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3 FRAMES AND THE REPRESENTATION OF T2[ .

In this section we are dealing with the second order derivatives of

the frame and tangent spaces.

Frame acceleration, second jacobians, strain and sp1n .

l The acceleration of the frame is the vector field on [ constituted

by the accelerations of the world-lines of the frame. Hence it is the se

cond derivative of the motion with respect to time. On the other hand,the

second and mixed jacobians are the second derivatives with respect to

event- event and time- evento We consider only free entities.

DEF INITION.

For simplicity of notations, leaving to the reader towrite them in the

complete from .

a) The (FREE) ACCELERATION-FUNDAMENTAL FORM - of ~ lS the map

•

-
-> [

2'1,
D1P : T x [

The (FREE) ACCELERATION-EULERIAN FORM - of :p is the map

p = D~ P o j
-

: [ -> [

b) The (FREE) SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM - of ~ is the map

-* -lO -: T x [ + [ ~ [ ~ [ •

The (FREE) SECOND JACOBIAN-EULERIAN-EULERIAN FORM of ~ lS the map

'. 2 •v _* _* _
p - D

2
P o j : E -> [ ~ [ ® [ .

The (FREE) SPATIAL SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM - of ~ lS the map

The (FREE) SPATIAL SECOND JACOBIAN-LAGRANGIAN - LAGRANGIAN FORM WITH RESPECT
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TO THE INITIAL TIME T e T ANO THE FINAL TIME T' e T - of ~ IS the map

v•• 2
: O p(' )

T , T
•

c) The (FREE) MIXEO SECONO JACOBIAN-FUNOA~1ENTAL-EULERIAN FOR~l of :p

lS the map

The (FREE) MIXEO SECONO JACOBIAN-EULERIAN-EULERIAN FORM of :p IS the map

•

- '"
p - 020,P o j

The (FREE) MIXEO SPATIAL SECONO JACOBIAN-EULERIAN-EULERIAN FORM - of ~

is the map
-p -

d) The (FREE) STRAIN-EULERIAN FORM - of :p lS the map

~- -
6~ S o P : [ ~ $ ~ $ .

The (FREE) SPIN - EULERIAN FORM - of ~ is the map

A! -Jt-
~ = 2 o p : [ ~ $ ~ $

The (FREE) ANGULAR VELOCITY-EULERIAN FDRM - of ~ IS the map

v A! -
~ : Jt 2 o p : [ ~ $ •

2 We get immediate important properties of these maps.

PROPOSITION.

We have

a) t o
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b)

c)

hence we can write

t o

t o

-T x E .,. $

p -
: [ .,. $

-P : [ .,. [* ~ È* ~ $
-
P: [

"P : [ .,.

"- - ~

Moreover all the prevlOus maps are expressible by P, p) DP and P •
•

D2~
"-

d) - P o P
l

e)
,
P --P~t0t

"--(DP o P)0 t - t ~
~ -

(D P
-

o P)

f)
--
P

" -
D P o P

- -
g) P - D P (P)

• "- -
h ) P - D P

2"- "" -
i ) (Dl)T' 1$

-
P(T',T) o p!$-

T T

" " -l ) (D
1

P) o J - D P •

- -
If u - UO P + up

• [ .,. [ we can wri te- • ,

- - l " ~

m) D P(u) - UO P + '2 '-p(u,,) + ""x ~ •

n) We have € = L- ~
-7 P •

o) P _ r' 6x.
00 ,
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• k- 1
P - r. Dx llII OX

k10

•

rk k •• 1 1P - - Dxo llII Dxo - r. (Dx llII Dxo + Dxo llII Dx ) llII OX
k00 10

E =-y

•

r. l
J,O

•

+f l .) Dx l llII D~
OJ

l
w = -2 (r .. - r. .)
-, J,Ol l,OJ

Q = l ;Idet(gi j )
"" 2

PROOF.

kije r . . ox
kJ ,01

a),b) and c) follow from (II,l,lO a) by double derivation with respect

to T,T; e.e. and T,e.

d) follows from (11,1,10 c) by doub1e derivation v/ith respect to T and

tak i ng a" T .

e) follows from (11,1,10 b) by double derivation with respect to e.

f) follows from (11,1,10 c) by doublederivation with respect to and

with respect to T and e and taking a: T.

g) fo110ws from (1I,2,2c) by derivation with respect to e.

h) follows from f).

i) follows from (II ,l,la c) by douhle derivation with respect to e and

taking T" t(e), a-T.

'" '"1) fo110ws from D
2
D

1
P - D

1
D

2
P.

m) fol10ws from

n). fo 11 ows from

9 and

(L.p g) ..
lJ

f)

+ r. .
l ,oJ •

Representation of T2p and

3 In order to get the space

quotient. In this way we cou1d

2v T P.

i·p handy, i t i s usefu1 to rega rd it as a

view T2p as a quotient space T2
[IP' But a
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2
by means of T [/~ is more simpie for the equiva

lence classes have a unique representative for each time TeT.

PROPOS IT 1ON.

Let v e T~. Then

~v - T2p-l(v) = (T~ P)v(l) ~ T
2
[

lS a C~ submanifold.

Then we get a partition of T2[, given by

T
2

[ = U Qv '
veT2p

and the quotient space T2[~, which has a natura l

whose equivalence classes are characterized by

(a)

~

C structure and

v

[e,u,v,w] = [e',u',v',w'J< ~ p(e)=p(e'), P(t(e'),e)(u) - u' ,

v ~ v

P(t(e'),e)(v) = v', P(t(e'),e)(u,v) + P(t(e'),e)(w) = w' (b)

We get a natural

by the unique maps

C~ diffeomorphism between T~ and glven

and

which make commutative the following diagrams, respectively,

T2P , J2[ f2[ T~PT x T2 1P 2
~

rr
2 l

I
~ /•

i

f2[ T2[•
T2

P ~ /P

PROOF.

Analogous to (11,2,3) •
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4 Choicing a time ,eT and taking, for each equivalence class, its repre

sentative at the time " we get a second interesting representation of

T~P .

PROPOSITION.

T
2
P T2 00

The and • C diffeomorphismsmaps P, are 1 nverse,
T2~ T2P T2

$
- - -

T
2 T2

$
- - -

-+ T2P• - $ x $ x $ x $ • - $ x$x$x$- -• - , P, • - •
1 , , , 1 -

5 The relation among the different representations of T~ 1S shown

by the following commutative diagram

T~P 2c
~ T E/p

? \.
T2'(,/ \ T2'(, t1

<1

T
2

$ ~
~ T2$ r ._._, T [

1 1 •

6 The previous representations of T2~ reduce to analogous represen

tations of v T~.

COROLLARY.

The quotient space
2

(vT [)(p 1S a C
OO

submanifold

its equivalence classes are characterized by

[e,u,o,w]; [e',u',o,wl<=:> p(e) - p(e'), P(t(e'),e)(u) - u',

P(t(e' )e)(w) ; w'.

The diffeomorphism T2P -+ T
2[IP induces a diffeomorphism

vT~P -+ (VT
2
[)(p

and the diffeomorphism T2[IP -+ T~P induces the lnverse diffeomorphism

(vT
2
[) (P -+ vT~P .
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Moreover, the following diagrams are commutative

2 il
vT2

$
il

"T [ ~ T [ .- T $
T T

T2
P l I !

1T P l, ,

"T~P T IP )T2,P T iP> •-
il.:;:> 111'

7 Taking into account the identification T2", '" ·2
,-=T[fP' we get the

following expression of T2 p and T2
p.

PROPOSITION.
2a) T p(e,u,v,w) = [e,P(e)(u), P(e)(v), P(e)(u,v)

•

+ P(e)(w)l

2
b) T P(T,À,~,V; [e,u,v,w]) -

'"- (P(T,e),
-

ÀP(P(T,e)) +
- 2

P(T,e)(u), ~P(P ("e)) + P(T.e)(v) ,

À~ P(P(T ,e)
-

+À DP (P (T,e) ) (p(T,e) (v) )
- - ?

+ ÀDP(P(T,e)(P(T.e)(u))+vP(e (e ,e) +

+ P(l,e)(u,v) + P(l,e)(w)

PROOF.

Analogous to (11,2,6) •

Frame connection and Cariolis map.

8 For each leT, we can view P as an affine space ,depending on ",

taking into account the isomorphism r x TJP ~ H. Hence we get a "time

deoending" affine connection on P

THEOREM.

There is a unlque map
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r.:p : lr x s T
2

IP 2
~ v T !P .

such that the following diagram lS commutative

T2 [
-

v T2• [s
2 T2p(t,T p) -. •,

,
r

1fxs T~P
':p

v T~P• •

Such a map lS glven by the following commutative diagram

f2 [
, '2- vT [S q

+
T2p(T2P) . l0,0,0

•
-' r

T
2

IP
':p

2
'l' x S - vT IP

Namely we get
,
fp(T, [e,u,u,w])

'" ,r- LP(-"e),P(T,e)(u);
•, .

O,P(T,e)(u,u)+P(T ,e)(w)],

hence,if t(e) = T

~p(T,[e,u,u"IJ) = [e,u,o,w] .

PROOF.

2
(t,T p) lS and

2 2 ,2
(T P) . r x S T P - s T [

(0,0,0)

00

are inverse C diffeomorphisms.

9 Then we can introduce the "fo 11 owi ng map", that wi 11 be used (I I I ,1)

to define the covariant derivative of maps r ~nP, hence the accelera

tion of observed motion .

DEFINITION.

The FRAME TIME DEPENDING AFFINE CONNECTION lS the map
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2
v T P ,

given by (" [e,u,u,wl)
,

~, ,
~[P(, ,e) ,P(, ,e)(u) ;O,P(, ,e) (u,u

•
)+P(c ,e) (l'I)J

10 The time depending affine connection

Kinematics. Coriolis theorem, (I I [, l) which

v
f.p does not suffides fur

makes a compariSQn between

the acceleration of an observed

a motion,requires a further map

motion and the observed acceleration of
I 2 2 h' hf p ; 1 x s T P - v T ~,w lè lS obtei

ned taking into account the isomorphism T x TI' ~ T[ ,
THEOREM.

There is a unique map
,
" .':p . ..

such that the following diagram lS commutative

r2[
f

v r2[~

; 2 iT2
(t,T p) I P, l

li' x s T2p
fl'

'J T2p...

Such a map lS glven by the following commutative diagram

,

r2[
r '2, ., T [

2 1
I

h2
p(T;»(l,l,O) ,

r

2
':p

'J T2pTxsT P •

Namely we get

,
fl'(t, [e,u,u,w]) -

-. ,
= [P(c,e),p(, ,e)(u),O, P(r,e)(w)

hence, if t(e) - t,

,
+ 2P(t ,e)(P(, ,e)(u), + P(P{' ,e)]
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, .
fp(T, [e,u,u,w]) - re,u,O,w + 2 P(e)(u) + P(e)] .

Thus we have

-• • •

fl' - rl' + Cl' + Dl' ,

where

S,:lxTP~TP and D'P: 1 x P - T P are n1ven by

"- . "-
S,(T,[e,uJ) = [P(T,e) ,2P(P(T,e))(u)-j

'" ;;; '"
0'P(T,e) - [P(T,e) , P (P(T,e))]

hence • 2 2e., : l x s T P ~ v T P and
·22
Dp : T x s T P - v T P

are glven by

C'P (T , [e ,u , u,wl )
"- .

" [p (T ,e) ,P ( T ,e ) ( u ) ,o , •
2 P(P(T,e))(P(T,e)(u)) J

•
D'P(T' [e,u,u,w:l)

"- .=[p (T ,e ) , P( T ,e ) ( u) ,O ,
= "v _

P(P(, ,e).1 •

PROOF.

~ 2
(t,T p) :

'2 2
T [ ~ l x sTlP and

2
(T 1')(1,1,0)

2. l x s1 P

w

are 1nverse C diffeomorphisms.

11 Then we can give the following definition

DEFINITION.

The FRAME CORIOLIS MAP lS the map

C.p:lxTP ~ TP

91ven by
'. (

(T,le,ul,- [P(T,e), 2 P(P(T,e))(ul)

The FRAME DRAGGING MAP is the map
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D~ : T x P ~ T P

given by '" -
( T , [e)) ~ [p ( T ,e) ,ii( p ( T ,e ) ) j •

Physical description.

p • the field of acceleration of the field continuum. b,p the1S 1 S

rate of change, during time, of the spati a l metric; ., describes the
.~

rate of change, during time, of the spatial di recti ons. This facts are

implicitly proved in the next section.

It is not easy to describe by picture the fundamental ,but not straight

forward,results of this section.


