REMARKS ON SZÉPS'S DECOMPOSITION OF SEMIGROUPS.

R. Scozzafava (Lecce)

J. Szép has given in [3] a disjoint decomposition for an arbitrary semigroup. Let S be a semigroup without non-zero annihilators (every semigroup can be easily reduced to this case): then

$$
\begin{equation*}
S=U_{i=0}^{5} S_{i} \tag{1}
\end{equation*}
$$

holds, where the semigroups $S_{i}(i=0,1, \ldots, 5)$ are mutually disjoint and

$$
\begin{aligned}
& S_{0}=\{a \in S: a S \in S \text { and } \exists x \in S, x \neq 0, \text { such that } a x=0 \\
& S_{1}=\{a \in S: a S=S \text { and } \exists y \in S, y \neq 0, \text { such that } a y=0\}, \\
& S_{2}=\left\{a \in S: a \notin S_{0} U S_{1}, a S \in S \text { and } \exists x_{1}, x_{2} \in S, x_{1} \neq x_{2},\right. \\
&\text { such that } \left.a x_{1}=a x_{2}\right\}, \\
& S_{3}=\left\{a \in S: a \notin S_{0} U S_{1}, a S=S \text { and } \exists y_{1}, y_{2} \in S, y_{1} \neq y_{2},\right. \\
&\text { such that } \left.a y_{1}=a y_{2}\right\}, \\
& S_{4}=\left\{a \in S: a \notin U_{i=0}^{3} S_{i} \text { and } a S C S\right\}, \\
& S_{5}=\left\{a \in S: a \notin \bigcup_{i=0}^{U} S_{i} \text { and } a S=S\right\},
\end{aligned}
$$

It follows that for a finite semigroup S one has

$$
\begin{equation*}
S=S_{0} \cup S_{2} \cup S_{5} \tag{2}
\end{equation*}
$$

The finiteness of S is not a necessary condition for the validity of (2). F. Migliorini and J. Szēp [1] proved that the same decomposition holds if S is a regular semigroup without (left) magnifying elements. The next Theorem 1 gives another sufficient condition.

Let S be a completely regular semigroup, i.e. for every a $\in S$ there exists x in S such that $a=$ axa (that is, S is regular), and $a x=x a$. It is well known that S is completely regular if and only if it is a disjoint union of groups,

$$
\begin{equation*}
S=U_{\alpha \in I} G_{e}, \quad G_{e} \cap G_{\alpha}=\varnothing \quad(\alpha \neq \beta) \tag{3}
\end{equation*}
$$

where $G_{e_{\alpha}}$ is a maximal subgroup of S, with identity e_{α}.

Theorem 1 - Let S be a completely regular semigroup. Then $S_{1}=S_{3}=S_{4}=0$.

Proof. We prove that $S_{4}=\varnothing$. Assume the contrary: then, given $a \in S_{4}$, we have $a \in G_{e_{\alpha}}$ for a suitable $\alpha \in I$, and $G_{e_{x}} \neq S$. By the definition of S_{4}, the elements of the set $a S$ are all distinct; hence an analogous conclusion holds for the set $e_{\alpha} S$ (otherwise $e_{\alpha} s=e_{\alpha} s^{\prime}$ would imply $a s=a s^{\prime}$). It follows that $e_{x} s=s$ for any $s \in S$ (otherwise $e_{i x} s_{0} \neq s_{0}$ would imply $e_{\alpha} e_{\alpha} s_{0} \neq e_{\alpha} s_{0}$, which is impossible), i.e. e_{α} is a left identity of S; then e_{x} is the identity of $G_{e_{e}}$, with $\quad \beta \neq \alpha$ (contra diction).

Now, $\quad S_{4}=\emptyset$ implies $S_{1}=S_{3}=\emptyset$, by Corollary 1.5 of $[1]$.

Theorem 2 -Given a completely regular semigroup S and its decomposition $S=S_{0} \cup S_{2} \cup S_{5}$, the latter three semigroups are completely regular.

Proof. : a) For any $a \in S_{0}$ there is an $\alpha \in I$ such that a $\in G_{e_{\alpha}}$: we show that $G_{e} \subseteq S_{o}$ (it will easily follow that S_{0} is a disjoint union of groups). Let $b \neq 0$ such that $a b=0$ (recall the definition of S_{0}): then $G_{e_{\alpha}} a b=G_{e_{\alpha}} b=0$, i.e. $G_{e} \subseteq S_{0}$.
b) Let $a \in S_{2}$: then $a \in G_{e_{\alpha}}$ for a suitable $\alpha \in I$. The definition of S_{2} gives $a b_{1}=a b_{2}$, with $b_{1} \neq 0, b_{2} \neq 0, b_{1} \neq b_{2}$, and it follows that $g b_{1}=g b_{2}$ for any $g \in G_{e_{\alpha}}$, and so $g \in S_{2}$.
c) Let $a \in S_{5}$ and $a \in G_{e_{\alpha}}$: then $a S=S$ and $e_{\alpha} S=S$. It follows $g S=S$ for any $g \in G_{e_{\alpha}}$, and, since $S_{1}=S_{3}=\emptyset$, we have $G_{e} \subseteq S_{5}$.

Corollary 1 -If S is a completely regular semigroup, then the conclusions of Theorem 2.1 and Corollary 2.2 of [i] hold without the assumptions concerning the magnifying elements.

Let us now apply Szép's decomposition to the case of a nearly right simple (n.r.s.) semigroup: for its definition, cfr. [2]. It can be characterized as a semigroup which is the disjoint union of its prim-
cipal right ideals. But we may also consider decomposition (1) in this case.

Theorem 3 -Let S be a n.r.s. semigroup lwithout non-zero annihilators), which is not right simple.

Then

$$
\begin{equation*}
S=S_{2} U S_{4} \tag{4}
\end{equation*}
$$

Proof.: Since in S there are no nonzero annihilators, it follows from the definition of n.r.s. semigroup that also $0 \& S$. Therefore $S_{0}=S_{1}=\emptyset$, and it is not difficult to see that $S_{3}=S_{5}=\varnothing$.

Corollary 2- If S is n.r.s. and periodic land not right simple), then $S=S_{2}$. Moreover, S is completely regular.

Remarks: (i) Although a right simple semigroup is n.r.s., its decomposition is not a particular case of(4). In fact, if S is right simple, one has $S=S_{3} \cup S_{5}$.
(ii) In general, a n.r.s. semigroup, is not completely regular, and conversely. On the other hand, it is shown in [2] that a n.r.s. semigroup is right regular.
REFERENCES
[1] MIGLIORINI,F. and SZÉP,J.: On a special decomposition of regular semigroups, Istituto Matematico Univer sità di Lecce, R - 2 - 1977.
[2] SCOZZAFAVA,R. : Nearly right simple semigroups, Kar 1 Marx University of Budapest, Dept. of Mathematics, DM 77-3 (1977), 1-5.
[3] SZÉP, J.
: On the structure of finite semigroups.111, Karl Marx University of Budapest, Dept. of Mathematics, DM 73-3 (1973).

