II CHAPTER

FRAMES OF REFERENCE

Here we study the absolute kinematics of a continuum, which, viewed as a frame of reference, determines positions, the splitting of event space into space-time and the consequent splitting of velocity space. We analyse the positions space and its structures as the time-depending metric, the time-depending affine connection and the Coriolis map. Finally we make a classification of frames.

I FRAMES AND THE REPRESENTATION OF \mathbb{E}.

Frames, positions and adapted charts.

1 The basic elements of observed kinematics are frames, constituted by a reference continuum, whose particles determine positions on \mathbb{E}.

For simplicity of notations, we consider only global frames, leaving to the reader the obvious generalization to local frames.

DEFINITION.

A FRAME (OF REFERENCE) is a couple

$$
P \equiv\left\{\mathbf{P},\left\{\boldsymbol{T}_{q}\right\} q \in \mathbf{P}\right\}
$$

where \mathbf{P} is a set and, $\forall q \in P, T_{q}$ is a world line, such that
a) ${ }^{(*)} \quad \mathbb{E} \equiv \bigsqcup_{\mathrm{q} \in \mathrm{P}} \mathbb{T}_{\mathrm{q}}$;
b) $\forall e \in \mathbb{E}$, there exists a neighbourhood U of e and a C^{∞} chart

$$
x \equiv\left\{x^{0}, x^{i}\right\}: U \rightarrow \mathbb{R} \times \mathbb{R}^{3}
$$

$$
\text { adapted to the family of submanifolds }\left\{\mathbf{T}_{q}\right\}{ }_{q \in P} \text {. }
$$

P is the POSITION SPACE; each $q \in P$ is a POSITION; the map

$$
p: \mathbb{E} \rightarrow \mathbf{P}
$$

given by

$$
e \rightarrow \text { the unique } q \in P \text {, such that } e \in T_{q} \text {, }
$$

is the POSITION MAP; if $e \in \mathbb{E}$, then $p(e) \in P$ is the POSITION of f.

[^0]Henceforth we assume a frame P to be given.

2 Calculations develop in an easier way if performed with respect to a chart adapted to P. For simplicity of notations, we consider only global charts, leaving to the reader the obvious generalization to local charts, our considerations being essentially local.

DEFINITION.

A CHART ADAPTED TO P is a chart

$$
\left\{x^{0}, x^{i}\right\}: \mathbb{E} \rightarrow \mathbb{R} \times \mathbb{R}^{3},
$$

such that it is special and it factorizes through P, i.e. such that the following diagram is commutative

where $x^{0}: \mathbb{T} \rightarrow R$ is a normal oriented cartesian chart Charts adapted to P exist by definition 1 . Hencefort we assume a chart x adapted to P to be given.

Representation of the position space P.

$3 \mathbf{P}$ results naturally into a C^{∞} manifold.
PROPOSITION.
There is a unique C^{∞} structure on \mathbb{P}, such that the map $p: \mathbb{E} \rightarrow \mathbb{P}$ is C^{∞}. Namely it is induced by the charts adapted to $\left\{I_{q}\right\}_{q \in P}$.

PROOF .
Unicity. If $y: V \subset P \rightarrow \mathbb{R}^{3}$ is a chart which makes $p C^{\infty}$
and if $x: U \subset \mathbb{E} \rightarrow \mathbb{R} \times \mathbb{R}^{3}$ is a C^{∞} chart adapted to $\left\{\mathbb{T}_{q}\right\} \in \mathbb{P}^{\prime}$ then the map (defined locally)

$$
\mathbb{R}^{3} \rightarrow \mathbb{R} \times \mathbb{R}^{3} \xrightarrow{x^{-1}} \mathbb{E} \xrightarrow{p} \mathbb{P} \xrightarrow{y} \mathbb{R}^{3},
$$

which is the change from x to y, is C^{∞}.

Existence. The change of charts on \mathbb{P} induced by charts adapted to
$\left\{\mathbf{T}_{\mathrm{q}}\right\}_{\mathrm{q} \in \mathrm{P}}$ is $\mathrm{C}^{\infty}-$

4 We get a first immediate representation of P.
The frame P determines a partition of \mathbb{E} into the equivalence classes $\left\{\mathbf{T}_{q}\right\}_{q \in \mathbb{P}}$.

Then we get the natural identification of \mathbb{P} with the quotient space \mathbb{E} / \mathbb{P}
by writing

$$
\begin{aligned}
& P \cong \mathbb{E} / P \\
& q \cong p^{-1}(q) \equiv \mathbf{T}_{q}
\end{aligned}
$$

and

$$
[e]=q=\left[e^{\prime}\right] \Longrightarrow p(e)=q=p\left(e^{\prime}\right) .
$$

We will ofter identify \mathbb{P} and \mathbb{E} / \mathcal{P}.

5 Choicing a time $\tau \in T$ and taking, for each equivalence class, its representative, at the time τ, we get a second interesting representation of \boldsymbol{P}.

For this purpose, let us introduce three maps related with P.
DEFINITION.
Let $\tau, \tau^{\prime} \in \mathbf{T}$.
Then we define the three maps
a)

$$
P_{\tau}: \mathbb{P} \rightarrow \mathbb{S}_{\tau}
$$

given by

$$
q \mapsto \text { the unique } e \in \mathbb{S}_{\tau} \cap T_{q} \text {; }
$$

b)

$$
p_{\tau} \equiv p_{1 \$_{\tau}}: \$_{\tau} \rightarrow \mathbb{P}
$$

c)

$$
\tilde{P}_{\left(\tau^{\prime}, \tau\right)} \equiv P_{\tau^{\prime}} \circ p_{\tau}: \mathbb{S}_{\tau} \rightarrow \mathbb{S}_{\tau^{\prime}} \dot{ }
$$

6 Then we see that \mathbb{P} is diffeomorphic (not canonically) to a 3-dimensional affine space.

PROPOSITION.
The maps \tilde{P}_{τ} and p_{τ} are inverse C^{∞} diffeomorphisms:

$$
\tilde{P}_{\tau}: \mathbb{P} \rightarrow \mathbb{S}_{\tau} \quad, \quad p_{\tau}: \$_{\tau} \rightarrow \mathbb{P}
$$

Moreover we have

$$
\tilde{P}_{\left(\tau^{\prime \prime}, \tau^{\prime}\right)} \circ \tilde{P}_{\left(\tau^{\prime}, \tau\right)}=P_{\left(\tau^{\prime \prime}, \tau\right)}
$$

and

$$
\tilde{P}_{(\tau, \tau)}={i d^{\$}}_{\tau}
$$

hence
PROOF.

$$
\tilde{P}_{\left(\tau^{\prime}, \tau\right)} \text { is a } C^{\infty} \text { diffeomorphism }
$$

P_{τ} and p_{τ} ave inverse bijection. Moreover, p_{τ}, which is the composition $\mathbb{S}_{\tau} \rightarrow \mathbb{E} \rightarrow \mathbb{P}$, is C^{∞} and $\left.\operatorname{det} \quad D P_{\tau}=\operatorname{det}^{\prime} \hat{\partial} y_{i}{ }^{0} x^{j} \circ p_{\tau}\right) \neq 0$, where y is a special chart.
7 The relation among the different representation of \mathbb{P} is shown by the following commutative diagram

Frame motion.

8 We need a further map given by the motions associated to the world lines of P.

DEFINITION.

The MOTION of P is the map
given by

$$
\begin{aligned}
& P: T \times P \rightarrow \mathbb{E} \\
& (\tau, q) \quad \mapsto \text { the unique } e \in \mathbb{S}_{\tau} \wedge T_{q} \dot{-}
\end{aligned}
$$

Thus P is the union of the family of maps $\left\{P_{\tau}\right\}{ }_{\tau \in \boldsymbol{T}}$ previously introduced; on the other hand, P is the union of the family of maps $\left\{P_{q}\right\}{ }_{q \in \mathbb{P}}$, constituted by the motions associated with the world-lines of P. The motion P characterizes the frame P.

9 For calculations it is more advantageous a further map, substantially equivalent to P, which relates affine spaces.

DEFINITION.

We define the map

$$
\tilde{P} \equiv P \circ\left(\operatorname{id}_{\mathbf{T}} \times \mathrm{p}\right): \mathbb{T} \times \mathbb{E} \rightarrow \mathbb{E},
$$

given by

$$
(\tau, e) \mapsto P(\tau, p(e)) \quad \perp
$$

Thus the following diagram is commutative by definition

10 The following immediate formulas will be used in calculations. PROPOSITION.

We have
a)

$$
t(\tilde{P}(\tau, e))=\tau \quad \text { i.e. } t \circ \tilde{P}=i d \pi ;
$$

b)

$$
\tilde{P}(t(e), e)=e \quad \text { i.e. } P \circ j=i d_{\mathbb{E}} ;
$$

c)
$\tilde{P}(\tau, \tilde{P}(\sigma, e))=\tilde{P}(\tau, e)$.
$\stackrel{P}{ }$ characterizes the frame P.
We have

$$
x^{\circ} \circ \tilde{P}=x^{\circ}
$$

$$
x^{i} \circ \tilde{P}=x^{i} .
$$

Rappresentation of \mathbb{E}.

11 The frame P determines the splitting of the event space in space-time.

THEOREM.
The maps
$(t, p): \mathbb{E} \rightarrow \mathbf{T} \times \mathbf{P} \quad$ and $\mathbf{P}: \mathbf{T} \times \mathbf{P} \rightarrow \mathbb{E}$
are inverse C^{∞} diffeomorphisms.
Namely the following diagrams are commutative

Hence ($\mathbb{E}, \mathbf{p}, \mathbf{P}$) results into a C^{∞} bundle, with fiber \mathbf{T}.

PROOF .
P and (t, p) are inverse bijections. Moreover (t, p) is C^{∞} and $\operatorname{det} D(t, p) \neq 0=$

12 DEFINITION.

The FRAME BUNDLE is

$$
\equiv(\mathbb{E}, p, \mathbb{P}) \quad-
$$

Thus we have two bundle structures on \mathbb{E}, namely
$\eta \equiv(\mathbb{E}, t, \mathbf{T})$, wich has an absolute basis \mathbb{T} and a non canonical fiber diffeomorfic to P or to $\$_{\tau}, \forall \tau \in \mathbf{T}$,
$\pi \equiv(\mathbb{E}, \mathrm{p}, \mathbf{P})$, wich has a frame depending basis \mathbb{P}, diffeomorfic to $\$_{\tau}, \forall \tau \in \mathbb{T}$, and an absolute fiber \mathbb{T}.

The frame bundle π characterizes the frame P.

Physical description.
A frame P is a set \mathbb{P} of particles, never meeting, filling, at each time $\tau \in \mathbb{T}$, the whole space $\$_{\tau}$, with a C^{∞} flow, hence first a frame is a con tinuum and we study the absolute kinematics of its particles.

Such a continuum can be viewed as a frame of reference. In fact it deter mines a partition of \mathbb{E} in positions. Each position in the setof all events touched by the same frame particle. Under this aspect we can identify the set of positions with the setof particles \boldsymbol{P}.

We can describe the frame, its motion, the positions and the splitting of \mathbb{E} into the space-time $\mathbf{T} \times \boldsymbol{P}$, by a picture. Notice that we can consider only the differentiable properties induced by the paper to \mathbf{P}, in the picture : in fact the affine and metrical properties of \mathbf{P} are time depending.

[^0]: (*) It sufficies to assume $E=\bigcup_{p \in P} \mathbb{T}_{q}$. In fact, taking into account b) and that each T_{q} is open and connected, we see that, if $q \neq q^{\prime}$, then $T_{q} \cap T_{q^{\prime}}=\varnothing$.

