delle familiari proprietà della teoria degli insiemi, ad esempio le formule di De Morgan

(8)
$$-(A \cup B) = -A \cap -B$$
 $-(A \cap B) = -A \cup -B$ ecc.

DEFINIZIONE 5. - Porremo A - B
$$\doteq$$
 (-B) \bigcap A (differenza di A e B o A meno B)
A \rightarrow B \doteq (-A) U B (è la duale di B-A)

Questa seconda operazione gioca un ruolo importante nell'applicazione della teoria dell'algebre Booleane alla logica matematica. Inoltre porremo :

A
$$\triangle$$
 B = (A-B) U (B - A) (differenza simmetrica di A e di B)

DEFINIZIONE 6. - A e B si dicono disgiunti se A \cap B = 0

Esempi - A) Se
$$\mathscr{A} \subset \mathscr{P}(X)$$
 lo chiamiamo campo (field) $\langle \stackrel{\text{def}}{=} \rangle$ A,B $\in \mathscr{A} \Longrightarrow \rangle$ A U B $\in \mathscr{A}$ $\in \mathscr{A} \Longrightarrow \rangle$ A $\in \mathscr{A} \Longrightarrow \rangle$

(Dalle leggi di De Morgan segue che A,B $\epsilon \mathscr{A} \Longrightarrow A \cap B$, A-B, $A \triangle B \in \mathscr{A} \emptyset$, $X \in \mathscr{A}$).

Ogni campo è un'algebra Booleana rispetto alle ordinarie U, \cap e - .

Esempi di campi e quindi di algebre sono i seguenti:

- 1) $\Im(X)$
- 2) {A c X : A finito oppure -A finito}
- 3) {P c \mathbb{R} : P plurintervallo (finito)} (cioé unioni finite di intervalli qualsiasi di \mathbb{R}
- 4) Se X è uno spazio topologico {A c X : A chiuso e aperto (=clopen)}
- 5) Se X è uno spazio topologico $\{A \ c \ X : \stackrel{\circ}{\partial A} = \emptyset \}$ con $\widehat{\partial A}$ frontiera di \widehat{A} (PAUB), $\widehat{\partial A}$ (AnB) \widehat{c} (PAUB); $\widehat{\partial A}$ (PAUB); $\widehat{\partial A}$ (PAUB); $\widehat{\partial A}$ (PAUB); $\widehat{\partial A}$ (PAUB)

NB. GLI SPAZI TOPOLOGICI CHE CONSIDEREREMO SONO SEMPRE T2 (cfr.[3] pag. 555)

B) Esempi di algebre che non sono campi.

Sia X uno spazio topologico. Si dice

C chiuso regolare
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 C = $\stackrel{\circ}{C}$ (è un dominio)

A aperto regolare
$$\stackrel{\text{def}}{\Longleftrightarrow} \exists C$$
 chiuso $\ni' A = \mathring{C}$.

Denotiamo con \mathscr{A}_1 l'insiemme dei chiusi regolari e con \mathscr{A}_2 l'insieme degli aperti regolari.

 $Su \mathcal{A}_1$ consideriamo le seguenti operazioni:

U = unione; $A \cap B = \widehat{A \cap B}$, $-A = \widehat{A'}$ dove A' è il complementare di A. Con tali leggi \mathscr{A}_1 è un'algebra Booleana.

 $\operatorname{Su} \mathscr{A}_2$ consideriamo le seguenti operazioni:

A U B =
$$\overrightarrow{A}$$
 U B , \overrightarrow{A} = intersezione , \overrightarrow{A} = \overrightarrow{A} (\overrightarrow{X} U \overrightarrow{Y} = \overrightarrow{X} U \overrightarrow{Y} ; \overrightarrow{X} \overrightarrow{A} \overrightarrow{Y} \overrightarrow{A} \overrightarrow{A} \overrightarrow{A} \overrightarrow{A}

- C) La totalità degli <u>eventi</u>, in teoria delle probabilità con "o", "e", "non" formano un'algebra Booleana.
- D) L'insieme di tutte le <u>"formule"</u> di una teoria basata sulla logica a 2 valori, nel quale si identificano due formule equivalenti (« e » sono equiva-

lenti se $a \iff \beta$ è un teorema), con le operazioni V, Λ , \sim è un'algebra Booleana detta algebra di Tarski-Lindenbaum.

§ 2- <u>Ideali e Filtri. Sia ⊿ un'algebra Booleana.</u>

DEFINIZIONE 7. -
$$\emptyset \neq \mathcal{I} \subset \mathscr{A}$$
 è detto ideale \iff
$$\begin{cases} (a) \ A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I} \\ (b) \ B \in \mathcal{I}, A \subset B \Rightarrow A \in \mathcal{I} \\ (\Leftrightarrow B \in \mathcal{I}, A \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{I}) \end{cases}$$

PROP. 1 - (a) Λ (b) \iff (A U B $\epsilon \mathcal{I} \iff$ A $\epsilon \mathcal{I} \wedge$ B $\epsilon \mathcal{I}$

DEFINIZIONE 8. - Un ideale \mathscr{I} di \mathscr{A} si dice proprio se $\mathscr{I} \neq \mathscr{A}$.

PROP. 2 - \mathscr{I} ideale proprio \iff 1 $\notin \mathscr{I}$ (\iff banale, \implies Se per assurdo 1 $\in \mathscr{I}$ dalla (b) segue $\mathscr{A} = \mathscr{I}$)

PROP. 3 - \mathcal{I}_i ideale $\forall i \in I \Rightarrow \bigcap_{i \in I} \mathcal{I}_i$ è un ideale.

DEFINIZIONE 9. - Se $\mathscr{B} \subset \mathscr{A}$, diciamo <u>ideale generato</u> da $\mathscr{I}(\mathscr{B}) = \bigcap \{\mathscr{I} : \mathscr{I} \text{ ideale } \supset \mathscr{B} \}$

Se $\mathscr{B} = \emptyset$ $\mathscr{I}(\mathscr{B}) = \{0\}$

PROP. 4 - Se $\mathcal{B} \neq \emptyset$, posto $\mathcal{I}' = \{A \in \mathcal{A} : \exists A_1, \dots, A_n \in \mathcal{B} \ni' A \in A_1 \cup \dots \cup A_n \}$ risulta $\mathcal{I}' = \mathcal{I}(\mathcal{B})$. (Se $\mathcal{B} \subset \mathcal{I}$ allora $\mathcal{I}' \in \mathcal{I}$ e quindi $\mathcal{I}' \in \mathcal{I}(\mathcal{B})$. Si prova poi che \Im' è un ideale $\supset \mathcal{B}$ e quindi $\mathcal{I}(\mathcal{B}) \subset \mathcal{I}'$

In particulare se $A \in \mathscr{A} \ \Im(\{A\}) = \{B \in \mathscr{A} : B \subset A\} = \mathscr{A} \cap \mathscr{P}(A)$.

DEFINZIONE 10.
$$\emptyset \not\models \mathscr{F} c \mathscr{A} \xrightarrow{filtro} \iff \begin{cases} (a)' A, B \in \mathscr{F} \implies A \cap B \in \mathscr{F} \\ (b)' B \in \mathscr{F}; A \supset B \implies A \in \mathscr{F} \end{cases} (A \cap B \in \mathscr{F} \leftrightarrow A, B \in \mathscr{F}.$$

PROP. 5 - La nozione di filtro è duale a quella di ideale, cioé

 \mathscr{I} ideale \Longrightarrow $\{-A:A\in\mathscr{I}\}$ è un filtro \mathscr{F} filtro \Longrightarrow $\{-A:A\in\mathscr{F}\}$ è un ideale

In particolare

PROP. 4' - Se $\mathcal{B} \neq \emptyset$ e se $\mathcal{F}(\mathcal{B})$ è il filtro generato da \mathcal{B} allora $\mathcal{F}(\mathcal{B}) = \{A \in \mathcal{A} : \exists A_1, \dots, A_n \in \mathcal{B} : A_1 \cap \dots \cap A_n \subset A \}$; deve pertanto essere $A_1 \cap \dots \cap A_n \neq \emptyset$ se non si vuole che sia $\mathcal{F}(\mathcal{B}) = \mathcal{A}$. L'O di filtri e un filtro, mentre $\mathcal{F}_i \cup \mathcal{F}_i$ non e detto che sia un filtro.

ESEMPI A) Se C $\varepsilon \mathscr{A}$: {A $\varepsilon \mathscr{A}$: A \subset C} = \mathscr{A} (c) è un <u>ideale</u> (generato da C) detto <u>principale</u>. Dualmente {A $\varepsilon \mathscr{A}$: A \supset C} è un <u>filtro</u> (generato da C) e detto <u>principale</u>.

B)Sia $\mathscr{A} = \mathscr{P}(X)$ con X infinito. {A c X : A finito} è un ideale non principale. {A c X : A' finito} è un filtro non principale.

C) $m: \mathscr{A} \to [0, +\infty]$, dove \mathscr{A} è un'algebra Booleana, è detta una misura (*) se $\exists A_0 \in \mathscr{A} \ni ' m(A_0) < +\infty$ e $m(A \cup B) = m(A) + m(B)$ se $A \cap B = 0$ e $A, B \in \mathscr{A}$

 $\{A \in \mathcal{A} : m(A) = 0\}$ \tilde{e} un ideale.

§ 3- Omomorfismi, isomorfismi.

DEFINIZIONE 11 - Date due algebre Booleane \mathscr{A} ed \mathscr{A}_1 l'applicazione $h: \mathscr{A} \rightarrow \mathscr{A}_1$ è detta omomorfismo se e solo se (a) $h(A \cup B) = h(A) \cup h(B)$ (a') $h(A \cap B) = h(A) \cap h(B)$ (b) h(-A) = -h(A)

(basta (b) e una delle due : (a) o (a')).

Segue facilmente:

PROP. 6 - h(A-B) = h(A) - h(B); h(0) = 0; h(1) = 1; $A \subset B \Rightarrow h(A) \subset h(B)$.

PROP. 7 - $h(\mathscr{A})$ è una sottoalgebra di \mathscr{A}_{\bullet}

 $h^{-1}(\mathscr{I})$ è un ideale di \mathscr{A} , se \mathscr{I} è un ideale di \mathscr{A}_{1}

 $h^{-1}(\mathscr{F})$ è un filtro di \mathscr{A} , se \mathscr{F} è un filtro di $\mathscr{A}_{\hat{1}}$.

^(*) Qui chiameremo misura le funzioni finitamente additive, mentre chiameremo σ-misure quelle numerabilmente additive, in analogia con le parole algebre e σ-algebre.

Mentre se \mathscr{I} è un ideale di \mathscr{A} non è detto che lo sia $h(\mathscr{I})$ (questo perché se A' ε h (\mathscr{I}) e \mathscr{B} ' c A' non è detto che sia B' ε h (\mathscr{I})).

DEFINIZIONE 12 - h isomorfismo ← h omomorfismo ed h ingettiva.

Nel caso in cui h è un isomorfismo surgettivo allora $\mathscr A$ ed $\mathscr A_1$ si dicono <u>isomorfe</u>.

In tal caso h^{-1} è un isomorfismo di \mathcal{A}_1 su \mathcal{A} .

PROP. 8 - h : $\mathscr{A} \to \mathscr{A}_1$: h isomorfismo) \iff (h omomorfismo e h⁻¹(0) = 0) (o equivalentemente h(A) = 0 \implies A = 0)

 $\frac{\text{ESEMPIO}}{\text{te h(A)}} - \text{Con riferimento all'esempio B) del } \$1, \mathscr{A}_1 \text{ ed } \mathscr{A}_2 \text{ sono isomorfe mediante h(A)} = \mathring{A} \quad \forall A \in \mathscr{A}_1.$

§4 - Ideali e filtri massimali (o ultrafiltri).

PROP. 9 - \mathscr{I} ideale (\mathscr{F} filtro) massimale \iff $\forall A \in \mathscr{A} : A$ oppure -A $\in \mathscr{I}(\in \mathscr{F})$ dove l'oppure è esclusivo.

DIM.- Intanto non può essere A e -A \in $\mathscr I$ altrimenti A U(-A) = l \in $\mathscr I$ ed $\mathscr I$ non è un ideale proprio. Se poi per assurdo \exists A \in $\mathscr A$ \ni ' né A né -A appartengono ad $\mathscr I$ allora detto $\mathscr I$ l'ideale generato da $\{\mathscr I,A\}$ risulta $\mathscr I_0$ proprio \supset $\mathscr I$.

TEOREMA DI STONE (1936).

- (i) $\forall \mathcal{I}$ ideale proprio, \exists un ideale massimale $\supset \mathcal{I}$
- (ii) ∀Ffiltro proprio, ∃ un ultrafiltro ⊃ F

DIM. – Si considera l'insieme $\Phi_{\mathscr{F}} = \{\mathscr{F}' : \mathscr{F}' \text{ filtro ed} \mathscr{F} \subset \mathscr{F}'\}$ e si prova che e'induttivo rispetto alla relazione d'ordine c (cioé si prova che ogni

parte totalmente ordinata ammette sup. : se Φ è tot. ordinata e Φ c $\Phi_{\mathscr{F}}$, il sup Φ è il filtro generato dall' \mathscr{F} . Per il Teorema di Zorn $\Phi_{\mathscr{F}}$ ammette un elemento massimale che è l'ultrafiltro cercato.

cvd

Non si conoscono dimostrazioni effettive (cioé non basate sull'assioma della scelta) di questo teorema.

Osservazione l. - Vi è una bigezione tra gli ideali massimali, gli ultrafiltri, gli omomorfismi a 2 valori e le misure a due valori. Infatti se \mathscr{F} è un

ultrafiltro, il suo duale è un ideale massimale,
$$h(A) = \begin{cases} 1 & \text{se } A \in \mathcal{F}(1,0 \in A) \\ 0 & \text{se } A \notin \mathcal{F} \end{cases}$$
 è un omomor

fismo a 2 valori e m(A) = $\begin{cases} 1 & \text{se A } \in \mathscr{F} \\ 0 & \text{se A } \notin \mathscr{F} \end{cases}$ è una misura a 2 valori e viceversa.

§5 - Legame con gli anelli algebrici.

 $\emptyset \neq A$ con (+,.) è detto anello (in senso algebrico) se e solo se

(R1)
$$A + B = B + A$$
 (commutatività di +)

(R2)
$$A + (B+C) = (A+B) + C$$
 (associatività di +)

(R3) Dato A e C 3! B = A+B = C (esistenza dello zero e dell'opposto)

(R4)
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$
 (associatività di .)

(R5)
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 {distributività

$$(R6) (A+B) \cdot C = A \cdot C+B \cdot C$$

Dai primi 3 segue che $\exists 0$ (zero) $\in \mathscr{A} \ni$ A+0 = A.

Un elemento $1 \in \mathcal{A}$ è detto $\underline{1'}$ unità di \mathcal{A} $\overset{\text{def}}{\Longleftrightarrow}$ $A \cdot 1 = A = 1 \cdot A$ $\forall A \in \mathcal{A}$. L'anello è commutativo \Longleftrightarrow $A \cdot B = B \cdot A$.

L'anello è un anello Booleano se contiene l'unità e A·A = A VA.

Esempio di anello Booleano è l'anello degli interi modulo 2 cioé $\{0,1\}$

In un anello Booleano si ha (1) A+A = 0 (2) A+B=0 \Longrightarrow B=A, (3)A B=BA.

DIM.- (1)
$$(1+A)(1+A) = (1+A) \implies (1+A)+(A+A)=1+A \implies per 1a R3) A+A=0$$

- (2) Segue che (1) e da R3) per l'unicità dell'elemento B.
- (3) $(A+B)(A+B) = A+B \implies A^2 + BA + AB + B^2 = A+B \implies BA+AB = 0 e$ e dalla(2) seque AB = BA.

cvd

PROP. 10 - Ogni algebra Booleana è un anello Booleano con le seguenti definizioni di addizione e di moltiplicazione:

$$A + B = A \triangle B$$
$$A \cdot B = A \cap B$$

Viceversa ogni anello Booleano è un'algebra Booleana con le seguenti operazioni:

$$A \cup B = A + B + A B$$

$$A \cap B = A \cdot B$$

$$- A = 1 + A$$

In entrambi i casi gli zeri (e le unità) coincidono. (Per la dim. cfr. [1] pag. 53).

§6 - Campi d'insiemi ridotti e perfetti.

DEFINIZIONE 14 - Se $\mathscr A$ è un campo di sottoinsiemi di X, diremo che $\mathscr A$ è <u>ridot</u>to se $\mathscr A$ separa i punti di X, cioé

$$\forall x \neq y \text{ (in } X) \exists A \in \mathcal{A} \Rightarrow ' x \in A \in y \notin A$$

ESEMPI

- 1) $\mathcal{P}(X)$ è ridotto (se x \neq y $\exists \{x\}$ che separa x ed y), mentre $\{\not D, X\}$ non è ridotto se card X > 1.
- 2) Sia X uno spazio topologico e sia $\mathscr{A} = \{A \subset X; A \text{ clopen}\}$.

Ricordiamo che se denotiamo con C(x) la componente connessa di x, allora X si dice totalmente sconnesso o totalmente discontinuo (nella terminologia di [2] pag. 127) se $C(x) = \{x\} \ \forall \ x \in X$. Poiché risulta

$$C(x) \subset \widetilde{C}(x) = \bigcap \{A \in \mathscr{A} : x \in A\}^{(*)}$$

(cfr. [2] pag. 127), allora $\mathscr A$ è ridotto $\iff \widetilde{\mathbb C}(\mathsf x) = \{\mathsf x\} \ \forall \mathsf x \in \mathsf X.$ Nel seguito diremo che $\mathsf X$ è tot. sconnesso se $\mathscr A$ è ridotto.

Se X è T_1 ed x è un punto isolato allora $\{x\}$ $\in \mathscr{A}$ e quindi $\widetilde{C}(x) = \{x\}$ ma se $\widetilde{C}(x) = \{x\}$ non vuol affatto dire che sia x isolato. Quindi X tot. sconnesso non vuol dire che i punti di X siano isolati (\mathbb{Q} è tot. sconnesso ma non ha punti isolati; l'insieme di Cantor è un altro esempio).

Se X è uno spazio topologico e poniamo $xRy \iff y \in C(x)$ allora R è una relazione di equivalenza e lo spazio $\frac{\chi}{R}$ è totalmente sconnesso (cfr. [2] pag. 128).

PROP. 11 - Ogni campo ∅ di sottoinsiemi di X è isomorfo ad un campo ridotto

DIM. - L'idea è di mettere in una stessa classe di equivalenza tutti i punti di X non separati da $\mathscr A$. Precisamente definiamo:

$$x R y \iff \forall A \in \mathscr{A} : x \in A \implies y \in A.$$

Si vede facilmente che R è una relazione di equivalenza (in particolare $x R y \Longrightarrow y R x$ in quanto se $A \in \mathscr{A}$ e $y \in A$ e per assurdo $x \notin A$ allora $-A \in x \in A$ e quindi $y \in -A$).

^(*) La $\widetilde{C}(x)$ viene a volte detta <u>pseudo-componente connessa</u> di x. C(x) è sempre chiuso. Se lo spazio è loc. connesso allora C(x) è anche aperto e quindi C(x) ε e C(x) = $\widetilde{C}(x)$. Ogni spazio tot. connesso è T_2

Denotiamo con
$$X' = \frac{X}{R}$$
, $x' = [x]$

e A' =
$$\{x'; x \in A\}$$
. Allora
$$h(A) = A'$$

definisce un isomorfismo di A in $A' = \{A'; A \in A\}$ ed A' è un campo ridotto. Infatti se $x' \neq y' \iff x \not x \not x \iff \exists A \in A \Rightarrow x \in A = y \not \in A \iff \exists A' \in A'$ $\Rightarrow x' \in A' = y' \not \in A'$.

DEFINIZIONE 15 - Un campo A di sottoinsiemi di X si dice <u>perfetto</u> se ogni ultrafiltro di A è <u>determinato da un punto di X</u>, cioé è del tipo $\beta = \{A \in A : x \in A\}$ con $x \in X$

Esempi

- 3) Ogni campo A composto da un numero finito d'insiemi è perfetto. Infatti se β è un ultrafiltro di A, detto $A_0 = \bigcap \{A : A \in \beta\}$, essendo tale intersezione finita, risulta $A_0 \in \beta$ e quindi necessariamente $\beta = \{A \in A : A_0 \in A\} = \beta_2$ $\forall x \in A_0$.
- 4) Sia X infinito e sia $A = \{A \in X; A \text{ finito o cofinito (cioé -A è finito)}\}$ allora $\beta = \{A \in A : A \text{ cofinito}\}$ è un ultrafiltro di A non determinato da alcun punto di X, pertanto A non è perfetto.
- 5) Sia X infinito e sia \mathcal{A}_1 un campo di sottoinsiemi di X contenente tutti i singoletti $\{x\}$ di X. Risulta \mathcal{A} c \mathcal{A}_1 (con riferimento a 4)) e $\mathcal{F} = \{A \in \mathcal{A}_1 : A \text{ cofinito}\}$ è un filtro. Se β è un ultrafiltro contenente \mathcal{F} , β non è principale e quindi \mathcal{A}_1 non è perfetto.
- 6) Sia X uno spazio topologico <u>compatto</u> ed $A = \{A \subset X : A \text{ clopen}\}$, allora $A \in U$ campo <u>perfetto</u>. Infatti se $\beta \in U$ un ultrafiltro di A, β ha la proprietà dell'intersezione finita, in quanto $A_i \in \beta$ i $\in \{1,2,\ldots,n\}$ $\Longrightarrow \bigcap_{i=1}^n A_i \in \beta$ e

^(*) Tali <u>ultrafiltri</u> sono detti anche <u>fissi</u> o <u>principali</u> o <u>primi</u> (Definanaloga vale per gli ideali massimali principali).

quindi $\bigcap_{i=1}^{n} A_{i} \neq \emptyset$. Inoltre $\bigcap_{i=1}^{n} A_{i} \neq \emptyset$.

$$\beta = \{ A \in A : A \supset A_0 \} = \beta_X \quad \forall x \in A_0.$$

PROP. 12 - Se \mathcal{A} è un campo di sottoinsiemi di X, ridotto e perfetto allora, detto [A] l'insieme degli ultrafiltri di \mathcal{A} , l'applicazione $X \ni X \to \beta_X$ $\in [A]$ è una bigezione, cioé ogni ultrafiltro di \mathcal{A} è determinato da <u>un unico</u> punto di X. Quindi card $X = \operatorname{cond}[A]$

DIM.

L'applicazione è surgettiva perché $\mathcal A$ è perfetto. L'applicazione è ingettiva perché se $x \neq y$ allora $\exists A \in \mathcal A$ \ni ' $x \in A$ e $y \notin A$, quindi $A \in \beta_x - \beta_y$ e $\beta_x \neq \beta_y$.

cvd

Osservazione 2. Se X è uno spazio topologico compatto e totalmente sconnesso allora $A = \{A \in X; A \text{ clopen}\}$ è ridotto e perfetto. Orbene il viceversa è anche vero, nel senso specificato dal seguente:

TEOREMA 13 - Se A è un campo ridotto e perfetto di sottoinsiemi di X, allora su X si può definire una topologia & che lo rende compatto e totalmente sconnesso ed A diventa l'insieme dei clopen per quella topologia.

DIM.

Basta considerare A come base della topologia &. Risulta

$$\mathcal{E} = \{ \bigcup_{A \in \mathcal{B}} A; \operatorname{con} \mathcal{B} \subset A \}$$
 (cfr. [3] pag. 549).

Evidentemente A c C, quindi ogni elemento A di A è aperto, ma è anche chiuso essendo -A \in A aperto. Se denotiamo con A_1 l'insieme dei clopen di C risulta pertanto

$$A c A_1$$

ed essendo A ridotto, lo spazio topologico (X,\mathcal{Z}) è totalmente sconnesso. Proviamo che (X,\mathcal{Z}) è compatto. Basterà provare che se $\{A_i:i\in I\}$ c A è un ricoprimento di X, esiste J finito C I \Rightarrow' $X = \bigcup_{i\in J} A_i$. Supposto per assurdo che V J finito C I : $\bigcup_{i\in J} A_i \neq X$, allora $\bigcup_{i\in J} A_i' \neq \emptyset$, $(A_i'=-A_i)$ quindi $\mathfrak{G}=\{A_i':i\in I\}$ c A ha la proprietà dell'intersezione finita e genera un filtro proprio \mathfrak{F} (cfr. Prop. 4' pag. 4). Sia β un ultrafiltro contenente \mathfrak{F} (e quindi \mathfrak{G}). Poiché A è perfetto $\exists x_0 \in X$ \Rightarrow' $\beta = \beta_X$ e quindi $x_0 \in \bigcap_{i\in I} A_i'$ cioé U $A_i \neq X$ contro l'ipotesi. Proviamo ora che

Sia A ϵ A_1 . Essendo A aperto, è esprimibile come unione di elementi di A, cio ϵ

$$A = \bigcup_{i \in I} A_i \quad \text{con } A_i \in A$$

Essendo A chiuso ed X compatto, A è compatto e quindi esiste J finito \in I \mathfrak{z}' A = U A_i. Pertanto come unione finita di elementi di $\mathcal A$ risulta A $\in \mathcal A$ i \in J

cvd

Osservazione 3 - La topologia $\mathcal E$ del teorema precedente è <u>univocamente</u> determinata da $\mathcal A$ e dalle condizioni del teorema. Infatti se $\mathcal E_1$ è un'altra topologia che rende $\mathcal E$ compatto, totalmente sconnesso e con $\mathcal A$ coincidente con l'insieme dei clopen, essendo $\mathcal A$ c $\mathcal E_1$ segue $\mathcal E$ c $\mathcal E_1$.

Considerata allora l'applicazione identica

$$i:(X,T_1)\rightarrow(X,E)$$

questa è continua, ed essendo (X, \mathcal{T}_1) compatto, i è un omeomorfismo (cfr. [3] pag. 589 ,[6] pag. 141) e quindi \mathcal{E}_1 c \mathcal{E} .

PROP. 14 - Siano ℳ e     due campi perfetti e ridotti di sottoinsiemi di X e di Y rispettivamente.

Se A e 😚 sono isomorfi, allora gli spazi X ed Y topologizzati come in-

dicato nel teorema 13 sono omeomorfi.

DIM.

Sia $h: A \rightarrow B$ un isomorfismo di A su B

Se $x \in X$, $h(\beta_X)$ è un ultrafiltro di $\mathfrak B$ (cfr. prop.7), come tale è determinato da un unico punto $\varphi(x) \in Y$ (cfr. prop. 12), cioé:

Si è così definita l'applicazione $\varphi: X \to Y$ e risulta $\forall A \in \mathcal{A}$

$$x \in A \iff \varphi(x) \in h(A) \quad (y \in B \iff \overline{\varphi}^{1}(y) \in h^{-1}(B))$$

Tale applicazione ϕ è bigettiva ed ha le seguenti proprietà:

$$\forall A \in A : \varphi(A) = h(A)$$

$$\forall B \in \mathbb{G} : \varphi^{-1}(B) = h^{-1}(B)$$

Di conseguenza se G è un aperto di X allora $G = U A_i$ con $A_i \in A$

$$e \varphi(G) = \varphi(U A_i) = U \varphi(A_i) = U h(A_i);$$
 quindi $\varphi(G)$ risulta unione di $i \in I$ $i \in I$ $i \in I$

elementi di 🖏 e perciò è aperto in Y.

Analogamente se G_1 è aperto in Y, si prova che $\phi^{-1}(G_1)$ è aperto in X. cvd

Osservazione 4. Se A è un campo perfetto (ma non necessariamente ridotto) allora, definendo \hat{C} come nel teorema 13 si ottiene uno spazio topologico compatto ed A coincide con la famiglia dei clopen. Però (X, \mathbb{Z}) non solo non è totalmente sconnesso, ma in generale non sarà neanche T.

PROP. 15 - Se A è un campo perfetto di sottoinsiemi di X e A_i ; i ϵ I è un sottoinsieme infinito di elementi di A, non vuoti e mutualmente disgiun-

DIM. Se & è la topologia definita nel teor. 13, per quanto visto nell'osserv. 4, (X,3) è compatto. Se per assurdo A & A allora A è chiuso e quindi J finito c I = A = U A. Questo è in contrasto con l'ipotesi che I è i & J

infinito e le A, sono non vuote e mutualmente disgiunte.

cvd

§ 7 - Il teorema di rappresentazione di Stone (1934~1938)

Nel \S l abbiamo visto che i campi di sottoinsiemi di un dato insieme X, sono particolari algebre Booleane. In questo paragrafo faremo vedere che data un'algebra Booleana A, questa può sempre essere riguardata, a meno di isomorfismi come un campo di sottoinsiemi, ridotto e perfetto, dello spazio X = [A] degli ultrafiltri di A.

Teorema 16 - Sia A. un'algebra Booleana, X = [A]. Posto $h : A \rightarrow \mathcal{P}(X)$ $h(A) = \{ \beta \in X : A \in \beta \} = A^* \quad \forall A \in A, \text{ allora } h \in \text{un isomorfismo di } A$ $su_A^* = h(A)$, che è un campo ridotto e perfetto di sottoinsiemi di X.

DIM.

Si tratta di provare che (A U B) * = A^* U B^* , $(A\cap B)^*$ = $A^*\cap B^*$, $(A')^* \Rightarrow (A^*)^*$ A tal fine basta osservare che, per definizione:

$$A \in \beta \iff \beta \in A^*$$

Infine $\beta \in (A \cap B)^* \Leftrightarrow A \cap B \in \beta \Leftrightarrow A \in \beta \land B \in \beta \Leftrightarrow \beta \in A^* \land \beta \in B^* \Leftrightarrow \beta \in A^* \land B^*$ $\beta \in (A')^* \Leftrightarrow A' \in \beta \Leftrightarrow A \not \in \beta \Leftrightarrow \beta \not \in A^* \Leftrightarrow \beta \in (A^*)'.$

Per provare che $h \in \underline{ingettiva}$ basta provare che $h(A) = \emptyset \Rightarrow A = 0$ o equivalentemente $0 \neq A \in A \Rightarrow h(A) \neq \emptyset$.

Se $0 \neq A \in A$, posto $\varphi = \{B \in A : B \ni A\}$, risulta φ un'filtro di A. Se β è un ultrafiltro contenente φ risulta $\beta \in h(A)$ e quindi $h(A) \neq \emptyset$. Quindi h è un isomorfismo di A su A.

Proviamo che A^* è <u>ridotto</u>. Siano β_1 , $\beta_2 \in X$ e $\beta_1 \neq \beta_2$; questo significa che $\exists A \in A \quad \exists' \quad A \in \beta_1 - \beta_2$. Conseguentemente $\beta_1 \in A$ e $\beta_2 \notin A$.

Proviamo che A^* è <u>perfetto</u>. Se β_1 è un ultrafiltro di A^* allora $\beta = h^{-1}(\beta_1)$ è un ultrafiltro di A.

$$B \in \beta_1 \implies B \in A^* \implies \exists A \in A \Rightarrow h(A) = B \implies A \in \beta$$

Viceversa A $\epsilon \beta \Rightarrow B = h(A) \epsilon \beta_1$. Pertanto

$$B \in \beta_1 \iff A \in \beta \iff \beta \in A^* = h(A) = B$$

cioé
$$\beta_1 = \{ B \in A^* : \beta \in B \},$$

vale a dire : 5 è determinato dal punto se X.

cvd

Osservazione 5. Per quanto visto con teorema 13, A^* induce su [A] una topologia che lo rende compatto e totalmente sconnesso ed A^* coincide con l'insieme di clopen di [A].

DEFINIZIONE 16 - Data un'algebra Booleana A, chiamiammo spazio di Stone di A, ogni spazio topologico compatto e totalmente sconnesso X, il cui campo dei clopen è isomorfo ad A.

Osservazione 6 - Dall'osservazione 3 segue che tutti gli spazi di Stone di A coincidono a meno di omeomorfismi.

Viceversa se X è uno spazio di Stone di A ed Y è omeomorfo ad X allora anche Y è uno spazio di Stone di A. Infatti sia $\varphi: X \to Y$ un omeomorfismo di X su Y e sia $\mathscr C$ il campo di clopen di X, posto

$$h(A) = \varphi(A)$$
 $\forall A \in \mathcal{C}$

risultando $\varphi(A)$ un clopen di Y, è h un isomorfismo $\mathcal C$ sul campo $\mathcal C_1$ dei clopen di Y. Essendo $\mathcal C$ isomorfo ad $\mathcal A$ anche $\mathcal C_1$ è isomorfo ad $\mathcal A$.

Esempi

- 1) Se X è uno spazio topologico compatto e totalmente sconnesso ed A è il campo dei clopen di X, allora lo spazio di Stone di A è X stesso.
- 2) Se A è un'algebra Booleana <u>finita</u>, necessariamente lo spazio di Stone X di A deve essere finito ed essendo separato non può che essere $\mathcal{C} = \mathcal{S}(x)$. Pertanto se X ha n elementi, \mathcal{C} ne ha 2^n e quindi A essendo isomorfo a \mathcal{C} ne ha 2^n . Non possono quindi esistere algebre Booleane finite non degeneri (cioé con più di un punto), che hanno una cardinalità diversa da 2^n per qualche n ε N.

Ancora 2 algebre Booleane A e A finite che hanno lo stesso numero di elementi sono isomorfe. Infatti se X è lo spazio di Stone di A ed Y quello di A0, necessariamente X ed Y hanno lo stesso numero di elementi, quindi A1 = A2 = A3 = A4 bigettiva

f induce un'applicazione di $\mathfrak{P}(X)$ in $\mathfrak{P}(Y)$ che è isomorfismo. Essendo A isomorfo a $\mathfrak{P}(X)$ e \mathfrak{G} isomorfo a $\mathfrak{P}(Y)$ segue che \mathfrak{A} e \mathfrak{G} sono isomorfi.

3) Lo spazio di Stone X di un'algebra Booleana A è metrizzabile se e solo se A è al più numerabile.

Dal teorema di Uryson (cfr. [3] pag. 616) segue che uno spazio compatto e T_2 è metrizzabile se e solo se ha una base di aperti numerabili, pertanto l'asserto segue dal fatto che A^* è una base di X.

4) Sia X_0 un insieme infinito che considereremo topologizzato con la topologia discreta. Sia $A = \{ A \subset X_0; A \text{ finito o cofinito} \}$. Si vede facilmente che A è un campo ridotto ma non perfetto, in quanto l'ultrafiltro di A $\{ S = \{ A \in A : A \text{ cofinito} \} \text{ non è determinato da alcun punto di } X_0 \text{ Considerato un punto } X_0 \neq X_0 \text{ sia } X = X_0 \cup \{ x_0 \} \text{ e poniamo}$

$$h(A) = \begin{cases} A & \text{se } A \in \mathcal{A} & \text{è finito} \\ A \cup \{x_o\} & \text{se } A \in \mathcal{A} & \text{è cofinito} \end{cases}$$

Se h(A) = \mathfrak{C} , h è isomorfo di A sul campo \mathfrak{C} di sottoinsiemi di X. \mathfrak{C} è ridotto e perfetto (questa volta il corrisponndente di \mathfrak{P} è determinato da x_0). Considerando \mathfrak{C} come base di aperti di X, X diventa uno spazio topologico compatto e totalmente sconnesso e quindi è lo spazio di Stone di \mathfrak{A} .

X è detto <u>compatificazione con un punto</u> dello spazio discreto X (cfr. [3] pag. 599).

- 5) Ricordiamo che uno spazio topologico X si dice a) completamennte regolare (c.r.) se è T_1 e [\forall chiuso C e \forall x \notin C \exists f : X \rightarrow [0,1] continua (e limitata) tale che f(x) = 0 e f(c) = 1]
 - b) regolare se è T₁ e T₃
 - c) <u>normale</u> se è T_1 e T_4 (T_2 e compatto \Rightarrow normale ([3] pag.587)) Poiché c) \Rightarrow a) \Rightarrow b) (cfr. per es. [4] pag. 129) a volte la proprietà tra parentesi quadre e indicata con $T_{3.5}$.

Orbene vale il sequente

TEOREMA 17 (1937) di Stone e E.Čech (cfr. [4],[5] oppure [6] pag. 152). Se X è C.R. allora \exists ed è! a meno di omeomorfismi uno spazio topologico $\beta(X)$ T₂ e compatto tale che:

- (i) $X \stackrel{\circ}{e} denso in \wp(X)$ (nella topologia di $\wp(X)$)
- (ii) ogni $f: X \to IR$ cont. e limitata ha un prolungamento (cont. e limitato) su $\beta(X)$.

Tale spazio $\beta(X)$ prende il nome di <u>compattificazione di Stone-Čech</u> dello spazio X.

Il legame di questo concetto con lo spazio di Stone è il seguente:

se X è un insieme qualsiasi, può sempre essere considerato spazio topologico con la topologia discreta $\mathcal{A} = \mathcal{S}(X)$; in tal caso è evidentemente C.R.

Considerato $\beta(X)$ questo altro non è che lo spazio di Stone di A (cfr. Osservazione 6).

Si ha anche il seguente risultato:

TEOREMA 18 di B. Pospišil (1937) (cfr. [5] pag. 70). Se X è discreto e $|X| = \text{card } X \ge \frac{1}{5}$ allora $|\beta(X)| = 2^2$ (cfr.[1] pag. 45)

In breve quello che si prova nel teorema 17, è che detto C(X) l'insieme delle funzioni continue di X in [0,1] = I e posto $\varphi: X \to I^{C(X)}$ \mathfrak{F}' $\forall x \in X$ $\varphi(x)$ ε $I^{C(X)}$ tale che la f-ma coordinata di $\varphi(x)$ è proprio f(x) $\forall f$ ε C(X). φ è continua in quanto ogni sua coordinata è continua, inoltre essendo X C.R., φ è ingettiva. $I^{C(X)}$ come prodotto di spazi compatti e T_2 è compatto e T_2 . Posto $\varphi(X) = \varphi(X)$ segue l'asserto.

6) Sia $\mathcal A$ un campo di sottoinsiemi di X. Poniamo $\forall A \in \mathcal A$

 $g(A) = \{ \beta \in [A] : A \in \beta = \beta \text{ non determinato da un punto di } X \}.$ L'applicazione

$$h(A) = A U g(A) \quad \forall A \in A$$

è un isomorfismo di A su un campo perfetto A_1 di sottoinsiemi dello spazio $Y = X \cup g(X)$. Pertanto si può passare da un campo A ad un campo perfetto A_1 , aggiungendo dei punti all'insieme X.

INTERPRETAZIONE DEI CONCETTI ALGEBRICI NELLO SPAZIO DI STONE ASSOCIATO E VICEVERSA

Sia X lo spazio di Stone dell'algebra $\mathcal A$ e sia $h:\mathcal A\to \mathfrak S(X)$ il relativo isomorfismo.

Se G è un aperto di X allora $\{A \in A : h(A) \in G\}$ è un ideale detto corrispondente a G. Viceversa se \Im è un ideale di A allora

 $h(\Im) = U\{h(A) : A \in \Im\}$ è un aperto di X.

Se F è un <u>chiuso</u> di X allora $\{A \in A : F \in h(A)\}$ è un <u>filtro</u> detto <u>corrispondente</u> ad F. Viceversa se \mathcal{F} è un filtro di A allora $h(\mathcal{F}) = \bigcap \{h(A) : A \in \mathcal{F}\}$ è un chiuso di X. In breve

Ą		X	A		Χ		
ideali	\leftrightarrow	aperti	{1}	<>	Χ		•
filtri	()	chiusi	ultrafiltri	<>	{x}	dove	xεX
{0}	←→	Ø	ideali massi	mali↔	X-{x}	11	

Osserviamo ancora che se $A \in A$ e consideriamo $h(A) = A^* \in A^*$ poiché per quanto visto con il T(16) e T(13), A^* è base della topologia su X = [A] e coincide con i clopen, risulta se $\beta \in X$

Da ciò segue che: se Y c X

 $Y = \{ \beta_i ; i \in I \}$ è un <u>insieme discreto</u> in $X \iff 0$ gni punto di Y è isolato in Y

$$\iff \forall i \in I \exists A \in A \Rightarrow A \in \beta_i - \beta_j \quad \forall j \in I - \{i\}$$

$$Y = \{\beta_i; i \in I\} \stackrel{?}{e} \xrightarrow{denso \ in \ s\acute{e}} \iff \forall c \ DrY \iff \forall i \in I \ \forall A \in \beta_i \exists j \in I - \{i\}$$

$$tale \ che \ A \in \beta_j \iff \forall i \in I : \beta_i \subset U \beta_j$$

$$j \neq i$$

Osservazione 7. Sia \mathcal{A} un campo di sottoinsiemi di X ed h : $\mathcal{A} \to \mathcal{A}^*$ con h(A) = { $\mathfrak{g} \in [\mathcal{A}]$: A $\mathfrak{e} \, \mathfrak{g}$ } = \mathbb{A}^* . Consideriamo la topologia indotta da \mathbb{A}^* su [\mathcal{A}] e proviamo che

$$X' = \{ \beta_x \in [A] : x \in X \}$$
 è denso in $[A]$, cioé $\overline{X'} = [A]$.

Traducendo : $[A] \subset \overline{X}'$ si ha

ovvero

La proposizione precedente è banalmente vera in quanto $\forall A \in \beta$ basta considerare un $x \in A$, per avere che $A \in \beta_x$.

Questo risultato va confrontato con il Teorema (17) e la (6).

§8 - U e Ω infinite in un'algebra Booleana A.

Al §1 abbiamo osservato che rispetto alla relazione d'ordine ⊂ si ha

A U B =
$$\sup \{A,B\}$$
 A \(\Omega B = \inf \{A,B\}\).

Tale fatto ci suggerisce come definire l'U e l' Ω , che chiameremo $\underline{BOOLEANA}$, per un numero infinito di elementi di A.

Se $\beta = \mathfrak{S} \circ A$, denotiamo l'<u>unione</u> di tutti gli elementi di $\mathfrak{S} \circ \mathfrak{S}$

e tale unione, se esiste, è per definizione

(1)
$$U^{A} A = \sup \{A; A \in \mathcal{O}\} = B \iff 2)A \subset B \quad \forall A \in \mathcal{O}$$

 $A \in \mathcal{O}$
3) $A \subset C (C \in \mathcal{A}) \quad \forall A \in \mathcal{O} \implies B \subset C$

(dove il sup. s'intende in A).

Analogamente per l'intersezione

(2)
$$\bigcap_{A \in \mathcal{Q}_3} A = \inf \{ A; A \in \mathcal{Q}_3 \}$$

Si osservi per inciso che se \mathcal{A}' è una sottoalgebra di \mathcal{A} e \mathcal{C} \mathcal{A}' allora, nell'ipotesi di esistenza per l'U e l' Ω valgono:

Osserviamo ancora che se \exists U A A \in \mathcal{A}' allora nella 3^a delle (3) vale l'uguagli-A \in \mathfrak{G} anza (analogamente per l' Ω).

Se hèun isomorfismo di A su A' allora

(4)
$$h(U^A) = U^A' h(A)$$
 (anal. per $l' \cap A \in G$)

nel senso che se ∃ l'unione in uno dei due membri esiste anche nell'altro.

Il motivo della (4) è che l'isomorfismo h ed h⁻¹ preserva l'C.
La (4) però <u>non vale</u> se h non è <u>bigettiva</u>.

L' \bigcup e l' \bigcap Booleane (infinite), definite da (1) e (2), possono non coincidere con l'U e l' \bigcap della teoria degli insiemi, nel caso in cui l'algebra Booleana è un campo. Però se l'U (o l' \bigcap) insiemistica appartiene al campo, allora è anche l'U (o l' \bigcap) Booleana.

ESEMPI

A) Sia $\mathbb{N}_0 = \{0, 1, \ldots, \}$ ed $\mathbb{A} = \mathcal{D}(\mathbb{N}_0)$ e sia

 \mathfrak{S} ={ A ; (A finito c N) V ((N -A) finito c N)}. \mathfrak{S} è una sottoalgebra di \mathfrak{A} . Risulta N $\notin \mathfrak{S}$ e

$$\int_{n=1}^{\infty} \frac{A}{n} \{n\} = 1N, \quad \int_{n=1}^{\infty} \frac{A}{n} \{n\} = 1N_{0}$$

(se A ∈ 𝘚 ed A è infinito, necessariamente o e A per come è definito 𝘘).

B) Se \mathcal{A} c $\mathcal{P}(X)$ è un campo di sottoinsiemi \mathfrak{s}' {{x}; x e X} c \mathcal{A} , allora l'U (e Ω) Booleana (infinita) coincide sempre con qualla insiemistica. Precisamente la $\mathfrak{1}^a$ esiste se e solo se la $\mathfrak{2}^a$ appartiene ad \mathcal{A} . Infatti se $\mathfrak{3}_{i} \cup \mathcal{A}_{i} = \mathfrak{A}_{i}$ allora \mathfrak{A}_{i} c \mathfrak{A} Viel quindi $\mathfrak{1}_{i} \cup \mathcal{A}_{i}$ c \mathfrak{A} . Se per assurdo non coincidessero, esisterebbe $\mathfrak{X}_{0} \in \mathcal{A}$ $\mathfrak{I}' = \mathfrak{I}$ $\mathfrak{I}' = \mathfrak{I}$ c $\mathfrak{I}' = \mathfrak{I}$ Quindi $\mathfrak{I}' = \mathfrak{I}' = \mathfrak{I}$ contraddicendo la $\mathfrak{I}' = \mathfrak{I}' = \mathfrak{I}' = \mathfrak{I}$ proprietà del sup $\mathfrak{I}' = \mathfrak{I}' =$

Si può verificare che l'U e l'N Booleane infinite sono

- 1) Commutative : cioé $\bigcup_{i \in I} A_i = \bigcup_{i \in I} A_{\tau(i)}$ dove $\tau : I \to I$ bigettiva. Analog. per l' \cap
- 2) <u>Associative</u>
- 3) Verificano <u>le leggi di De Morzan</u>
- 4) e vale la <u>legge di distributività</u>

$$A \cap (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (A \cap A_i)$$

$$A \cup (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (A \cup A_i)$$

Ma mentre per l'unione e l'intersezione insiemistiche vale la seguente <u>legge</u> distributiva

(5)
$$\bigcap_{t \in T} \bigcup_{s \in S} A_{t,s} = \bigcup_{\phi \in S} \bigcap_{t \in T} A_{t,\phi(t)}$$
 (e la sua duale)

 $(S^T = \{f : f : T \rightarrow S\})$, tale legge <u>non vale</u> per l'U e**l'**\(\text{N}\) Booleana, e questo anche se tutte le unioni e intersezioni esistono e se S è finito (cfr. [1] pag. 61).

Per tale ragione un'algebra Booleana per la quale vale la (5) dove card.T=m e card.S = n si dice (m,n)-distributiva. Inoltre diremo che A è m-distributiva se è (m,m)-distributiva e completamente distributiva se è m-distributiva va ¥ cardinale m.

§ 9 - Algebre Booleane m-complete.

Diremo poi che 'A è completa se è m-completa ∀ m .

Un campo d'insiemi \mathcal{F} si dice <u>m-completo</u> o m-<u>campo</u> se $\forall \{A_t; t \in T\} \subset \mathcal{F}$ con card T = m risulta $t \in T$ (unione insiemistica) o equivalentemente $\bigcap_{t \in T} A_t \in \mathcal{F}$.

Se questo accade ∀m il campo si dice completo..

Osservazione (9.10). Per la (4) di §8 se \mathcal{A} ed \mathcal{A}' sono isomorfe: \mathcal{A} m-completa (completa) \Rightarrow \mathcal{A}' m-completa (completa).

Osservazione (9.1). Un campo d'insiemi F può essere m-completo come algebra Booleana ma non essere un m-campo; mentre il viceversa è vero per quanto detto nella B) del §8.

ESEMPI

- A) Sia $\mathcal{A} = \mathfrak{D}(X)$ dove X è infinito. Sia $h: \mathcal{A} \to \mathcal{A}^*$ dove \mathcal{A}^* è il solito campo dei clopen dello spazio di Stone [\mathcal{A}]. Poiché \mathcal{A} è un'algebra Booleana completa e poiché \mathcal{A}^* è isomorfa ad \mathcal{A} , anche \mathcal{A}^* è un'algebra Booleana completa, tuttavia \mathcal{A}^* non è un σ -campo (cfr. Prop. 15 e Teor.16), in quanto se $\{A_n; n \in \mathbb{N}\}$ sono a 2 a 2 disgiunti e non vuoti, $\bigcap_{n=1}^{\infty} h(A_n) \notin \mathcal{A}^*$.
- B) Se \mathcal{A} è una σ -algebra Booleana infinita, allora card $\mathcal{A} \geq 2^{So}$. Infatti poiché per ipotesi \mathcal{A} è infinita $\exists \{A_n; n d N\} \subset \mathcal{A}$ con le A_n a 2 a 2 disgiunte e non vuote tali che $\prod_{n=1}^{\infty} A_n = 1$ (unità dell'algebra). Posto

 $\mathcal{F}=\mathcal{F}(N)$ possiamo definire un isomorfismo h : $\mathcal{F} \to \mathcal{A}$ ponendo $\mathcal{F} = \mathcal{F}(B) = \mathcal{F}_{n \in B}$

(Essendo $\mathcal A$ σ -algebra, risulta sempre h(B) ε $\mathcal A$. La sottoalgebra h($\mathcal S$) di $\mathcal A$ è quindi isomorfo ad $\mathcal F$ e card $\mathcal A$ \cong card $\mathcal F$ = $2^{\le 0}$.

Si ha il seguente criterio

Teorema (9.1) (di Smith e Tarski)

Se $\{A_i; i \in I\}$ c, A, card I = m, le A_i sono a 2 a 2 <u>disgiunte</u> ed $\exists_i \in I$ A

allora A è m-completa

(cfr. [1] pag. 68). In altre parole basta verificare la condizione per le famiglie disgiunte.

DEFINIZIONE. Diremo che un'algebra Booleana $\mathcal A$ verifica la <u>condizione di m-cate-na</u> seper ogni $\{A_i; i \in I\}$ c $\mathcal A$ a 2 a 2 disgiunti, segue che card $I \not = m$.

Teorema (9.2) (di Tarski)

 ${\mathcal A}$ algebra Booleana m-completa con la condizione di m-catena \Rightarrow ${\mathcal A}$ è completa.

DIM.- Per il Teorema (9.1) è sufficiente provare che $\{A_i; i \in I\}$ $\mathcal{L}A$ a 2 a 2 disgiunte risulta $\bigcup_{i \in I} A_i \in A$. Ma se le A_i sono a 2 a 2 disgiunte, per

la condizione di m-catena non può che essere card I \angle m e quindi essendo A m-algebra risulta $\begin{subarray}{c} U & A \\ i & i \end{subarray}$

cvd

DEFINIZIONE. Se $\mathcal A$ è un'algebra Booleana ed $m:\mathcal A\to [0,+\infty]$, diremo che m è una n-misura se

- 1) $\exists A_0 \in A \ni m(A_0) < +\infty$
- 2) \forall {A; i \in I} c \land disgiunti con card I \leq n e tale che \forall i \in I risulta

$$m(\bigcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$$

dove la somma è così intesa: se $m(A_i) = 0 \ \forall \ i \in I - J \ con \ J \ al più numerabile e <math>\sum_{i \in J} m(A_i) = c < +\infty$ allora $\sum_{i \in I} m(A_i) = c$ altrimenti $\sum_{i \in I} m(A_i) = +\infty$

Nella 2) la condizione U A $_i$ $_i$ A diven ta superflu a nel caso in cui $_i$ A $_i$ $_i$ una n-algebra.

Diremo che m è una σ -misura o che è σ -additiva se è una \sim -misura.

<u>Prop.</u> (9.3). Se m è una σ -misura ll'algebra \mathcal{A} , $\{A_n, n \in \mathbb{N}\}$ c \mathcal{A} e

 $\bigcup_{n=1}^{\infty} A_n \in A$, allora:

$$m(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} m(A_n) \quad (\sigma-\underline{sub-additivita})$$

(la dim. è l'usuale).

NB. La prop. (9.3) si estende al caso di m n-misura su una n-algebra (cfr. [1] pag. 73)

La def. di misura σ-finita è la solita.

Diremo che m è strettamente positiva se

$$m(A) > 0 \quad \forall A \in A - \{0\}$$

Osservazione (9.2). Se \exists m σ -misura strettamente postivia è σ -finita su \mathcal{A} , allora esiste anche una σ -misura strettamente positiva e finita m' su \mathcal{A} . Infatti se $\{A_n; n \in \mathbb{N}\}$ c \mathcal{A} disgiunti \exists ' $\bigcap_{n=1}^{\infty} A_n = 1$ e $0 < m(A_n) < +\infty$ allora posto

$$m'(A) = \sum_{n=1}^{\infty} \frac{m(A \cap A_n)}{2^n m(A_n)} \quad \forall A \in \mathcal{A}$$

si ottiene una σ -misura strettamente positiva e finita.

PROPOSIZIONE (9.4). Se $\mathcal A$ è una σ -algebra Booleana avente una misura finita (o σ -misura e σ -finita) strettamente positiva allora $\mathcal A$ è completa.

DIM. Per il Teorema (9.2) basta provare che A verifica la condizione di G-catena.

Sia $\{A_i; i \in I\}$ c A e a 2 a 2 disgiunti e diversi da 0. Posto $I_0 = \{i \in I : m(A_i) \ge 1\}$ e per $n \in \mathbb{N}$ sia

$$I_n = \{ i \in I : \frac{1}{n+1} \leq m(A_i) < \frac{1}{n} \}$$

risulta $\{I_0, I_1, \ldots\}$ una partizione di I.

Poiché nell'ipotesi in cui siamo se $\{A_1, A_2, \dots\} \in \mathcal{A}$ sono disgiunti risulta $\sum_{k=1}^{n} m(A_k) = m(\bigcup_{k=1}^{n} A_k) \leq m(\bigcup_{k=1}^{n} A_k) \text{ e quindi per } n \to \infty$

$$\sum_{k=1}^{\infty} m(A_k) \neq m(\bigcup_{k=1}^{\infty} A_k),$$

segue che le $I_0, I_1, \ldots, I_2, \ldots$ devono essere necessariamente <u>finite</u> altrimenti se per esempio I_n è infinita, si potrebbe considerare un suo sottoinsieme nu merabile J e risulterebbe

$$+ \infty = \frac{1}{n+1} (1+1+...) \le \sum_{i \in J} m(A_i) \le m(\bigcup_{i \in J} A_i) < + \infty$$

Si conclude the card I \leq K .

Una dim. analoga si fa se $\,$ m $\,$ è σ -misura e σ -finita

Osservazione (9.3)

Il risultato precednete vale anche se $\mathcal A$ è solo un'algebra ed m è una msira finita strettamente positiva su $\mathcal A$.

Infatti basta sostituire nella dim. 1 a k=1 k=1 k ed A_k A_k

§ 10 - m-ideali, m-filtri. Algebre quozienti.

DEF. Se ${\cal A}$ è un'algebra Booleana m-completa ed ${\cal B}$ è un suo ideale, diremo che è m-completo o m-ideale se

$$\{A_i; i \in I\} c \mathcal{J} e card I \leq m \Longrightarrow \bigcup_{i \in I} A_i \in \mathcal{J}$$

Definizione analoga (la duale) si dà per gli m-filtri.

Esempio. A) $\mathfrak{J} = \{A \subset X; \text{ card } A \leq m\}$ è un m-ideale dell'algebra $\mathfrak{T}(X)$ e $\mathfrak{T} = \{A \subset X; \text{ card}(X - A) < m\}$ è un m-filtro.

DEF. Se \Im è un ideale di $\mathcal A$ posto

A~B \iff A-B \in \Im e B-A \in \Im (\iff A \triangle B \in \Im cfr. §2 prop. 1) risulta ~ una relazione di equivalenza su $\mathcal A$ e l'insieme delle classi di equivalenza $\{[A]; A \in \mathcal A\}$

sarã denotato con $\frac{\mathcal{A}}{\mathcal{I}}$ e chiamato <u>algebra quoziente</u> di \mathcal{A} su \mathcal{I} .

Prop. (10.1) Posto [A] U[B] = [AUB], [A] \cap [B] = [A \cap B], - [A] = [-A] risulta $\frac{A}{3}$ un'algebra Booleana e posto

$$h(A) = [A]$$

h risulta un omomorfismo di A su $\frac{A}{\Im}$ detto <u>omomorfismo naturale</u>. Poiché un omomorfismo trasforma 0 in 0 e l in l si ha [0] e [1] sono lo zero ee l'unità di $\frac{A}{\Im}$.

DEF. Col simbolo $\frac{A}{}$ se $E \in A$ si denota l'insieme $\{A \in A : A \in E\}$. E' un'algebra Booleana, con le stesse $U \in \bigcap$ di A.

DEF. Se \mathcal{F} è un filtro col simbolo $\frac{\mathcal{A}}{\mathcal{F}}$ si deve intendere l'algebra quoziente $\frac{\mathcal{A}}{\mathcal{J}}$ dove \mathcal{J} è l'ideale duale di \mathcal{F} cioé $\mathcal{J} = \{-A; A \in \mathcal{F}\}$

Lemma (10.2) [A] c [B] \iff A - B \in \Im

DIM. [A]c [B] \iff [A-B] = [A] - [B] = [0] \iff A - B \in \Im

cvd.

Teorema (10.3). Se \Im è un m-ideale di una m-algebra A, allora A/\Im è una m-algebra e \forall $\{A_i; i \in I\}$ cA con card $I \leq$ m risulta

(1)
$$\underset{i \in I}{\bigcup} [A_i] = [\underset{i \in I}{\bigcup} A_i] = [\underset{i \in I}{\bigcup} A_i] = [\underset{i \in I}{\bigcap} A_i]$$

DIM.

Poiché U A, ε A, basterà provare la (1) per avere che $\frac{A}{3}$ è una m-algebra.

Sia $A = \bigcup_{i \in I} A_i$. Per provare la (1) basta provare che

a) [A_i] c [A] Vi ϵ I e che

b)
$$[A_i]$$
 $c[A_0]$ $\forall i \in I \Longrightarrow [A]$ $c[A_0]$

Ma per il le m ma (10.2) questo equivale a provare che

a')
$$A_i - A \in \mathcal{I}$$
 $\forall i \in I$

b')
$$A_i - A_0 \in J \quad \forall i \in I \implies A - A_0 \in J$$

Ora la a') è vera in quanto A_i - $A = 0 \in \mathcal{J}$ e la b') è vera perché da $A_i = A_0 \in \mathcal{J}$ $\forall i \in I \implies A - A_c = \bigcup_{i \in I} (A_i - A_0) \in \mathcal{J}$ perché \mathcal{J} è un m-idea le.

Osservazione (10.1). La (1) non vale in generale se card I > m. Però qualche volta il grado di completezza di $\frac{A}{\Im}$ può essere superiore a quello di A e di \Im .

Esempi

B) Sia m una m-misura su una n-algebra \mathcal{A} . Posto $\mathcal{J} = \{A \in \mathcal{A} : m(A) = 0\}$ si ha che \mathcal{J} è un n-ideale, infatti $A \in \mathcal{J}$ e $B \in \mathcal{A} \Longrightarrow B \in \mathcal{J}$ (perché $m(B) \leq m(A) = 0$) ed \mathcal{J} è chiuso rispetto all' $\bigcup_{i \in I} C_i C_i$ con card $I \leq n$, perché $m(\bigcup_{i \in I} A_i) \leq \sum_{i \in I} m(A_i)$ (cfr. NB. Prop. (9.3)).

In particolare se m è una σ -misura su una σ -algebra \mathcal{A} , allora \mathcal{J} è un σ -ideale. Per il T(10.3) $\frac{\mathcal{A}}{\mathcal{J}}$ è anch'essa una σ -algebra. Tuttavia se m è una σ -misura finita (o σ -finita) allora $\frac{\mathcal{A}}{\mathcal{J}}$ è un'algebra completa.

Infatti posto m'([A]) = m(A) $\forall A \in \mathcal{A}$ m' è una σ -misura strettamente positiva su $\frac{\mathcal{A}}{\Im}$, ed è finita (o σ -finita) se lo è m. $\frac{\mathcal{A}}{\Im}$ è quindi completa per la prop. (9.4).

C) Il risultato segnalato in B) vale anche se m è solo una misura finita (non necessariamente σ -misura) su una σ -algebra A.

Infatti vale il seguente:

Teorema (10.4) (Smith e Tarski 1957)

Se $\mathcal A$ è una m-algebra, $\mathcal J$ è un ideale m'-completo \forall m'< m, e $\frac{\mathcal A}{\mathcal J}$

soddisfa la considizione di m-catena, allora $\frac{A}{J}$ è completo (cfr. [1] pag. 76).

Nel nostro caso essendo m solo una misura \mathcal{I} è solo un ideale (non σ -completo, in generale). Definita m' come in B) risulta m' una misura sull' algebra $\frac{\mathcal{A}}{\mathcal{I}}$, finita e strett. positiva. Data la finitezza di m' e la stretta positività, non può esistere un insieme $\{A_i, i \in I\}$ c $\frac{\mathcal{A}}{\mathcal{I}}$ disgiunti con card $I > \frac{\mathcal{A}}{\mathcal{I}}$ (cfr. l'osservazione (9.3)), quindi $\frac{\mathcal{A}}{\mathcal{I}}$ verifica la condizione di σ -catena e quindi per il Teor. (10.4) $\frac{\mathcal{A}}{\mathcal{I}}$ è completa.

D) Ricordiamo che in uno sp. topologico X si dice

A perfetto \iff A = Dr.A; A densorsé \iff A c Dr.A A in nessuna parte denso (o rarefatto) \iff $\widetilde{A} = \emptyset$ (\iff $\widetilde{A'} = X$). Se consideriamo $\mathcal{J}_0 = \{A \subset X : \widetilde{A} = \emptyset\}$, \mathcal{J} è un ideale di $\mathcal{J}(X)$. Infatti è ovvio che se B c A \in $\mathcal{J}_0 \implies$ B \in \mathcal{J}_0 . Osservato che A \in $\mathcal{J}_0 \iff$ $\widetilde{A} \in \mathcal{J}_0$ per provare che \mathcal{J}_0 è chiuso per l'unione, basta provarlo per i chiusi. Siano A e B chiusi e \in \mathcal{J}_0 , allora A U B è un chiuso e se per assurdo $\mathcal{J}_0 \neq \mathcal{J}_0$ aperto c A U B allora questo non può essere contenuto in uno solo dei due, pertanto $\mathcal{J}_0 \neq \emptyset$, è un aperto ed è contenuto in A (contraddizione).

Un celebre esempio di insieme perfetto in nessuna parte denso è l'insieme di Cantor C, che è di misura (di Lebesegue) zero (cfr. [3]' Cap. 6 pag. 5 oppure [7] pag. 85 e seguenti).

Un insieme N c X si dice di <u>prima categoria</u> \iff N = $\prod_{n=1}^{\infty} I_n$ con $\prod_{n=0}^{\infty} I_n = \emptyset$ Posto $J_1 = \{ N \subseteq X : N \ di 1^a \ categoria \}$ risulta $J_0 \subset J_1 = J_1 \ e$ un σ -ideale di $\mathfrak{P}(X)$.

Sorprendentemente se $X = \mathbb{R}$ e μ è la misura di Lebesgue:

(2) $\exists N c J_1$ tale che $\not L(-N) = 0$ ed $\exists R = N U (-N)$ cioé $\exists R \in L$ unione di un insieme di L categoria ed uno di misura nulla.

Sia $Q = \{q_1, q_2, \dots\}$ e sia $I_{n,m}$ l'intervallo aperto di centro q_n ed ampiezza $\frac{1}{2^{n+m}}$. Posto $G_m = \bigcup_{m=1}^{M} I_{n,m}$ risulta G_m aperto, $G_1 \supset G_2 \supset \dots \supset Q$, e $\mu(G_m) \leq \frac{1}{2^m}$. Pertanto se $G = \bigcap_{m=1}^{\infty} G_m$ risulta $\mu(G) = 0$.

Basta ora porre N = -G per avere l'asserto, essendo $N = \bigcup_{m=1}^{\infty} (-G_m)$ e $\overline{-G_m} = \overline{-G_m} = \overline{-G_m} = \overline{-G_m} = \overline{-R} = \emptyset$.

Ricordiamo ancora che la classe $\ \, \mathbb{B} \,$ degli <u>insiemi di Borel</u> è il più piccolo σ -campo contenente tutti gli aperti di $\ \, \mathbb{X} \,$, e che $\ \, \mathbf{A} \,$ $\ \, \mathbf{c} \,$ $\ \, \mathbb{X} \,$ si dice che ha la <u>proprietà di Baire</u> se $\ \, \mathbf{B} \,$ $\ \, \mathbf{G} \,$ aperto di $\ \, \mathbf{X} \,$ tale che $\ \, \mathbf{A} \,$ $\ \, \mathbf{A} \,$ $\ \, \mathbf{G} \,$

Denotiamo con \mathfrak{B}_1 la classe di quest'ult'ultimi insiemi:

 $\underline{\mathbb{B}}_1$ <u>è un σ -campo</u>. Infatti se $A \in \underline{\mathbb{B}}_1$ e G è un aperto tale che $A \triangle G \in \underline{\mathbb{J}}_1$, basta osservare che $-\bar{G}$ è aperto e risulta

(*) $(-A) - (-\bar{G}) = \bar{G} - A = (\partial G \cup G) - A \subset \partial G \cup G - A \in \mathcal{I}_1$ perché $G - A \in \mathcal{I}_1$ e $\partial \bar{G} = \partial \bar{G} = \bar{G} \cap -\bar{G} = \bar{G} \cap -\bar{G} = \bar{G} - \bar{G} = \bar{G}$ (Gè aperto) = $G - \bar{G} = \emptyset$.

La (*) insieme alla $-\bar{G}$ - (-A) = A - \bar{G} c A - G c \mathcal{J}_1 , portano che - A $\in \mathbb{B}_1$.

Se por $A_n \in \mathcal{B}_1$ per $n=1,2,\ldots$ e se G_n è un aperto tale che $A_n \triangle G_n \in \mathcal{J}_1$, posto $G=\bigcup_{n=1}^\infty G_n$ ed $A=\bigcup_{n=1}^\infty A_n$, risulta

A-G c $\bigcup_{n=1}^{\infty} (A_n - G_n) \in \mathcal{I}_1$; G - A c $\bigcup_{n=1}^{\infty} (G_n - A_n) \in \mathcal{I}_1$ e quindi

$$A \triangle G \in \mathcal{G}_1$$
 e $A \in \mathcal{B}_1$.

Poiché se G è un aperto, evidentemente G $\varepsilon \, \mathbb{B}_1$ segue che

Se denotiamo con $\mathcal{I}=\mathcal{B}\cap\mathcal{I}_1$, per cui \mathcal{I} è un σ -ideale del σ -campo \mathcal{B} , risulta \mathcal{B}/\mathcal{J} una σ -algebra per il teorema (10.3), ma facciamo vedere che è addirittura un'algebra Booleana completa (discorso analogo si può fare per \mathcal{B}_1).

Se B \in \mathfrak{B} , allora (tenuto presente che B \in \mathfrak{B}_1) G aperto tale che B Δ G \in \mathfrak{S} , o equivalentemente B è della forma B = (G-A₁) U A₂ con A₁,A₂ \in \mathfrak{I} .

Pertanto [B] = [G] e quindi

$$\mathbb{B}/\mathfrak{J} = \{[G] ; G \text{ aperto in } X\}.$$

Consideriamo $A_t' = [G_t]$, con G_t aperto, per $t \in T$ e T arbitrario.

/eremo che $U_t \cap A_t' \in \mathcal{B}/\mathcal{G}$. Sia $G = U_t \cap G_t$ (unione insiemistica) e poniamo A' = [G]. Faremo vedere che A' è l'unione Booleana delle A_t' . Per la a') e b') del teorema (10.3) basterà far vedere che:

a')
$$G_t - G \in J$$
 $\forall t \in T$

b')
$$A_0 \in \mathbb{B} \ e \ G_t - A_0 \in \mathbb{J} \ \forall \ t \in T \Longrightarrow G - A_0 \in \mathbb{J}.$$

La a') è ovvia in quanto $G_{t} \leftarrow G = \emptyset$.

Sia ora $A_0 \in \mathbb{B}$ e $G_t - A_0 \in \mathbb{J}$ ¥ t \in T, poiché $G_t - A_0 = (G - A_0) \cap G_t$ risulta $G_t - A_0$ aperto in $G - A_0$, allora $G - A_0$ risultando unione di aperti (in $G - A_0$) di prima categoria è di prima categoria (cfr. per es. [6] pag. 201), cioé $G - A_0 \in \mathbb{J}$.

Osserviamo che in prativa si è provato che

(4)
$$U_{t \in T} [G_t] = [U_{t \in T} G_t]$$

ma questo non vuol dire che la (4) vale \forall At \in B (t \in T), infatti $\{x_t\}$ \in B ma non è detto che sia

Dalla (4) passando ai complementari si ha se F_t sono chiusi:

(4')
$$\bigcap_{t \in T} [F_t] = [\bigcap_{t \in T} F_t].$$

Osservazione (10.2). Abbiamo visto (cfr. Osserv. (9.0)) che se A ed A' sono isomorfe ed A è m-completa (completa) allora tale è anche A', però se due algebre sono complete non è affatto detto che siano isomorfe. Si veda a proposito il seguente esempio.

Esempio E). Sia \mathcal{B} la σ -algebra dei Boreliani di \mathbb{R} , μ la misura di Lebesgue su \mathbb{R} , $\mathfrak{I}_0 = \{A \in \mathbb{B} : \mu(A) = 0\}$ $\mathfrak{I}_1 = \{A \in \mathbb{B}; A \text{ di } 1^a \text{ categoria}\}$. Le algebre Booleane $\mathcal{A}_0 = \mathbb{B}/\mathfrak{I}_0$ ed $\mathcal{A}_1 = \mathbb{B}/\mathfrak{I}_1$ sono entrambe complete, per quanto visto negli esempi B) e D), ma non sono isomorfe.

Premettiamo il seguente risultato:

<u>Lemma</u> (10.5)

Se \mathcal{A} ed \mathcal{A}' sono σ -algebre, $h:\mathcal{A}\to\mathcal{A}'$ è un isomorfismo surgettivo, $m':\mathcal{A}'\to [0,+\infty]$ è una σ -misura, σ -finita e non identicamente nulla, allora posto $\forall A\in\mathcal{A}$

$$m(A) = m'(h(A))$$

m è una σ -misura, σ -finita e non identicamente nulla. (Basta tenere presente la prop. 6 del §3 e la (4) del §8).

Supponiamo quindi che siano \mathcal{A}_0 ed \mathcal{A}_1 isomorfe e sia $h:\mathcal{A}_1\to\mathcal{A}_0$ un isomorfismo. Su \mathcal{A}_0 , μ induce una σ -misura, σ -finita e non identicamente nulla, ponendo

$$m(A) = \mu(A)$$
 $\forall A \in B$

Tale misura è strettamente positiva. Posto $\forall A' \in \mathcal{A}_1$

$$m'(A') = m(h(A'))$$

risulta che m' ha le stesse proprietà di m per il Lemma (10.5) m' induce a sua volta su B una σ-finita , σ-misura ν ponendo

$$\nu(A) = m'([A]_1) \quad \forall A \in \mathcal{B}$$
.

Tale misura sarà nulla su \mathcal{I}_1 . Per il Teorema di Teoria della misura (cfr. [1] pag. 77), analogo ad riultato (2), $\mathcal{I}_0 \in \mathcal{B}$ con $\mathcal{V}(A_0) = 0$ ed $\mathcal{I}_1 \in \mathcal{I}_1 \in \mathcal{I}_1$ \Rightarrow ' $\mathbb{R}_0 \in \mathcal{I}_1$; ma questo porta che \mathcal{V}_0 e poi m' ed m sono identicamente nulle (assurdo).

§11. - m-omomorfismi, atomi, ed interpretazione negli spazi di Stone.

DEF. Siano \mathcal{A} ed \mathcal{A}' due algebre Booleane ed $h:\mathcal{A}\to\mathcal{A}'$ un omomorfismo. Supponiamo che esistano:

(1)
$$A = \underset{t \in T}{U^{A}} A_{t}$$
 e $\underset{t \in T}{U^{A'}} h(A_{t})$ (2)

Da A_t c A segue che $h(A_t)$ c h(A) e quindi $\bigcup_{t \in T} A^t$ $h(A_t)$ c h(A).

Prbene diremo che l'<u>omomorfismo</u> h <u>preserva l'unione Boolena</u> (1) se esiste la (2) e risulta:

(3)
$$h(A) = \bigcup_{t \in T} A' h(A_t) .$$

Analogamente si definisce un omomorfismo che preserva l'intersezione

Diremo che h è un m-omomorfismo se preserva tutte le unioni (1) (e quindi tutte le intersezioni), con card T < m.

L'omomorfismo h si dice poi <u>completo</u> se è un m-omomorfismo ∀m.

Le definizioni appena date confrontate con la (4) del § 8, precisamente se h è un isomorfismo surgettivo allora è completo.

DEF. 2. $0 \neq a \in A$ si dice atomo di A se non eiste $B \in A - \{0,a\}$ con $B \in A$.

Un'algebra A si dice atomica $\iff \forall A \in A - \{0\}$ un atomo $a \in A$.

La nozione di atomo per un'algebra Booleana è l'analoga di quella di insieme ridotto ad un sol punto (singoletto) per un campo.

Si vede facilmente che

(4) (a atomo di A) \iff $\beta_a = \{A \in A : a \in A\}$ è un ultrafiltro.

PROP. (11.1). Sia A un'algebra Booleana e poniamo ∀A ∈ A

 $h(A) = \{ a \in A : a \text{ atomo di } A \text{ e a c } A \}.$

Allora h è un omomorfismo completo di $\mathcal A$ nel campo $\mathcal S(X)$ dove X=h(1) è l'insieme di tutti gli atomi di $\mathcal A$. Se $\mathcal A$ è atomi ω allora h è un isomorfismo.

Se h è un isomorfismo di ${\cal A}$ sul campo $\stackrel{\star}{{\cal A}}^{\star}$ dei clopen dello spazio di Stone X di ${\cal A}$ allora

- a atomo di A ←→ h(a) è un singoletto di X
- a atomo di A e h(a) $\in A^* \iff$ h(a) è un punto isolato di X
- A atomica \iff Y = { x \in X : x isolato}, $\stackrel{\uparrow}{Y}$ = X

A priva di atomi ←⇒ X è denso in sé, cioé non ha punti isolati.

Evidentemente ogni algebra Booleana finita è atomica ed ha 2^n elementi se n è il numero degli atomi.

DEF. 3. - Sia X uno spazio topologico, C c X, diremo che C è un m-chiuso $(\underline{m-aperto}) \iff C = \bigcap_{t \in T} A_t \begin{pmatrix} U & A_t \end{pmatrix}$ con A_t clopen e card $T \leq m$.

DEF. 4 - Se X è uno spazio topologico totalmente sconnesso diremo che è estremamente sconnesso \iff \forall A aperto : \vec{A} aperto (\iff \forall C chiuso \vec{C} $\acute{\epsilon}$ chiuso).

Orbene si ha il seguente

Teorema (11.2). Se A è un'algebra Booleana ed Xéil suo spazio di Stone si ha:

- a) A m-completa \iff $\forall A$ m-aperto di $X: \bar{A}$ è aperto \Leftrightarrow $\forall C$ m-chiuso di $X: \bar{C}$ è chiuso
- b) A completa \iff X è estremamente sconnesso (cfr. [1] pag.85-86).

Col teorema di rappresentazione si è visto che ogni algebra Booleana è isomorfa ad un campo d'insiemi A^* . Se A è una m-algebra, anche A^* è una m-algebra, ma in generale non è un m-campo (cfr. Osserv. (9.1) ed esempi A ecc.).

Ma addirittura è possibile provare che ∀ cardinale infinito(m esistono algebre che non sono isomorfe ad alcun m-campo (cfr. [1] pag. 97).

Dal teorema di rappresentazione segue il seguente

Teorema (11.3). Se A è una m-algebra allora le seguenti condizioni sono equivalenti:

- 1) A è isomorfa ad un m-campo d'insiemi
- 2) $\forall A \in A \{0\}$ \exists un m-ultrafiltro $\beta \Rightarrow A \in \beta$
- 3) $\forall A \in A \{1\}$ \exists un m-ideale massimale \Im \ni ' $A \in \Im$
- 4) $\forall A \in A \{0\}$ \exists una m-misura a 2 valori m \Rightarrow m(A) = 1
- 5) $\forall A \in A \{0\}$ \exists un \exists un \exists h(A) = 1 (\in A) (cfr. L11 pag. 98).

Teorema (11.4)

 $\mathcal A$ algebra Booleana completa è isomorfa ad un campo completo d'insiemi $\Longleftrightarrow \mathcal A$ è atomica.

In tal caso $\mathcal A$ è isomorfa a $\mathfrak S(\mathsf X)$ dove $\mathsf X$ è l'insieme degli atomi di $\mathcal A$.

(cfr. [1] pag. 105).

Teorema (11.5)

Per ogni σ -algebra $\mathcal A$ esiste un σ -campo $\mathcal F$ ed un σ -ideale $\mathcal F$ tale che $\mathcal A$ è isomorfa ad $\mathcal F/\mathcal F$.

Precisamente

Se X è lo spazio di Stone di A, sia \mathcal{F} il più piccolo σ -campo contenente A^* (l'insieme dei clopen di X), $\mathcal{I} = \{B \in \mathcal{F} : B \text{ di } 1^a \text{ categoria}\}$ (è un σ -ideale). Allora A è isomorfa ad $\mathcal{F}/_{\mathcal{I}}$ e precisamente se $h: A \Rightarrow A^*$ è un isomorfismo surgettivo, allora

$$\tilde{h}(A) = [h(A)]_{\mathfrak{I}}$$
 $\forall A \in \mathcal{A}$

è un isomorfismo di \mathcal{A} su $\mathcal{F}/_{\mathfrak{J}}$. (Per la dim. cfr. [1] pag. 117).

Il teorema precedente non vale per $m > \frac{1}{5}$.

§ 12 - Applicazioni alla teoria della misura.

Data una misura μ su un campo \mathcal{F} (cfr. §2 -c) non è sempre possibile esten derla ad una σ -misura μ' sul σ -campo \mathcal{F}' σ -generato da $\mathcal{F}(\mathcal{F}'$ è il più piccolo σ -campo contenente \mathcal{F}).

La condizione necessaria e sufficiente che permette tale estensione è la seguente:

(1)
$$\forall \{A_n; n \in \mathbb{N}\} \in \mathcal{F}$$
 disgiunti, se $\prod_{n=1}^{\infty} A_n \in \mathcal{F}$ allora

$$\mu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \sum_{n=1}^{\infty} \mu(A_n) .$$

Ricordato che se $\mathcal F$ è un campo perfetto, ogni unione numerabile di elementi non vuoti e disgiunti di $\mathcal F$, non appartiene ad $\mathcal F$ (cfr. Prop. 15, \S 6), si ha:

Prop. (12.1). Ogni misura su un campo perfetto, può essere estesa ad una σ-misura.

D'altro canto ogni campo \mathcal{F} di sottoinsiemi di X è isomorfo ad un campo perfetto d'insiemi \mathcal{F} ', ottenuto aggiungendo ad X qualche punto (cfr. § 7 Esempio 6). Se $h:\mathcal{F}\to\mathcal{F}$ ' è l'isomorfismo (su) e si pone

$$\mu'(h(A)) = \mu(A) \qquad \forall A \in \mathcal{J}_{H}$$

allora μ' è una misura su \mathfrak{F}' che verifica la (1) e quindi è una σ -misura.

In particolare si può considerare come \mathcal{F}' il campo \mathcal{F}' dei clopen dello spazio di Stone $[\mathcal{F}]$ di \mathcal{F}' e in tal caso scriveremo in luogo della (2):

(2)'
$$\mu^{\star}(A^{\star}) = \mu(A) \qquad \forall A \in \mathcal{F}.$$

C'è un altro modo per ottenere μ' (σ -misura) da μ senza passare attraver so l'isomorfismo h, occorre però che μ sia <u>finita</u>.

Sia $\mathcal{J} = \{ A \in \mathcal{F} : \mu(A) = 0 \}$, consideriamo $\mathcal{A} = \mathcal{F} / \mathcal{J}$ e definiamo

(3)
$$\overline{\mathcal{L}}([A]_{\mathcal{J}}) = \mathcal{L}(A) \qquad \forall A \in \mathcal{F}.$$

risulta una misura finita e strettamente positiva sull'algebra Booleana \mathcal{A} , ed induce una metrica su \mathcal{A} , ponendo

(4)
$$\rho(A,B) = \overline{\mu}(A-B) + \overline{\mu}(B-A) = \overline{\mu}(A \triangle B) \qquad \forall A,B \in A.$$

 (A, ϵ) è uno spazio metrico, in generale non completo.

Se chiamiano \mathcal{A}' il completamento (Cantoriano) di \mathcal{A} , risulta $\tilde{\mathcal{A}} = \mathcal{A}'$. Poiché risulta che (4)

$$(5) \qquad |\bar{\mu}(A) - \bar{\mu}(B)| \leq \gamma(A,B)$$

la $\bar{\mu}$ è continua su A e quindi può essere estesa ad una funzione reale e continua $\bar{\mu}$ ' su A'. Estendendo le operazioni Booleane di A su A', A' diventa una σ -algebra Booleana ed $\bar{\mu}$ ' è una σ -misura strettamente positiva su A', isomorfa alla μ ' definita dalle (2), nel senso che Ξ h'

isomorfismo di F' su A' tale che

Un'altra interessante applicazione è l'interpretazione delle funzioni misurabili nello spazio di Stone.

DEF. Sia \mathcal{F} un σ -campo di sottoinsiemi di X ed $f:X\to\overline{\mathbb{R}}$.

Si dice che f è \Im -misurabile \iff \forall a e \mathbb{R} : $\{x \in X : f(x) < a\} \in \Im$. Nel seguito scriveremo semplicemente $\{f < a\}$ in luogo di $\{x \in X : f(x) < a\}$. Molto spesso conviene identificare funzioni misurabili modulo un σ -ideale \Im di \Im . Precisamente diremo che due funzioni f_1, f_2 \Im -misurabili sono \Im -equivalenti $\iff \{x \in X : f_1(x) \neq f_2(x)\} \in \Im$ (Nella teoria della misura si identificano le funzioni misurabili, diverse solo su un insieme di misura nulla).

Denotiamo con $\mathcal{M} = \mathcal{M}(X,A)$ llinsieme delle funzioni <u>reali</u> A-misurabili, dove A è un σ -campo di sottoinsiemi di X. Consideriamo lo spazio di Stone [A] di A e sia $h: A \to A$ l'isomorfismo introdotto nel Teorema 16 del § 7, di cui conserviamo le notazioni.

Se $f \in M$ allora per definizione

Se $\beta \in [A]$ allora $\forall a \in \mathbb{R}$, risultando $\{f < a\} \in A$, deve essere $\{f < a\} \in \beta$ oppure $-\{f < a\} = \{f \ge a\} \in \beta$ il che porta che definito

$$\mathbb{R}_{1} = \{ a \in \mathbb{R} : \{ f \geq a \} \in \beta \}$$

$$\mathbb{R}_{2} = \{ a \in \mathbb{R} : \{ f < a \} \in \beta \}$$

risulta $(\mathbb{R}_1, \mathbb{R}_2)$ una partizione di \mathbb{R} . Osservato che

$$\begin{array}{lll} a < b \implies \{f \geq b\} & c & \{f \geq a\} \\ a < b \implies \{f < a\} & c & \{f < b\} \end{array} & (b \in \mathbb{R}_1 \Longrightarrow)]-\infty , b] & c & \mathbb{R}_1 \end{array})$$

si ha che $(\mathbb{R}_1,\mathbb{R}_2)$ costituisce una coppia di insiemi separati e quindi contigui. Se chiamiamo con ℓ l'elemento separatore risulta

(8)
$$\sup \mathbb{R}_1 = \ell = \inf \mathbb{R}_2.$$

Orbene definiamo

(9)
$$f^*(p) = \ell \quad \forall p \in [A].$$

Ricordiamo che se ϕ è un filtro di $\mathcal A$ ed $f:X\to\mathbb R$ si definisce (cfr. ad esempio [2])

minlim
$$f = \sup_{\varphi} \inf_{A \in \varphi} f(A) = \ell'$$

maxlim
$$f = \inf \sup_{A \in \varphi} f(A) = \ell''$$

Risulta

(11)
$$\inf f(X) < \ell' \le \ell'' < \sup f(X)$$

se accade che $\ell' = \ell''$ allora si definisce

(12)
$$\lim_{\varphi} f = \ell' = \ell''$$

Orbene proviamo che, con le notazioni introdotte, si ha

Proposizione (12.2)

(13)
$$f^*(\beta) = \lim_{\beta} f \qquad \forall \beta \in [A]$$

DIM .

Essendo $f^*(\beta)$ l'elemento separatore di \mathbb{R}_1 ed \mathbb{R}_2 , fissato $\varepsilon > 0$

Risulta $A = \{ f \ge a \} \in \beta$, $B = \{ f < b \} \in \beta$.

Pertanto $\exists A, B \in \beta$ \Rightarrow ' $a \leq \inf f(A)$ ' e sup $f(B) \leq b$ e poi

$$\sup f(B) - \inf(A) \le b - a < \varepsilon$$

cvd

Ci proponiamo di provare che l'applicazione $f^*: [A] \to \mathbb{R}$ è continua. A tal fine è utilissimo il seguente

Lemma (12.3)

Va ∈ IR risulta

(14)
$$\{f^* < a\} \quad c \quad \{f < a\}^* \quad c \quad \{f^* \leq a\}$$

$$\{f^* > a\} \quad c \quad \{f \geq a\}^* \quad c \quad \{f^* \geq a\}$$
(15)
$$\{f^* < a\} = \bigcup_{b \leq a} \{f < b\}^* \quad (= -\{f^* \geq a\})$$

 $\{f^* > a\} = \bigcup_{b > a} \{f \ge b\}^*$

DIM.

$$\beta \in \{f^* < a\} \iff f^*(\beta) < a \implies a \in \mathbb{R}_2 \iff \{f < a\} \in \beta \iff \beta \in \{f < a\}^*$$

viceversa

$$\beta \in \{f < a\}^* \iff \{f < a\} \in \beta \iff a \in \mathbb{R}_2 \iff f^*(\beta) \leq a \iff \beta \in \{f^* \leq a\}$$

Per provare la (15) basta osservare che

$$f^*(\beta) < a \iff \exists b \quad \exists ' \quad f^*(\beta) \leq b < a \iff \exists b < a \quad \exists ' \quad b \in \mathbb{R}_2$$
 $\iff \exists b < a \quad \exists ' \quad f \in b \iff \Leftrightarrow b \iff b \in \mathbb{R}_2$

Analogamente si provano le altre.

cvd

Proposizione (12.4)

f definita dalla (13) se fe \mathfrak{M} , è continua.

DIM.

Basta fare vedere che $f^{*-1}(]a,b[)$ è un aperto $\forall a,b \in \mathbb{R}$ con a < b.

 $f^{*-1}(]a,b[) = \{f^* > a\} \bigcap \{f^* < b\}$, quindi per la (15) del Lemma (12.3), poiché per ogni $C \in \mathbb{R}$ risulta $\{f < c\}$, $\{f \ge c\}$ \in A e quindi $\{f \ge c\}^*$ e $\{f < c\}^*$ sono i clopen (ϵA^*) di [A], risulta $\{f^* < b\}$ un aperto di [A] e lo stesso vale per $\{f^* > a\}$ (si ricordi che A^* è base per la topologia su [A] cfr. osserv.5§ 7).

Denotiamo con C(fAJ) l'insieme delle funzioni reali continue su fAJ. L'isomorfismo h di A su A^* , come si è visto induce l'applicazione $h_1: \mathcal{M}(X,A) \to C(fAJ)$ \ni' $h_1(f) = f^*$.

Osserviamo che ∀x ∈ X risulta

(16)
$$f^*(\beta_x) = f(x)$$
.

Infatti detto $l = \lim_{\beta_{\mathbf{x}}} f$, per definizione

$$\forall \ \epsilon > 0$$
 $\exists \ A \in \ \rho_{\times}$ $\exists' \ \forall y \in A : |f(y) - 1| < \epsilon$.

Poiché $x \in A$ $\forall A \in \beta_X$ deversiultare $|f(x) - 1| < \epsilon \quad \forall \epsilon > 0$ e quindi f(x) = 1.

Dalla (16) segue subito che

PROPOSIZIONE (12.5)

 h_1 è una bigezione la cui inversa $h_1^{-1}:C(EA3)\to M$, $g\to \widetilde{g}$ è definita da $\widetilde{g}(x)=g(SX)$ $\forall x\in X$.

DIM

La h_1 è ingettiva in quanto se $f^* = g^*$ deve anche essere $f^*(\beta_X) = g^*(\beta_X)$ $\forall x \in X$, cioé f = g per la (16).

La h_1 è surgettiva, infatti se $g \in C(fA]$, posto $\widetilde{g}(x) = g(\beta_X)$ $\forall x \in X$, si prova che $\widetilde{g}: X \to \mathbb{R}$ è misurabile. A tale scopo proviamo a parte il seguente

Lemma (12.6)

 $\forall a,b \in \mathbb{R}$ con a < b $\exists A \in A$ tale che

(17)
$$\left\{ \tilde{g} \geq b \right\} c A c \left\{ \tilde{g} > a \right\}$$

DIM.

Se $\tilde{g}(x) \ge b > a$ allora $g(f_X) \ge b > a \implies f_X \in \{g \ge b\} \subset \{g > a\}$.

Essendo g continua risulta $\{g \ge b\}$ chiuso e $\{g > a\}$ aperto in [A] e quindi (cfr. Teorema 16 §7 e Teorema 13 §6) $\exists \{A_i; i \in I\}$ c $A \ni \exists \{A_i; i \in I\}$

$$\{g \ge b\}$$
 c $\{g > a\} = \bigcup_{i \in I} A_i^*$.

Per la compatezza di [A] e quindi di $\{g \ge b\}$ \exists J finito c I tale che

$$\{g \ge b\}$$
 c $\bigcup_{i \in J} A_i^*$ c $\{g > a\}$.

Risulta, posto $A = \bigcup_{i \in J} A_i$, $A \in A$

$$\{g \ge b\} \ c \ A^* \ c \ \{g > a\}.$$

Da qui segue la (17) infatti

$$\begin{split} \widetilde{g}(x) \geq b & \Longrightarrow \beta_{\mathbf{x}} \varepsilon \{ g \geq b \} \quad \Longrightarrow \quad \beta_{\mathbf{x}} \varepsilon \ A^{\star} \implies A \ \varepsilon \ \beta_{\mathbf{x}} \implies x \ \varepsilon \ A \ ; \\ x \ \varepsilon \ A & \Longrightarrow A \ \varepsilon \ \beta_{\mathbf{x}} \implies \beta_{\mathbf{x}} \varepsilon \ A^{\star} \implies g(\beta_{\mathbf{x}}) > a \implies \widetilde{g}(x) > a. \end{split}$$

cvd

Continuazione della dim. della Prop. (12.5)

Dal Lemma (12.6) segue che $\forall a \in \mathbb{R}$ $\forall n \in \mathbb{N}$ $\exists A_n \in \mathcal{A} \Rightarrow$

$$\{\widetilde{\mathbf{y}} \geq a + \frac{1}{n}\} \subset A_n \subset \{\widetilde{g} > a\}$$

e poiché $\prod_{n=1}^{\infty} \{\widetilde{g} \geq a + \frac{1}{n}\} = \{\widetilde{g} > a\}$ segue che $\prod_{n=1}^{\infty} A_n = \{\widetilde{g} > a\}$ il che prova : $\{\widetilde{g} < a\} \in \mathcal{A}$.

Corollario (12.7)

 $\forall g \in C([A]) \text{ risulta } \overline{g(X)} = g([A]) \text{ che è un compatto.}$

DIM.

Essendo [A] compatto, tale è anche $g(\ell A]$). Ricordato che $\{\beta_X; x \in X\}$ è denso in [A] segue

$$\overline{\widetilde{g}(X)} = \{g(S_X); X \in X\} = g(S_X)$$

(Si ricordi che per le funzioni continue $g(\bar{A})$ c $\overline{g(A)}$)

Osservazione (12.1)

Da quanto detto segue che la funzione f:X \mathbb{R} A-misurabili (dove A è una σ -algebra) corrispondono (mediante una bigezione) alle funzioni $f^*:[A]\to\mathbb{R}$ continue. Poiché se si considerano $f^*:[A]\to\mathbb{R}$ allora $f^*([A])$ è limitato, per quanto detto nel Corollario (12.7) si ha che queste funzioni corrispondono (nella bigezione precedente) alle funzioni A-misurabili e limitate.

Osservazione (12.2)

Nel caso in cui \mathcal{A} è <u>solo</u> un'algebrae non una σ -algebra, allora la definizione di funzione \mathcal{A} -misurabile data, non è più soddisfacente. In topologia non è più vero che:

(18)
$$(\forall a \in \mathbb{R} : \{f < a\} \in A) \iff (\forall B \text{ Boreliano di } \mathbb{R} : f^{-1}(B) \in A).$$

Anche se si dà come definizione la proposizione a destra della (18), non si registra un notevole miglioramento. In particolare la classe delle funzioni A-misurabili potrebbe essere molto esigua, come mostrano i seguenti esempi.

ESEMPIO (12.1). Sia X un insieme infinito ed A l'algebra dei suoi sottoinsiemi finiti o cofiniti. Orbene se si usa la definizione

 $f:X\to\mathbb{R}$ A-misurabile $\langle = \rangle$ $\forall B$ Boreliano di $\mathbb{R}:f^{-1}(B)\in\mathcal{A}$ si ottiene che

$$f \in M \longrightarrow f(X)$$
 è finito.

Infatti supposto $f \in \mathcal{M}$, se per assurdo il codominio f(X) è infinito, allora possiamo trovare due suoi sottoinsiemi numerabili e disgiunti $A \in B$. Poiché $A \in B$ sono Boreliani (perché numerabili) di \mathbb{R} , deve essere $f^{-1}(A)$, $f^{-1}(B) \in \mathcal{A}$. Necessariamente $f^{-1}(A) \in f^{-1}(B)$ sono cofiniti, ma ciò è assurdo in quanto da $A \in \mathbb{R}$ -B segue che $f^{-1}(A) \in f^{-1}(B)$ (il 1° è infinito, mentre il 2° è finito).

ESEMPIO (12.2). Sia $X = \mathbb{R}$ e sia A l'algebra generata dagli intervalli di \mathbb{R} limitati o non, cioé

$$A \in A \iff A = \bigcup_{k=1}^{n} I_k \quad \text{con } I_h \cap I_k = \emptyset \quad e \quad I_k \quad \text{intervallo d; } \mathbb{R}$$

(è l'algebra dei plurintervalli finiti di R). Orbene si prova che

 $f: \mathbb{R} \rightarrow \mathbb{R}$ A-misurabile \Longrightarrow $f(\mathbb{R})$ è al più numerabile.

Osservazione (12.3)

Se (X,Z) è uno spazio topologico, qual'è la più piccola \(\sigma\)-algebra \(\mathcal{A}\) che rende \(\mathcal{A}\)-misurabil\(\bar{e}\) tutte le funzioni reali continue, cio\(\hat{e}\) tale che

(19)
$$C(X; \mathbb{R}) \subset \mathfrak{M}(X, \mathbb{A})?.$$

Poiché se $f: X \mathbb{R}$ è continua , $\forall A$ aperto di \mathbb{R} e $\forall C$ chiuso di \mathbb{R} , risulta $f^{-1}(A)$ aperto di X ed $f^{-1}(C)$ chiuso di X, sicuramente la σ -algebra $\exists B$ di Borel (di X) verifica la (19), ma non è la più piccola possibile.

La σ -algebra in oggetto è quella generata dai clopen di X e prende il nome di σ -algebra degli insiemi di Baire.

Se la denotiamo con \mathbb{B} risulta \mathbb{B} c B.

Osservazione (12.4)

Le considerazioni precedenti suggeriscono di definire le funzioni reali A-misurabili, nel caso in cui A sia solo un'algebra, come le funzioni corrispon

denti a C([A]) mediante l'applicazione definita da

$$\tilde{g}(x) = g(\int_{X}^{5})$$
 $\forall x \in X$ $\forall g \in C([A])$.

In tal caso tali funzioni godono delle proprietà (17) del Lemma (12.6). Viceversa se $f: X \to \mathbb{R}$ è una funzione che verifica la (17) si può provare che $\forall \beta \in [A]$ $\exists \lim_{\beta} f$ e posto $f^*(\beta) = \lim_{\beta} f$ risulta $f^* \in C([A])$.

Pertanto la (17) può essere assunta come definizione di funzione A-misurabile.

In [8] G. Greco dà una definizione ancora più generale e precisamente, se $A \subset \mathcal{P}(X)$ e $\emptyset \in A$, si dice che

$$f: X \to I\overline{\mathbb{R}}$$
 è A -misurabile $\langle \stackrel{.}{=} \rangle$ $\forall a,b \in \mathbb{R}$ con $b > a \exists A \in \mathcal{A} \ni f$ $\{f > b\}$ c $A \in \{f > a\}$.

Non si richiede cioé neanche che (A sia un'algebra.

Denotato con $\mathfrak{M}^+ = \mathfrak{M}^+(X,A) \cap [0,+\infty]^X$ sempre in [8] si prova il seguente teorema.

Teorema (12.8)

- 1) $f \in M^{\dagger}$ e $a \in [0, +\infty) \Longrightarrow a \cdot f$, $f \wedge a$, $(f \vee a) a \in M^{\dagger}$
- 2) $f \in \mathbb{M}^+, \ \psi : [0,+\infty] \rightarrow [0,+\infty] \ \text{è cont. e crescente e } \psi(0) = 0 => \psi \circ f \in \mathbb{M}^+$
- 3) $f_n \in \mathbb{M}^+$ e $f_n \xrightarrow{n} f$ uniformemente $\Longrightarrow f \in \mathbb{M}^+$.
- 4) Se A è un'algebra (o più semplicemente un anello) allora $f,g \in M^+ \Longrightarrow f \land g, f \lor g, f + g, f \cdot g \in M^+$
- 5) Se _A è una σ-algebra allora

f
$$A$$
-misurabile \iff \forall a $\in \mathbb{R}$: {f $<$ a} \in A

Osservazione (12.5) Se \mathcal{A} è solo un'algebra ed f,g ϵM non è affatto detto che sia f + g ϵM . Infatti se ad esempio \mathcal{A} = { A c \mathbb{N} ; A finito o cofinito}

dire che $f: \mathbb{N}$ \mathbb{R} sia A-misurabile, equivale a dire che $\exists \lim_n f(n) \in \mathbb{R}$ pertanto nel caso in cui $\lim_n f(n) = +\infty$ e $\lim_n g(n) = -\infty$ risultano f, gen, ma non è affatto detto che sia f+g en. Se A è invece una σ -algebra allora M è chiu sa rispetto alla somma.

Un particolare tipo di funzioni A misurabili sono le funzioni A-semplici S = S(X,A) che sono combinazioni lineari di funzioni caratteristiche \mathcal{P}_A con $A \in \mathcal{A}$. Orbene in [8] si prova che ogni funzione A-misurabile è il limite uniforme di funzioni A-semplici.

In altre parole introdotta su \mathbb{M} la metrica (della converg,-uniforme) $d(f,g) = \sup \left\{ |\operatorname{arctg} \ f(x) - \operatorname{arctang} \ (x)| : x \in \mathbb{R} \right\}$ (\mathfrak{M},d) diventa uno spazio metrico ed $\widetilde{S} = \mathbb{M}$.

Denotato con \mathcal{M}_b l'insieme delle funzioni A-misurabili e limitate, quest'insieme è invece un'algebra di funzioni isomorfe all'algebra delle funzioni continue e limitate definite sullo spazio di Stone [A] associato ad A (cfr. Oss. (12.1) (12.4). e [8]).

Tra le tante conseguenze del teorema di rappresentazione di Stone, segnalia mo la seguente proposizione che dà utili informazioni sul codominio di una misura.

Proposizione (12.9) Se μ è una misura sull'algebra A allora detto $R_{\mathcal{C}} = \{\mu(A) : A \in A\}, \text{ risulta che } R_{\mathcal{C}} \quad \text{è il codominio di una σ-misura su una σ-algebra.}$

DIM.

Definita $\mu^*(A^*) = \mu(A)$ $\forall A \in A$, per quanto visto μ^* è una σ -misura sull'algebra A^* (dei clopen di [A]).

Denotata con $\mathcal{A}_{\sigma}^{\star}$ la σ -algebra generata da \mathcal{A}^{\star} , \mathcal{L}^{\star} può essere esteso ad una σ -misura $\widetilde{\mathcal{L}}$ su $\mathcal{A}_{\sigma}^{\star}$. Risulta R $_{\widetilde{\mathcal{L}}}$ chiuso (questo è un risultato valido per le σ -misure su σ -algebre, cfr. [9]) e da R $_{\mathcal{L}^{\star}}$ c R $_{\widetilde{\mathcal{L}}}$ segue che

 $R_{\mathcal{L}^*} \subset R_{\widetilde{\mathcal{E}}}$. Viceversa se a $CR_{\widetilde{\mathcal{E}}} = \exists A \in \mathcal{A}_{\sigma}^*$ tale che $\widetilde{\mathcal{L}}(A) = a$. Ma $A = \bigcup_{n=1}^{\infty} A_n$ con $A_n \in A^*$ opportune e disgiunte e quindi $a = \sum_{n=1}^{\infty} \widetilde{\mathcal{L}}(A_n) = \sum_{n=1}^{\infty} \mathcal{L}^*(A_n) = \lim_{n \to \infty} \sum_{k=1}^{\infty} \mathcal{L}^*(A_k)$, cioé $R_{\mathcal{L}^*} = R_{\widetilde{\mathcal{E}}}$.

L'asserto ora segue dal fatto che R $_{\mathcal{C}}$ = R $_{\mathcal{C}}^{\star}$ cvd.

Osservazione (12.6). In [10] si dà un'altra definizione di funzioni misurabili. Se μ è una misura sull'algebra \mathcal{A} di parti di X, si definisce $\mathcal{F}_{e}: \mathfrak{T}(X) \to \mathbb{R}$ ponendo

$$\mu_{e}(A) = \inf \{ \mu(B); B \supset A \quad e \quad B \in A \}$$

e se f_n , $f \in \mathbb{R}^X$ si dice che $f_n \to f$ se e solo se $\forall \ \epsilon > 0$ $\lim_n \mu_e \{|f_n - f| > \epsilon\} = 0$.

Se S = S(X,A) è al solito l'insieme delle funzioni semplici, si dice che (A,μ) -misurabile se e solo se $\exists \{s_n; n \in \mathbb{N}\} \in S$ tale che $s_n \xrightarrow{\mu} f$.

Questa definizione è ben diversa da quella data precedentemente, in quanto qui interviene anche la misura μ ; è pertanto arduo legare in generale le due definizioni.

Riportiamo qui alcuni esempi tratti da [11], che illustrano la differenza delle due definizioni. Denoteremo con \mathcal{M}_D l'insieme delle funzioni (A, p)-mi surabili.

Esempio 1. Sia A l'algebra generata dagli intervalli contenuti in [0,1]. Le funzioni A-misurabili sono tutte le funzioni $f:[0,1]\to \bar{\mathbb{R}}$ tali che i seguenti limiti esistono in \mathbb{R} :

$$\lim_{X\to 1^-} \lim_{x\to 0^+} f(x) , \lim_{x\to y^+} f(x) , \lim_{x\to y^-} f(x)$$

Se μ è la misura di Peano-Jordan su A una funzione f limitata è (A,μ) -misurabile se e solo se è integrabile secondo Riemann.

Esempio 2.

Se $A = \{A \in \mathbb{N} : A \text{ finito o cofinito}\}\ ed \ f : \mathbb{N} \rightarrow \mathbb{R} \text{ risulta}$

$$f \in M \iff \exists \lim_{n \to \infty} f(n) \in \mathbb{R}$$
.

Se $\mathcal{L}: \mathcal{D}(\mathbb{N}) \to [0,1]$ è la misura definita da $\mathcal{L}(A) = \frac{\sum_{n \in A} \frac{1}{2^n}$ per ogni $A \subseteq \mathbb{N}$, risulta $\mathcal{M}_D = \mathbb{R}^N$ cioé $\mathcal{M} \subset \mathcal{M}_D$.

Citiamo il seguente risultato (cfr. [11]).

Proposizione (12.10) Se μ è una misura sull'algebra $A \subseteq \mathcal{S}(X)$ risulta $\bar{A} = \{H \subseteq X : \forall \ \epsilon > 0 \ \exists \ A, B \in A \ \text{con } A \in H \cap B \ e \ \mu \ (B-A) < \epsilon \}$ un'algebra contenente A.

Si ha

$$f: X \to \mathbb{R}$$
 è (A, r) misurabile \iff f è \bar{A} -misurabile e
$$\lim_{n \to +\infty} r_e \{|f| > n \} = 0.$$

BIBLIOGRAFIA

- [1] R. SIKORSKI Boolean Algebras (1969) Springer
- [2] N. BOURBAKI -- Topologie Générale Cap. 1 Hermann
- [3] B. PINI Primo corso di Analisi Matematica Coop. Libraria Univ. Bologna
- [3]' " " Secondo corso di Analisi Matematica Coop. Libraria Univ. Bologna
- [4] G.F.SIMMONS- Introduction to topology and modern Analysis, Mac Graw -Hill (1963)
- [5] RUSSEL C. WALKER The Stone Čech Compactification Springer (1974)
- [6] JOHN L.KELLEY General Topology Springer (1975)
- [7] B.R.GELBAUM J.M.H. OLMSTED Counterexamples in Analysis Holder Day (1966)

 (esiste anche un'edizione italiana della Mursia)
- [8] G.H.GRECO Sur la mesurabilità d'une fonction numérique par rapport à une famille d'ensembles Rend Sem. Mat. Univ. Padova 65 (1981)
- [9] P.R. HALMOS On the set of values of a finite measure Bull. A.M.S. <u>53</u> (1947) pag. 138-14).
- [10] N.DUNFORD, J.T. SCHWARTZ Linear operators, Parte 1, John Wiley, (1958).
- [11] G.H.GRECO Completezza degli spazi L^p per misure finitamente additive (in corso di stampa) (1982)

FACOLTA' DI SCIENZE
DIPARTIMENTO DI MATEMATICA
N. di inventario 010942/7-