REMARKS ON SZÉPS'S DECOMPOSITION OF SEMIGROUPS.

R. Scozzafava (Lecce)

J. Szép has given in [3] a disjoint decomposition for an arbitrary semigroup. Let S be a semigroup without non-zero annihilators (every semigroup can be easily reduced to this case): then

(1)
$$S = U_{i=0}^{5} S_{i}$$

holds, where the semigroups $S_i(i=0,1,\ldots,5)$ are mutually disjoint and

$$S_{0} = \{aeS : a \ S \ e \ S \ and \] \ x \ e \ S, \ x \neq 0, \ such \ that \ a \ x = 0\}$$

$$S_{1} = \{aeS : a \ S = S \ and \] \ y \ e \ S, \ y \neq 0, \ such \ that \ ay = 0\},$$

$$S_{2} = \{aeS : a \ e \ S_{0} \ U \ S_{1}, \ a \ S \ e \ S \ and \] \ x_{1}x_{2}eS, \ x_{1} \neq x_{2}, \ such \ that \ ax_{1} = a \ x_{2}\},$$

$$S_{3} = \{aeS : a \ e \ S_{0} \ U \ S_{1}, \ a \ S = S \ and \] \ y_{1}, y_{2} \ e \ S, \ y_{1} \neq y_{2}, \ such \ that \ ay_{1} = ay_{2}\},$$

$$S_{4} = \{aeS : a \ e \ 1_{0}^{3}S_{1} \ and \ a \ S \ e \ S\},$$

$$S_5 = \{a \in S : a \notin \bigcup_{i=0}^{3} S_i and a S = S\}$$
,

It follows that for a finite semigroup S one has

(2)
$$S = S_0 U S_2 U S_5$$
.

The finiteness of S is not a necessary condition for the validity of (2). F. Migliorini and J. Szép [1] proved that the same decomposition holds if S is a <u>regular</u> semigroup without (left) magnifying elements. The next Theorem 1 gives another sufficient condition.

Let S be a <u>completely regular</u> semigroup, i.e. for every a e S there exists x in S such that a = axa (that is, S is regular), and ax = xa. It is well known that S is completely regular if and only if it is a disjoint union of groups,

(3)
$$S = \bigcup_{\alpha \in I} G_{e_{\alpha}}, \qquad G_{e_{\alpha}} G_{e_{\beta}} = \emptyset \qquad (\alpha \neq \beta),$$

where G_{e}_{α} is a maximal subgroup of S, with identity e_{α} .

Theorem 1 - Let S be a completely regular semigroup. Then $S_1 = S_3 = S_4 = \emptyset$.

<u>Proof.</u> We prove that $S_4 = \emptyset$. Assume the contrary: then, given a $\in S_4$, we have a $\in G_{e_{\alpha}}$ for a suitable $\alpha \in I$, and $G_{e_{\alpha}} \neq S$. By the definition of S_4 , the elements of the set a S are all distinct; hence an analogous conclusion holds for the set $e_{\alpha}S$ (otherwise $e_{\alpha}S = e_{\alpha}S'$ would imply a S = a S'). It follows that $e_{\alpha}S = S$ for any $S \in S$ (otherwise $e_{\alpha}S_0 \neq S_0$ would imply $e_{\alpha}e_{\alpha}S_0 \neq e_{\alpha}S_0$, which is impossible), i.e. e_{α} is a left

identity of S; then e_{α} is the identity of $G_{e_{\beta}}$, with $\beta \neq \alpha$ (contradiction).

Now,
$$S_4 = \emptyset$$
 implies $S_1 = S_3 = \emptyset$, by Corollary 1.5 of [1].
Theorem 2 - Given a completely regular semigroup S and its
decomposition $S = S_0 \cup S_2 \cup S_5$, the latter three semigroups are
completely regular.
Proof.: a) For any a $\in S_0$ there is an $\alpha \in I$ such that a $\in G_e$:
we show that $G_e \subseteq S_0$ (it will easily follow that S_0 is a disjoint
union of groups). Let $b \neq 0$ such that $ab = 0$ (recall the definition
of S_0): then $G_e ab = G_e b = 0$, i.e. $G_e \subseteq S_0$.
b) Let aeS_2 : then $a \in G_e$ for a suitable $\alpha \in I$. The
definition of S_2 gives $ab_1 = ab_2$, with $b_1 \neq 0$, $b_2 \neq 0$, $b_1 \neq b_2$,
and it follows that $g b_1 = g b_2$ for any $g \in G_e$, and so $g \in S_2$.
() Let aeS_5 and $a \in G_e$: then $a S = S$ and $e_S = S$.
It follows $g S = S$ for any $g \in G_e^{\alpha}$, and, since $S_1 = S_3 = \emptyset$, we
have $G_e \subseteq S_5$.

<u>Corollary 1</u> - If S is a completely regular semigroup, then the conclusions of Theorem 2.1 and Corollary 2.2 of [1] hold without the assumptions concerning the magnifying elements.

Let us now apply Szép's decomposition to the case of a nearly right

simple (n.r.s.) semigroup: for its definition, cfr.[2]. It can be

characterized as a semigroup which is the disjoint union of its prin-

ideals. But we may also consider decom

- 5 -

cipal right ideals. But we may also consider decomposition (1) in this case.

<u>Theorem 3</u> - Let S be a n.r.s. semigroup (without non-zero annihilators), which is <u>not</u> right simple.

Then

(4)
$$S = S_2 U S_4$$
.

<u>Proof</u>.: Since in S there are no nonzero annihilators, it follows from the definition of n.r.s. semigroup that also $0 \notin S$. Therefore $S_0 = S_1 = \emptyset$, and it is not difficult to see that $S_3 = S_5 = \emptyset$.

<u>Corollary 2</u> - If S is n.r.s. and periodic (and not right simple), then $S = S_2$. Moreover, S is completely regular.

Remarks: (i) Although a right simple semigroup is n.r.s., its decomposition is <u>not</u> a particular case of(4). In fact, if S is right simple, one has $S = S_3 U S_5$.

(ii) In general, a n.r.s. semigroup, is not completely regular, and conversely. On the other hand, it is shown in [2] that a n.r.s. semigroup is right regular.

REFERENCES

 [1] MIGLIORINI,F. and SZÉP,J.: On a special decomposition of regular semigroups,Istituto Matematico Univec sità di Lecce, R - 2 - 1977.

[2] SCOZZAFAVA,R. : Nearly right simple semigroups,Karl

[3] SZÉP,J.

Marx University of Budapest, Dept.of Mathematics, DM 77-3 (1977), 1-5.

: On the structure of finite semigroups, III, Karl Marx University of Budapest, Dept. of Mathematics, DM 73-3 (1973) .