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IIT CHAPTER
OBSERVED KINEMATICS

Here we analyse the one- body kinematics in terms of the positions
determined by a frame , introducing the observed motion and its velo-
city and acceleration. By comparison between the absolute and the oD
served motion we get the "absolute" velocity addition and Coriolis
theorem. Finally we make the comparison between the observed motions
relative to two frames, getting the velocity addition and Coriolis

theorem.
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1 OBSERVED KINEMATICS.

Let P a fixed frame and let M be a fixed motion. We analyse M

as viewed by P.

] We first introduce useful notations.

O

Let f.: T - P be a C map.
a) We put f 5(1d1,f) : T - T x P
de(idT,df) T - T x TP,
azfz(idT,dzf) T T x TP .
2

b) df and d f being functions on T, we can choose a natural re

presentative of the equivalence classes of TP and T%P. So we put

= |
df = [f,0,f]
and we get d°f= [f,D f,0f sz}
Ny b .-P' b ? e P
where = 2. =
pr : U >3 and pr T - 3

resemble derivatives of affine spaces, but are note properly such.

c) We put vpdf = ||, © FP odf : T > TP
i 1 '-"2
v df = o' © df : T > TP.
P LLD P

Observed motion and absolute velocity addition and Coriolis theorem.

2 The basic definition of observed kinematics 1s the following.

DEFINITION.
a) The MOTION OF M OBSERVED BY P 1s the map

"

b) The VELOCITY OF M OBSERVED BY P 1s the map

poM: V1 ->P .

(dMy=TpodM:T-TFP.

P
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The VELOCITY OF THE OBSERVED MOTION MP 1s the map

dM. T TP .
1P P

c) The ACCELERATION OF M OBSERVED BY P is the map

(vdM_=TpovdM:T-TFP.

"P

The ACCELERATION OF THE OBSERVED MOTION HP 1s the map

v / ,,2
= || . > ] :
5 p = L1107 O d MP T-TIWP .

3 We can make the comparison between the observed entities and the

entities of the observed motion.

THEOREM. " ABSOLUTE VELOCITY ADDITION AND CORIOLIS THEOREM"

a) M= P o N,
. . U
1.e., putting E =T x P,
'ﬁ'L.J' W
M= M,
f-- ) = = . — F
M,DM-P o M] = ((d M), = d M, = [MDM]
1.e. DM~-P oM = DPMP
M,D M| d M), = vpd My =
2 %
= [M,D PM-P+6“P MP ,PMP M xD,PMP+P o M,P
1.6 DZM ' D2M +( M D M +2 (o ) xD_M +P o M
e Leptlp) J+eliplly ) xDpM, p
PROOF .
a) M =P U(t,p) o M = P o 'Id MP = P o M



b) (d M)P =T podM=4d(p o M) = d MP
) (vdM)_=Tpeo || orT dZM - © T2 - dzM =
c) )P =T p 'le P o | =
! A
:IIG"'Q
iig P aMm .
4 COROLLARY.
We have
gk o HP = Mk = xk o M
K
X ade=
gk o f d ﬂp D M kj 0 ﬁPJD M D MY .

5  COROLLARY.

a) if P 1is affine, we have
D2M = D2 + e (DM )+ 20 x DM, + P
= Dy * & (M, p X DMy

b) If P 1s rigid, we have

2 2 -
DM—DP%f+&beJ$+PGP

c) If P 1is translating, we have

D2 2 =

M = D'PMP + P

d) If P 1is inertial, we have

2 2
DM = DM, .
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Physical description.

The observed motion MP is the map that associates, with each time

t€l, the position constituted by the world-line of the frame, passing

throung M(1)

The observed velocity and acceleration are the map that associate

with each time +tel, the strips touched by the absolute velocity and

acceleration.

The difference between the observed acceleration and the acceleration of
the observed motion takes into account the variation, during the time,

of the affine properties of TP and of the projection T E — TP .

T e 1

Dh(E)

L *mm
v Z IR

Z 4= mm 3
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2  RELATIVE KINEMATICS.

Let ?P1 and ‘PZ be two fixed frames and let the subfixes "1"

an "2" denote quantities relative to -P] and -PZ, respectively.

Let M be a fixed motion. We make a comparison between the kinema-

tics observed by'P1 and PZ.

Motion of a frame observed by a frame.

as observing

] [f we consider 3P] as a set of wor]d—lipes and ?2

Pﬁ’ we are led naturally to the following definition by (III,1,2).
We consider only free velocity and acceleration for simplicity of

notations, leaving to the reader to write them in the complete form.

2
Here D]P‘ and D]:p are the derivative in the sense of (III,1,1,b)
2 2

with respect to P2 and the suffix 1 denote partial derivative with

respect to the first variable, 1.e. the time.

DEFINITION.
a) The MOTION OF 'P] OBSERVED BY -Pz is the map
Ny . P
= o : -
F’]2 P P] T x & )
The MUTUAL MOTION of (P],PZ) is the map
v av v _
P =P, -P. : T xE&~>9%

(1,2) ~ "1 7 72

Ay
b) The (FREE) VELOCITY OF THE OBSERVED MOTION P]2 1s the map
- v ) -
F"]2 = (D1P P]2) j :E~>9
2
The (FREE) VELOCITY OF 3P] OBSERVED BY ?PZ 1s the map
p = ﬁ o Pt E - $
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T

The (FREE) VELOCITY OF THE MUTUAL MOTION P, . is the map
D = > o1 - +-
"01,2) ° D1P(1,2) J .t $ .
c¢) The (FREE) ACCELERATION OF THE OBSERVED MOTION 512 is the map
P = (DZ P.Yoj: E -~ §
12 = (Dyp Pyp)ed
.
The (FREE) ACCELERATION OF P, OBSERVED BY P, is the map
b =P op .5
1,2 P00 P b 23
The (FREE) ACCELERATION OF THE MUTUAL MOTION E(] ») 1n the map
p - p° B SN

(1,2) 1 (1,2)

d) The (FREE) STRAIN OF THE OBSERVED MOTION P__ 1is the map

12
- S0P, :E $° @ §
VIS
The (FREE) SPIN OF THE OBSERVED MOTION 512 is the map
A Y o= -
LU]Z -*"2“ DP]Z.E—*S R 93

The (FREE) ANGULAR VELOCITY OF THE OBSERVED MOTION 512 is the map

2

v -
D P

| >

an = K
o

12 12 -

We can make the comparison between the observed entities and the

entities of the observed motion, as shown by (III,1,3)

PROPOSITION.
AV v AV
a) P1 :(ﬂ],P]Z) , T x £ - Tle2=EE
b P = P - P - P =P
) "Ly T e T T T T P

) P12 0 = Piotep (Prp)ieny x Py
: :

d) E =E "E - = €_-€ = ~ o = -

(1,2) 1 "2° 712 1 2 M2
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3 We get an immediate comparison between the quantities "12" and "21".

COROLLARY .
v N, - - - —
= - = - , = - F
D Pay T Py Py T P 0 Pae (2,1)
€12 7 7 Cp1 0 9 T T wpy s Byp T T,
D) Poq =897 T @9y T ¥y T 0 .

4 We have time depending diffeomorphism between spaces concerning

'P] and ?PZ.

PROPOSITION.

Let ~tel.

The maps

= P i —
P12 = P2 © 1 SRS

given by [§]1 N EP1(T,E)]2,
and T Pio. 1WH > ﬂPZ,
given by [eiuj] ~ I:E](Tie)a E](T,E)(U)JZ ’

o

are C diffeomorphisms
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Velocity addition and generalized CorﬁoTisLtheorems.

5 As conclusion, we get the comparison between velocity and acceleration

of the motion M observed by ‘P] and P .

THEOREM. "VELOCITY ADDITION AND GENERALIZED CORIOLIS THEOREMS".

a) . =D M
", 7 P2 P
b) D, My = D, My +|5]2f-M.
2 "2 1
C) 02 = D2 + e_.oM(D, M, )+20,,"MxD +P. M
p M =D M 12 VPP 12 XPp Mo Py T
2 "2 171 17 1]
PROOF .

It follows from (I1,5,3) and (I11,6,2)

6 COROLLARY.

Let LPZ be 1nertial. Then we get

2 2 2 3 5 C
DM = Dq:,qu:,2 - 0?1%] + e:p] M(DP]M_P])+2§3P] M X DP]M?1+ P, oM

[f JP] 1s affine, we have

2 2 2
DM = DiP MP - Dtp Mp
5 2 1

1f ZP] 1s rigid, we have

2 2 > _
DM=2D ) = D + 2 x D. M + P
P, 1492 fP]MP] ?P] PP 1

if P, 1s translating we have
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if ZP] 1s inertial, we have

2 2 i
DM=0D = D
'PZMPZ ;P1&P1 —
Physical description.
The observed motion E1Ze S P2 gives the position iniPz touched

during time, by the particle of P, passing through e. The velocity and

y ]

the acceleration of P]2 are calculed by'?z

cture and by its time depending affine structure, in the same way of

by its differential stru-

any observed motion.

The velocity and acceleration of'P1,P] 2(e) and Ef] 2)(e),.p are
| \ T

the spatial projections, performed by?PZ, of the absolute velocity

and acceleration of the particle of ., passing through e.

]

Notice that, in all the previous quantities, P, is involued only

]

through the motion of 1ts only particle P]e’ while 'PZ can use also

1ts spatial derivative, which take into account the mutual motion of

its particles.

The nutual motion, velocity and acceleration P(] 2)(e) T > 9,

5(1 2)(e) e § ,ﬁ(] 2)(9) e § are the absolute spatial distance and 1ts

time first and second derivatives between the two particles, one of -P]

and one JPZ, passing through e.

mwlil

So it is not surprising f 5] . # - 52 o Poo £ - ﬁ21

The velocity addition theorem, relative to a motion M, gives the
classical result that the velocity of the observed motion by -Pz 1S
the sum of the velccity of the observed motion by 'P], plus the veloci

ty of ?P] observed by P2 :
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The generalized Coriolis theorem says that the acceleration of

the observed motion by 'PZ 1s the sum of the acceleration of the

observed motion by -PZ, plus the acceleration of -P. observed by

]

JPZ plus the classical angular velocity term , plus a strain term.

When we consider rigid frames, we get, as a particular case, the

classical result.

We can describe such results by a picture.

motion ana veieciry v of P

1

observec bhv P

-

mutual motion

g

> M 'F;, velocity addition
1
E
bt KT) \
DM@ | Dy HEZ) /




