So we have the following

THEOREM 1. For the algebra $S(\cdot, \times)$ the following properties hold

1)
$$S = G_1 \otimes G_2$$
 and $g^2 = 1$ $\forall g \in G_2$.

2)
$$g_1g_2 \times h_1h_2 = g_1h_2$$
 $(g_1,h_1 \in G_1, g_2,h_2 \in G_2).$

Conversely we can prove

THEOREM 2. Let the group $S(\cdot)$ be the direct product of two subgroup G_1 , G_2 such that $g^2=1$ for every $g\in G_2$. A semigroup operation "x" with an idempotent element exists in S such that

$$\forall$$
 a,b,c \in S : $(a \times b)c = ac \times bc$, $c(a \times b) = ca \times c^{-1}b$.

Proof. A few calculations show that the required operation is defined as follows:

$$g_1g_2 \times h_1h_2 = g_1h_2$$
 for every $g_1,h_1 \in G_1$, $g_2,h_2 \in G_2$.

REMARK. Finally we observe that theorems analogous to theorems 1 and 2 can be proved if in place of (α) one has

(
$$\beta$$
) \forall a,b,c \in S : $(a \times b)c = ac \times bc$ $c(a \times b) = c^{-1}a \times cb$

REFERENCES

[S] J. Szép:

On a finite algebra with two operations.

Act.Math.Academiae Scientiarum Hungaricae

Tomus 26 (3-4),(1975),347-348.

Accettato per la pubblicazione su parere favorevole di J. Szép (Università Karl Marx di Budapest)