- II -

CONTENTS

PREFACE

Proposal-Phylosophical background-Specific criteria.
INTRODUCTION

Summary-Comparison with special and general relativity.
I CHAPTER - ABSOLUTE KINEMATICS

1 - THE EVENT SPACE

Event space, simultaneity, spatial metric, future orientation, time-
Poincare's and Galilei's maps-Space and time measure unity-Special

charts-Physical description.
2 - FURTHER SPACES AND MAPS

Vertical and unitary spaces-Second order spaces, affine connection

and canonical projection.
3 - ABSOLUTE KINEMATIC

Absolute world-1line and motion-Absolute velocity and acceleration-

Geometrical analysis-Physical description.



- 111 -

[T CHAPTER - FRAMES OF REFERENCE

1 - FRAMES AND THE REPRESENTATION OF E .
Frames, positions and adapted charts-Representation of the position space

P-Frame motion-Representation of E-Physical description.
2 - FRAMES AND THE REPRESENTATION OF TE.

Frame velocity and jacobians-Representation of TRP-Frame vertical and
horizontal spaces-Frame metric function-Representation of TE - Physical

description.

3 - FRAMES AND THE REPRESENTATION OF T2E .

Frame acceleration, second jacobians, strain and spin-Representation of
2

T°FP and vTZP-Frame connection and Coriolis and dragging maps-Physical
description.
4 - SPECIAL FRAMES

Affine frame-Rigid frames-~Translating frames-Inertial frames-Physical

description.

[IT  CHAPTER - OBSERVED KINEMATICS

1 - OBSERVED KINEMATICS

Observed motion and absolute velocity addition and Coriolis theorem-

Physical description.
2 - RELATIVE KINEMATICS

Motion of a frame observed by a frame-wlocity addition and generalized

Coriolis theorem-Physical description.



-1V -
PREFACE

Proposal.

This paper is the first of a number devoted to an axiomatic approach

to classic and relativistic mechanics.

We analyse the foundations of mechanics, trying to reach a new unifying
view and to get a systematic exposition of the matter. In these years it
is actual in the literature a foundational research, even if along a little

different lines.

We study, in a unique context and with a unified language, topics
often treated by different authors with different points of view. We try
to surpass critically the historical stratification of the matter. In
fact, often theories develop under the push of motivations and in a cul-
tural context, which after some time change completely. Nevertheless, the
substantial validity of the theories remains. So, while it is historically
essential to understand the birth and the development of theories in
their real context, from a technical point of view, such an approach can
be confusing with respect to the essential synctactical structure of
the theory. Moreover, a new svnthesis that, even taking into account the
historical logic, tries to achieve an independent formulation, can lead

to a new phylosophical view.

In these papers we are explicitly concerned only with a theoretical

axiomatic treatment.

Phylosophical background.

We want to outline the phylosophical background common to the present

and to the subsequent papers, without any claim of rigor and completeness.

We think that a physical theory consists of several mutually connected

languages, with different synctaxes, objects and degrees of formal rigor.



There are at least

a) a mathematical synctactical language, which is deductive, selfcon-

sistent, formal,whose object is the theoretical model of the theory;

b) a physical experimental language, which is intuitive, descriptive,

whose object is the description of phenomena;

c) an interpretative semantical language, whose object is the relation

between the previous two languages.

The appropriate order of exposition of the matter can be different
for the mathematical and the physical languages. So the validity of
the theory, namely the agreement between the previous languages, must
be tested globally and it is meaningless to verify a single axiom or

theorem out of their context.
Of course this structure of the theory is not more than an outline.

We are firmly convinced that an omnicomprehensive supertheory cannot
exist. We must necessarily deal with a lattice of physical theories,with
different physical objects and degrees of validity. The comparison among
them is very important and physically expressive. For example the vali-
dity of a physical theory is often tested in the context of a more gene

ral one.

It is fit to distinguish the languageof atheory (even if branched into

several sublanguages) from metalanguages which have the theory itself
as object.For example, the relativity principles are not part of a
phisical theory, as they do not describe physical phenomena, but they are

metalinguistic conditions imposed to the theory.

We keep quite distinct the inductive and the deductive construction of

a physical theory. In fact, the formerhas a value more historical than
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logic, whereas the latter is selfcontained and gives a deep physical

insight.

In this way, for each physical question we have to make explicit
the experimental and theoretical context, the required degree of ap-
proximation and the background accepted as known. As an esample, let
us consider inertial frames. We can take into account the geometrical
oroperties of space-time observed by them, the comparison between
real and apparent forces observed by them (that involves a theory of
interactions), the classical and relativistic approximation, their
local and global existence, their experimental determination, etc.
The abstract question "what is an inertial frame of reference?" re

gardless of the previous statements is meaningless.

In the present and in the subsequent papers we deal essentially
with the mathematical synctactical language. We follow the actual
structuralistic tendency of modern mathematics. Our physical approach
is based on a deep analysis of the structure of the fundamental spaces
constituting the general framework.

[f the good fitting between theoryand experiments is not too occasio-
nal and limited, but has a deep validity, the choice of basic spaces
of the theory cannot be of little relevance and they must contain
implicitly all the physical development. We believe that in a good
theory all the facts that are mathematically relevant have a great

physical interest and viceversa.

We believe that the spirit of Klein's program, of classification of
geometrical theories based on their invariance properties, can be
surpassed. In fact it was natural in the context of a mathematical lan-
guage strictly based on coordinates. The situation is quite different

now, because we have the intrinsical language of algebra, topology,...
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manifolds, fiber bundles,...

Nevertheless theoretical physics is up to now deeply based on invariance
groups and their representation. We think it is time for a change. This
proposal requires a large inversion in the traditional sequence and de-
pendence of topics. In such a way, the deep role of mathematics in physi
cal theories gets more relevant and it does not reduce to a computational

aspect.

We expect that differential geometry will play a more and more impor
tant role in physics. This tendency is present in literature but it does

not develop its whole euristic power.

People often say that a high formalization of the theory and a large
inversion in its traditional exposition is hard to understand and damages
intuition.Not in the long rum, it is our opinfon.. In fact we believe
that intuition is a process that makes automatic and uncoscious logic
proceedings, so that syntax becomes semantic, by means of a long exerci
se. Then, what to day is abstract to morrow can be intuitive. The mo
re a theory is based on few and well organized axioms, the more the in-
tuitive process will be fast and complete. This heljeving is supported
by many historical examples. The most typical regards elementary geome-
try. The classic euclidean logic is to day an intuitive description of
geometrical daily and familiar physical phenomena. However we make intui

tive the description of ithe same phenomena by means of linear algebra.

Specific criteria.

We try to get a unifyingview of classical and special and general
relativistic theories. Namely we use the same kind of language and

exposition line. We have very similar general frameworks for the three
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theories so that the structural differences appear clear and directly
comparable. In all cases we have four dimensional "absolute" event
spaces, four-dimensional "absolute"motions, velocity and accelerations,
four-dimensional forces and so on. In all cases we consider general
frames of references and we define the "observed"phenomena by means of
the splitting into space and time induced by frames. This point of
view is commonly considered as proper to general relativity.

Then for all three theories a general principle of relativity
holds! Moreover the constancy of light velocity has not an explicit
role and it is completely replaced by the metrical structure of the
event space. In all three theories we have well fitted electro-

magnetic theories, along similar lines.

For classical and special relativistic theories we make a large

use of affine spaces.Thatis justified by the physical properties of
event spaces. The main peculiarity of affine spaces are free vectors,
that is a natural displacement of applied vectors. So we could treat
the theory only in terms of free vectors,employng free derivatives

Df and sz of maps f between affine spaces. But we have also to
consider non affine entities, as submanifolds, general frames and coor
dinates. Then we use a mathematical formalism, which allows a view of
affine spaces in terms of free or applied vectors, introducing tangent
spaces, affine connection, etc.., hence considering affine spaces as

special manifolds.

Affine spaces are the basic element that determines our intrinsical
language, permitting a clear and deep distinction among absolute pheno
mena, frames of reference and coordinate systems.

Galilei's and Lorentz's maps turn out to be of little importance.
In fact these are implicit in the general framework and do not play any

basic role in the following exposition. This point of view is upsetting
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of current treatment and can influence physical theories based on

group representation.

We try to unify in a unique context topics generally exposed in
ordinary mechanics, in analytical mechanics, in continuum mechanics,
in foundations, etc. Of course we limit ourselves only to a general

introductive statement.



INTRODUCTTION
Summary .

The general framework of classical mechanics is the absolute event
space E. It is an affine four dimensional space, representing the set
of absolute events. A three dimensional subspace § of its vector spa
ce E is fixed to represent the set of couples of symultaneous events.
Then E results into the disjoint union of parallel three dimensional
affine subspaces ST, generated by §, which represent the equivalence
classes of symultaneous events. The set T of these equivalence clas-
ses is a one dimensional affine oriented space, which represents
absolute time.

The quotient projection t : E+ T 1is the time function. The triple
(E,t,T) is an affine trivial bundle (but not canonically a product),
whose fibers are the(not canonically isomorphic among themselves)
equivalence classes ST. The map Dt : E -~ T associates with each four
vector u its absolute time component u°. We have not an absolute
projection E - §, or an absolute inclusion Te E . Then we have not
an absolute splitting E-Tos (whereas it is induced by a frame of
reference). The inclusion $< E admits the vertical (along $,i.e. at
a fixed time) derivatives Df of maps defined on E. On the vector
space § we have absolute euclidean metric g, defined wup to a confor
mal factor, which describes the classical geometry. For pratical reasons
we choose aunit of measureon $ and on T, selecting the conformal factors.
The wunit of measure  on T determines the identification T = R.
Then we get the subspace U« E, constituted by the vectors normalized
by t = Dt, which represents the space of velocities. We define a Poinca

re's map as a map G¢ E -» [E, which preserves the structure of g .
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Its derivative DG:E - E s the associated Galilei's map. At last,
for the coordinate description, we define the special charts. These
are characterized by the first coordinate function which is cartesian

and depends only on time.

The formulation of the theory by means of applied vectors requires
the definition of further spaces, namely the spaces of analytical me-
chanics. To first order, we consider the phase, or vertical, space
TEzEx3 < TEzExE and the velocity, or unitary, space %E = ExU=TE
which are (not canonically, isomorphic. To second order, we consider
the vertical spaces %ZEEEX§X§X§¢* TzEﬂEx@mﬁxE and vf2E=Ex§x0x§ +“T2E =
=EXExOXE  and the bivelocity spaces +2E5Exwx§ -> T2[ and ;szzExUMOx§ -
> VT2[, which play an important role in the connection properties of
frames of reference, in the calculation of acceleration and in the Corio
1is theorem. The natural projections F:TZE - szE and |[]: sz[ ~ TE

permit the definition of the covarint derivative vy s !loroTvou, which,after
choosing a coordinate system, is expressed by the Christoffel symbols.

The absolute one-body world-line is a (one dimensional) submanifold
M« IE, which meets each ST exactly at one point M(<t). The world-line
is characterized by its absolute motion, that is by the associated map
M:T->E& . The absolute free velocity and acceleration are the maps
DM : T > U and DZM : T >3 . If we need to consider them in terms
of applied vectors, we define the velocity and acceleration
dM=(M,DM) : T +E and dMs(M,DzM) EliprodzM:T ~ TE.After choosing coordi

nate system, the acceleration is expressed by the Christoffel symbols.

To determine positions, hence to get observed mechanics, we need
. =]
frames of reference. A frame P 1is a continuum filling, in a C way,

the whole event space.
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First we can study the absolute kinematics of such a continuum.
The continuum P 1is constituted by a set P of disjoint world-Tines

{Iq}qeIP . In this sense B can be viewed as the set of the particles

of the continuum. For each event e e E, passes a unique particle

p(e) € B. Then we get a surjective map p : E - P. The set of the
motions of the particles {Pq : T > Tq > E}qu determines the motion

of the continuum, namely the map P : T x P - E, which associates

with (t,q) the event touched at the time =+t by the particle q. We

can define the motion also by the map ; : T x E~ E, which associates
with (t,e) the event touched at the time < by the particle passing
through e. Then we obtain a number of fields by deriving the motion.
These fields can be expressed in the fundamental form f:TxE - IF, or

- F,

in the eulerian form f_ : E > F, or in the lagrangian form fort $

° T

v

where f(t,e) is attached to the event P(r.e), while f,(e) and f,(e)
are attached to e. The three formulations are equivalent, for we have
Y

fo(e) = f(t(e),e), f , f(t,e) = f,(P(t,e)) . We can also consider

OT= f0t$
T
two-points fields, for which fundamental, eulerian and lagrangian formu

tions hold(but the relation among them, with respect to the second

point is more complicated, for it involves the derivative of the motion).

Thus we consider the first and second time derivatives of the motion,
defining the velocity and the acceleration of the frame P:E~U and
P:E -+ 3§, where P(e) and P(e) are the velocity and the acceleration,
at the time t(e), of the particle passing through e. Then we consider
the first and second event derivatives of the motion 5:E -> E* @3
and ;:[ > I* @JE*’E § , which express the projection and the rate of
projection of event intervals into simultaneous event intervals, due

to the motion of the continuum.



The motion determines also a diffeomorphism between each couple of
simultaneous spaces $T and § ,. Then, by a first and second deri
. Ll

v - -
vatives, we get the jacobian maps P(Tl ):5 - $*® $ and
s T T
_*- ._* -

(<" T)!ST ~3% @ S®93% . The mixed derivative can be obtained con-

v

sidering the derivativejat a fixed time,of the velocity, namely

- - =
DP:E - $® 9% , or considering the time derivative of P

(t's1)’

By means of the spatial metric, we can get the symmetrical and the
antisymmetrical parts of the mixed tensor DP . The symmetrical part
€ = 565 gives the rate of change, along the time, of the spatial
metric tensor, induced by the motion. The antisymmetrical part

Av _ . . .
w = EDP’ or the associated vector, by means of the Hodge isomorphism

(¥ w=1i7n),0 = ¥ o represents the absolute angular velocity of the
[FY]

continuum motion.

Then we can consider the frame continuum as a frame of reference.
First we define the observed positions. Each position is the set of
all the events that touch a unique particle g, namely it is the set

Iq. Then we can identify the set of positions with the set of particles

B. Then P is a set of equivalence classes. This set B has a C. stru
cture. At each time <1, B can be represented by the three dimensional
affine space $T, associating with each position q theoevent touched

at the time +1,by the particle q. Also for TP and T°P we get two
interesting representations. We can represent the tangent space TR as
the quotient space %E/P’ namely as the set of strips of spatial vectors
spanned (at the first order) by the motion.

An analogous representation holds for TZP. We can also represent TP

2
and TP by T$T and T2$T, taking into account the bijection B -~ §_
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The latter representations induce a time-depending metric g?:TxTP + R
and a time-depending connection EP:T X sz > vTZE. Taking into account

the frame velocity, we can also represent TR, at each time 1, with

Swa, hence TZP with STxewxi . This representation induces a new map

i 2

FP:TXTZP > VIR, which is the sum of a map CP:T x TP -~ TP and of a map

DP:F x P -TR. The Tatter maps will be interpreted as the generalized
Coriolis and the dragging accelerations.

Then we represent the absolute event space £ by the frame-depen-
ding splitting into space and time (t,p) : E - T x P, associating with
each event e its absolute time t(e) and its frame position p(e).

ke get also the splitting TeE ~ Tx$, which associates with each vector

u, applied in e, its absolute time component u® and its frame spatial
projection P(e)(u) = u-u°ﬁ(e). By means of Tp and T2p we can asso-
ciate with each point of TE and T2E the relative observed quantities

of TP and TZP .

Among all frames, some have a special interest for the peculiar pro
perties of their motion and of the position spaces.
First we consider the affine frames, characterized by the fact that DP
depends only on time. Their motion is determined by the motion of one
of their particles and by its spatial derivative ﬁ , which depends
only on time. The sum of strips representing the vectors of TP results
to be independent on the position.
Then B results into an affine space, with the quotient induced by the

motion P E(Txi) 2c vector space. The affine connection results to be

/P
time independent and we can write iP:TzﬁqueP.
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Then we consider rigid frames, which are affine frames such that ep

is zero. The spatial derivative of their motion is unitary. Their mo
tion is determined by the motion of one of their particles and by its
spatial unitary derivative(by a time derivation we obtain, from this
fact, the classical formula for the velocities of the rigid frame).

As the motion preserves, along the time, the spatial metric, B results

into an affine euclidean space,namely gP results time independent

and we can write : TP -~ R. Then we consider translating frames,

g
P
which are rigid frames such that 2, is zero. The spatial derivative
of their motion is zero. Their motion is determined by the motion of
one of their particles. As the motion preserves, along the time, the

spatial vectors, the vector space B results to be equal to g. Finally

we consider inertial frames, which are translating frames such that

P is zero. The total derivative of their motion is zero. Their motion
is determined by the inertial motion of one of their particles. The

projection P 1is constant, hence fP = rp .

Now we consider a fixed frame P and a fixed motion M, we define
the quantities of M observed by P and we make a comparison between
absolute and observed quantities. The observed motion is the map
MP:E +~ P, which associates with each time +teT the position p(M(t))

touched by M at that time. The observed motion MP characterizes

the absolute motion M, since M(t) = E(T,MP,(T)) . Then we get the
velocity of the observed motion dMP : T > TP, which is the derivative
of MP performed by P, by means of its differentiable structure. We

get also the acceleration of the observed motion ﬁPJMP:T ~ TP, which

is the covariant derivative of the velocity of the observed motion, per



- XVI -

v

formed by P, by means of its time depending affine connection ;P'
The observed velocity of M is the projection on TP of the velo-
city dM. The observed velocity and the velocity of the observed mo
tion are equal.

The observed acceleration is the proiection of the sum of the acce-

leration of the observed motion and of a generalized Coriolis term,

X . 2 pd
plus a dragging term. Namely we can write DM = DPMP+CP(DPMP)+DP (MP)'

Finally we consider two frames ?] and Pz and a motion M and

we make a comparison among quantities observed by P, and by P

1 2’

First we consider the quantities of P, observed by P,. Then we

1 2’
find the addition velocities theorem and the generalized Coriolis Theo
rem. Specializing the kind of frame of references, we get the usual

theorems.

Comparison with special and general relativity.

We want to show some surprising and important analogies with the

special and general relativity, not involving the light velocity.

In both cases we have a four dimensional event space &, which is
affine in the classical and special relativistic case and which has not
an absolute splitting into space and time. In the classical case we have

a privileced three dimensional subspace $ < E, which determines the

absolute simultaneity and the absolute time as the quotient space TEE/§ .

These facts have not an absolute relativistic counterpart. On the other
hand, in the relativistic case we have a Lorentz metric on the whole
TE (it is constant and fixed in special relativity and it is matter

depending in general relativity), while in the classical case we have
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only an euclidean metric on TE. The relativistical Lorentz metric de-
termines, by orthogonality, a frame depending and pointwise (local if
the frame is integrable) spatial section which replaces the classical

$. The classical time orientation is given on T, while the relativistic

one is given on the light cone.

In all the three cases we can describe a motion (or its world-line)
by a four dimensional map M : T - E (or by a one dimensional submani-
fold M« E), which is absolute, i.e. not depending on any frame of re
ference. In the relativistic case the condition that M is time-like

replaces the classical condition t o M = 1d1. In the relativistic case

T 1s not the absolute time, but the proper time of the motion, namely
it is M itself endowed with the affine euclidean structure induced by
the metric of E. In the classical case we get <t,DM> = 1 and <E,DZM>=O.

o . C e 2
These conditions are replaced in the relativistic case by DM =-1
2

and DM e D"M = 0.

In all three cases we can consider the most general kind of
frame of reference,while people often consider only rigid frames in
classical mechanics and inertial frames in special relativistic. The de
finition of frame is essentially the same in all three cases: the
only differences come from the implicit differences in the definition
of the world lines of the continuum particies. Analogous considerations
hold for the representation of P, TP and TZE, for the time depending
metric and connection, the Coriolis and dragging maps and the classifi-

cation of special frames.

Since we deal with general frames of reference, we get for classical
and special relativistic observed kinematics criteria currently used in
general relativity. In fact under our statment of the absolute Coriolis
Theorem we can recognize usual general relativistic formulas, commonly

quoted in other form.



I CHAPTER
ABSOLUTE KINEMATICS

In this paper we study the general event framework constituted by
the event space, its partition into the symultaneity spaces, which

generate the time and the spetial metric.

We analyse some remarkable spaces and maps connected with the pre
vious ones. Finally we study the one-body absolute motion, velocity
and acceleration. All these elements are considered regardless of

any frame of reference,



1 - THE EVENT SPACE

First we introduce the general framework for classical mechanics.

Event space, simultaneity, spatial metric, future orientation, time.

1 - Basic assumptions on primitive elements of our theory are given by
the following definition, which constitutes the framework of classical

mechanics.
DEFINITION.
The CLASSICAL EVENT FRAMEWORK is a 4-plet

€ = {E,i,é,O}

where
E={E, £, o} is an affine space, with dimension 4;
§ - E s a subspace of E, with dimension 3;
€ is a conformal euclidean metric on 3;
0 1is an orientation on the quotient space £/8.
£ s the EVENT SPACE; £ is the EVENT INTERVAL SPACE;
$ is the SIMULTANEOUS INTERVAL SPACE or the SPATIAL INTERVAL SPACE;

is the SPATIAL CONFORMAL METRIC;
is the FUTURE ORIENTATION,
-0 is the PAST ORIENTATION.

o 8

Henceforth we assume a classical event framework € to be given.

2 - The previous definition contains implicitly the notion of absclute

time, which we are now aivi-n eyplicitly .
DEFINITION.

The TIME SPACE is the quotient space
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The TIME VECTOR SPACE is the quotient space

T=(/5.
The TIME PROJECTION is the quotient map

t:E-T.
The SPACE AT THE TIME <t e T 1is the subspace

§ =t (1) > E.

T

The TIME BUNDLE is the 3-plet

ns (E,t,T)

Hence, each equivalence class is of the type

=]
t‘l
-
1]
o,
]
—~ o
+
]l
]
(=]
4
™

i
-

having t(e)

Thus t and § coincide but 1t 1is viewed as a point of T and $T as
. 5

a subset of E.
Moreover we will denote by j the injective map

j= (tyid.) : E~> T x E.

£/

3 - We get immediate properties for the previous spaces.

PROPOSITION.

a) (T,7) results naturally into an affine 1-dimensional oriented space.

b) t 1is an affine surjective map. We get

$ = (D t)'1(0).

c) For each rteT , (ST,$,0) is an affine 3-dimensional subspace of E;

hence {ST}TET is a family of parallel,(not canonically) isomorphic

affine subspace of E and we have
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E-11s.
teT

d) n is an affine, (not canonically) trivial bundle

4 - We have the absolute time component of an event interval.
DEFINITION.

The TIME COMPONENT of the vector ueE is

u® = <Dt,u> e T.

u is FUTURE ORIENTED or PAST ORIENTED, according as

+ —
u°eTl or uelT

Moreover u is spatial if and only if u® = 0.

5 - Thus, the equence

is exact, but we have not a canonical splitting of E, as we have

not a canonical projection E- §, or a canonical inclusion T < E.
However, each vector veE, such that < Dt,v> # 0, determines a splitting

of E.

Namely we get the inclusion

T < E,
. . A
given by vl E
and the projection
SR -
Py - s
. u®
given by u - u - §E v,

which determine the decomposition in the direct sum
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1
-y
@
Al

o UO 4

. U 1}
given by us=Sov s (u - 7o V) DV(U) + DV(U) .

]

6 - According to the bundle structure of E on T, we can define the
vertical derivative of maps, i.e. the derivative along the fibers. Ge

1] 1

nerally we will denote by "v the quantities connected with n .

DEFINITION.
Let F be an affine space and let f : £ - F be a ¢” map.

The VERTICAL DERIVATIVE of f is the map

v

DF=Df - : E~3 @F

3 -

Poincaré's and Galilei's maps .

7 -A Poincaré's map is a map E - E which preserves the structure of

€ and the associated Galilei's map is its derivative.
DEFINITION.

A POINCARE'S MAP is an affine map

G:E - E,

such that
a) DG ( )
b) DG e U(%)

5 -3
c) if G° : T~> T 1is the induced map on the quotient space T = E/S
then DG° = 1d7 .

DG : E - E is the GALILEI'S MAP associated with G.

G is SPECIAL if it preserves the orientations of E and § (hence

of T) .



8 - PROPOSITION.
Each Poincaré's map G 1in bijective .

PROOF .

It follows from DG e U($), DG° = ids

Space and time measure unity.

v
9 - We have assumed a 1-parameter family G of euclidean metrics on
3. A 1-parameter family G° of euclidean metrics on T 1is given a priori,

for dim T = 1.

An arbitrary choice of one among these makes important simplications

in the following.
DEFINITION.

A SPATIAL MEASURE UNITY is a metric g e G.
A TIME MEASURE UNITY is a metric g° € 6° .
The choice of aspatial measure unity 5 is equivalent to the choice of

v
the sphere (in the family determined by &) of %, with radius 1 as mea-

sured by 5 .

The choice of a time measure unity g° is equivalent to the choice
of the vector
A% € T
such that
g°(x°,x°) =1

Then X1° determines the isomorphism

given by .

)‘- o}

Henceforth we assume a spatial and a time measure unity to be given.

Hence we get the identification

1l

7T IR
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and the consequent identifications

r"
——
=]
-
~
p—
n
2zl
-
—
——
=
]
A
St
I
Al
-
—
—
=
-
-t
——
i
=
]
—
~
Al
L
-1
e
1
[

m
—
—
i
-1
p—
-y
w
— v
o
[}
e
ot
— i
—4
- o
D
(o}
=
-
—
>
ot
=
1]
-+
o
=3
=

In this way, the map Dt

t=Dtek

10 - Besides the subspace % <« E, which results into § = t—];U),an

-1
interesting will be played by the subspace of normalized vectors t (1).

DEFINITION.
The FREE VELOCITY SPACE is

U=zt (1) — E.
11 - PROPOSITION.

(v, i) results naturally into an affine (not vector) 3-dimensional

subspace of E .

Of course U and $§ are isomorphic as affine spaces, but we have

not a canonical affine isomorphism between U and § .

Special charts.

12 - In calculations can be usefull a numerical representation of E,
which takes into account its time structure. For simplicity of notations,
. . . 4 :
we consider only diffeomorphisms E - R, leaving to the reader the

obvious generalization to local charts,our considerations being essentially

local.
DEFINITION.
A SPECTALCHART is a C  chart

X = {xc,x1} € >R X R3 .

such that x° factorizes as follows



where x°:T > R is a normal oriented cartesian map .

Naturally x°(hence x°) is determined up an initial time.

We make the usual convention

asByh,us... = 0,1,2,3 and i,J.,hk, oov = 1,2,3 .

We assume in the following a special chart x to be given.

13 - Let us give the coordinate expression of some important quantities.

PROPOSITION.
We have Dx® =t
sx. : E > § 5
if ue E, then u=u’ dxo + u1 6x1 s where u° = {t,u>;
v a v 1 v J
g = gij Dx & Dx”
FaB = Déxa(éxB,Dx ) = = Dx (Gxa,éxB) =0,
rg. = Déx.(éx.,ka) = - szk(ax $8X.) =
1 1 J
1 kh
=70 9 340y T 250 T 29450
o 1
“i205 * Tiroi T %ol where  Tp.0B = gpgref .
Moreover Fk. = Déx (éx.,ka) = - szk(éx 28X )
0] o J 0 J
and Fk = Déx _(8x ,ka) = - szk(ﬁx 28X )
00 o' "o o’ 0

can be different from zero, if éxo is not constant.
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Notice that Dx° =t 1is fixed a priori and that the unique conditions

imposed a priori on &x  are
o]

<t,6x> = 1 <t,5%x.> =0 .
- 0]

Prhysical description.

The event space E represents the set of all the possible events
considered from the point of view of their mutual space-time collocation
and without reference to any particular frameof reference. This space [
must be viewed exactl in the same sence as the event svace ¢f Special and

General Theory of Relativity.

The event space E 1is the disjoint union of a family {% } T of three
T T

dimensional affine euclidean, mutually diffeomorphic, spaces. This parti-
tion represents the equivalence relation of absolute simultaneity among
events. The structure of each space $T permits all the physical operations
considered in the classical time—indepéndent Euclidean Geometry, as

stright lines, parallelism, intervals,sum of intervals, by the parallelogram
rule, circles, etc. We have not selected a priory a spatial measure unity,
for it is not physically significant: by means of rigid rods we can only

find ratios between lenghts is all directions and the choice of a parti-

cular interval of a rigid rod is a useful but not necessary convenction

The symultaneity spaces $T are mutually .but not cancnically,isomorphic.
for a particular family of bijections among these leads to a determination
of positions, i.e. to a frame of reference, which we have extludedin the
general context. Notice that in $T we have not privileged points or

axes.

The required four dimensional affine structure of E leads to the
affine structures of the subspaces § and to the one dimensional affine
T

structure of the set T, whose points are the equivalence classes § .
T
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This space represents the classical absolute time. Its affine structure
admits the time intervals, independent of an initial time, and their sum.
The one dimensional affine structure of T Tleads also to the measure of
time intervals with respect to an arbitrary chosen unity. Hence the affine
structure of E contains implicitly the idea of "goodclocks".

The dimension one describes also the total ordinability of times and the
assumed orientation o describes the future orientation.

Notice that in T we have not a privileged initial time.

To make more evident the described properties of event framework, we can
make some pictures using the affine euclidean structureof thepaper We must
take care essentially in two things: we nust neglect two (or one) dimen-
sion of E and we must partially neglect the euclidean structure of the
paper, for we have not a measure of angles between spatial and time vectors.

So a time vector orthogonal to a spatial vector is nonsence.

E oL E T

S

§——— e = - = —— . =
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2 - FURTHER SPACES AND MAPS.

Now we introduce some further notions concerning applied vector spaces

and maps.

Vertical and unitary spaces.

1 We intrsduce the snaces of applied vectors relative to $, and UL
DEFINITION.

The VERTICAL SPACE WITH RESPECT TO (E,t,¥), or the PHASE SPACE, or
the ACCELERATION SPACE, is

AzTE Ker Tt =Ex$< TE.

The HORIZONTAL SPACE WITH, RESPECT T0 (E,t,T) 1s

The UNITARY SPACE, or the VELOCITY SPACE, is

V=TE = (Tt)'1(1x1) cEx VW E

2 Let us remember that TE has two bundle structures, namely

(TE,Tt,T T) and (TE, =, , E)
PROPOSITION.

a) ?E is the submanifold of TE characterized by x° =0

]
TE 1is the submanifold of TE characterized by x° =1

b) %E and TE have two natural tundle structures, namely

(TE,E,T) and (TE,7_LE)

£
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(TE,t,T) and (TE, #pE).

c) The sequence 0 -7t - TE - TE -0 is exact

We have not a canonical splitting of TE, as we have not a canonical

projection T& - TE, or a canonical inclusion TE — TE.
P 1
In the same way we have not a canonical isomorphism TE - TE .

3 We can extend the vertical derivative in terms of applied vectors.
ODEFINITION.

let F bea C manifoldand f : E-F a C map.

The VERTICAL TANGENT MAP of f, WITH RESPECT TO (EL,t,¥), is the map

Tf=Tf « : TE -
Tf=Tf oo T - TE L

4  We can view the metric as a function on TE, which will beccme: the
kinetic energy in dynamics.
DEFINITION.

The METRIC FUNCTION is the funtion

é . T - R,
given by (e,u; — —%— u2 .
5 PROPOSITION.
PR PR B
We have 9= gij X X .

Second order spaces, affine connection and canonical projection.

© We consider now the second order tangent spaces.
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DEFINITION.

The VERTICAL SPACE, WITH RESPECT TO (TE,t,T), is

__— 2

t2E —ker TE-Ex8x3x§ — TF.

\ A

The VERTICAL SPACE, WITH RESPECT TO (TE,t,T)

v

uTZE = Ker Tt Ker TJEE =f x9% x0

The BIUNITARY SPACE or BIVELOCITY SPACE, is

ExUx 3 diagonal

{1

v/ : = TE = sTTE
The VERTICAL BIUNITARY SPACE, WITH RESPECT TO

2

W = ';TZ

7 PROPOSITION.

fZ . 2
‘)“{'2E 1 " 1] 11} " H

. 2 " 1] n L1} n "

T°E

‘\)TEE " n " 1 " "

E= oTTE=ExUx0x§— TOE

f is the submanifold of T E characterized by

ExUxUx§ — T0 .

TE,"_,E), s

x°=x" = X° =0

T, vQ

x°=x" =X =0
O <1 <1
x°=x"=1,x =x ,Xx°=0

8 Let us consider some important canonical maps, which are used to defi-

ne the covariant derivatives.

DEFINITION.
a) The AFFINE CONNECTION MAP

T TZE - vTZE ,

given by (e,u,v,w) - (e,u,0,w),



induces naturally the maps

°g

v

: % >VvT

1

-

and : TZE - VT

°
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2
.

b) The CANONICAL PROJECTION (which is an isomorphism on fibers).

HE vTZE - T ,
given by (e,u,0,w) - (e,w),
induces naturally the maps
v 2 v
oo Tr - TE
Voo L2 v
and v TE - TE .
9  PROPOSITION.
We have ( o= x>
|
- .
| X" e = &0
I x o =0
| v o L L
L X (= S P o L = g_B
We have o ] =X
-Cl [I ..a
Lx c || =X .
10 Then we can introduce the covariant derivative in a way that, not

making an essential use of free

DEFINITION.

Let us g - TE and

id ,u)k
( i )

vectors, can be extended to manifolds.

f6y E>TE be C vector fields.

v=(id



The COVARIANT DERIVATIVE of v with respect to u 1is

vvElloreTveus (id,Di(v): E~TE .

3 - ASSOLUTE KINEMATICS.

Here we introduce the basic elements of one-body kinematics independent

of any frame of reference.

Absolute world-line and motion.

1 The basic definition of kinematics is the following. Here we consider
a C  world-line extending along the whole T. We leave to the reader
the easy generalization to the case when it is Cza]most every where, or

when it extends along an interval of T.
DEFINITION.

A WORLD-LINE is a connected C~  submanifold
M f
such that $Tr;M. is a singleton, ¥ -eT .
The MOTION, RELATIVE TO THE WORLD LINE M, is the map
M:T-> K
given by r « the unique element € ${wM

Henceforth in this section we suppose a world-line M, or 1its motion

M to be given.
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2 PROPOSITION.

M is an ambedded 1-dimensional submanifold of &, diffeomorphic

to R.

M 1is a section of (E,t,T), namely it is a ¢” embending, such

that

i.e. such that

Hence the map
M:T - M isa C diffeomorphism .

The world 1line M 1is characterized by its motion M .

3 The affine structures of T and E admit a Kind of privileged

world-1lines.
DEFINITION.

M is INERTIAL if it is an affine subspace of &

4  PROPOSITION.

M 1is inertial if and only if M s an affine map, i.e.
M(t') = M(t) + DM(t"'-7), with DM e U

Absolute velocity and acceleration.

5 Previously we introduce useful notations .
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a) Let ¥ be an affine space and let

p : T -F

be a C map.

Then we nut de¢ = (¢,D¢) : T TF
In particular, if >=f T - & ,
we get df = (f,Df) : T > TE
and d°F = (£,DF,DF,0°F) : T~ T°L .

2 2
b) We put vdf = [[ eTr odf=(f,DFf) :T~TE.

The coordinate expressions are

2 o 2

d°f = DF"(ax © df) + D°f (ax ° df)
a o)
gdf = (D°F%+(r® o £)DFDF)(ax o f)
By a

6 We can view the absolute velocity in terms of free or of applied

vectors, equivalently.

DEFINITION.
The FREE VELOCITY of M 1is the map

DM: T -~ &

The VELOCITY of M 1is the map



d M

(M, DM) : T TE

7 PROPOSITION.

We have <t ,DM>=1. (%)

Hence, we can write

DM:T-U
and dM: T-V=TEL
and we get D M° =1

DM=238x>sM+D Mk(ﬁx c M)

-7 k
k
d M= axo s M+ DM (axk M)
PROOF. (*) follows from t o M = 1'dT .

8 We can view the absolute acceleration in terms of free or of applied
vectors, equivaler1ly and second order tangent space may intervene espli-

citly or not .
DEFINITION.
The FREE ACCELERATION of M is the map

%M - T .

The LIFTED ACCELERATION of M 1is the map

T o dZM = (M,DM ; O, DzM) T > TZE .

The ACCELERATION of M is the map

vdM=z || or o 4= (MDM) c T - TE
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and
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PROPOSITION.
We have <t, DM > = 0 (*)

Hence, we can write

I o d2M : T +\JT2E

and we get DM =0

pM = (05 +(rX ompom omIa(rX amyomd + tK o My sx
1J 0J 00 k

ro doM = (2SN omyomTomI+(rK oMyomd + 7K oMy ax
1] 0] 00 k
v d M= (M amyom oMK ompomd + K oMy 3x
1] 0J 00 k

Geometrical analysis.

fro

10
ori
M

is

The

is

Now

Here we give some further element of analysis of M, not essential

m a Kinematical point of view.

M has two structures: the C  structure induced by £ and the
ented euclidean affine structure induced by T ( but, in general,

is not an affine subspace of E) .

The embending ™ :TT>TM < TE

given by (tox) = (M(t)), ADM(7))

embending T2M : TZT - T2M1aa TZE

given by (Tohsu,v) ~» (M(T),ADM(T);UDM(T),VDM(T)+AuDZM(T)).

, let us consider the two fields
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dMoM'1 M- T M

1

=
n

cM->TE

vdM o M M

41
n

and

11 PROPOSITION.

M results into the unitary oriented constant field, with respect
to the oriented euclidean affine structure of M induced by T.

Moreover, each vector field X * M- T M can be written as

X = XM where X° = <t,x-.
12 PROPOSITION.

let X :M-TM and y : M>TM be two C fields.

Then the covariant derivative

v =1l ¢ Te o . -

WY oE Lo TYoX:M T E{M
is given by ?XY = p"ﬁ ° vXY + pﬁ o vXY R
where p“ﬁ ° va = X°DY'M

results into the covariant derivative with respect to the affine structure
of M and

L o s :00:
ph o 7Y = X° YO M

shows that the tensor

=

etet: M- Ty b,

can be considered as the second fundamental form of M
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Physical description.

The world-line M of a particle represents the set of all the events
“"touched" by the particle and the motion M s the map that associates
with each time the relative event. Of course the events being absolute,
i.e. independent of any frame of reference, the same occurs for the

world line and the motion. The affine structure of & allows a privile

ged type of motions, namely the inertial ones.

As we have the absolute motion M, we have the absolute velocity DM
and acceleration DZM. These contain all the information necessary to
derive the velocity and acceleration observed by any frame of reference,
when it is chosen. The fact that DM is a unitary vector and DZM is a
spatial vector will put in evidence how the observed velocity changes
and that the observed acceleration does not change from an inertial fra

me of reference to an other.

We can describe the previous facts by pictures.

T,

7
A

T n(w+t)
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I1 CHAPTER
FRAMES OF REFERENCE

Here we study the absolute kinematics of a continuum, which, viewed
as a frame of reference, determines positions, the splitting of event
space into space-time and the consequent splitting of velocity space.
We analyse the positions space and its structures as the time-depending
metric, the time-depending affine connection and the Coriolis map.

Finally we make a classification of frames.
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I FRAMES AND THE REPRESENTATION OF & .

Frames, positions and adapted charts.

1 The basic elements of observed kinematics are frames, constituted

by a reference continuum whose particles determine positions on £&.

For simplicity of notations, we consider only global frames, leaving

to the reader the obvious generalization to local frames.
DEFINITION.

A FRAME (OF REFERENCE) is a couple

P o= PLIT }

where P 1is a set and, ¥ q € P, Tq is a world Tine,

such that

a)*) E= T
pril:

qeP
b) ¥ e e E, there exists a neighbourhood U of e and a ¢" chart

X = {x”,x1} U >R x R3
adapted to the family of submanifolds {T !} .
q qeP
P is the POSITION SPACE; each qeP 1is a POSITION; the map
p:E-P

given by e - the unique qeP, such that e € Tq .

is the POSITION MAP; if e e E, then p(e) e P 1is the POSITION of €

*
() It sufficies to assume E = U
peP

that each Tq is open and connected, we see that,if g # q', then
TA~AT, = .
q q /

Ia. In fact, taking into account b) and
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Henceforth we assume a frame P to be given.

2 Calculations develop in an easier way if performed with respect to a
chart adapted to P. For simplicity of notations, we consider only global
charts, leaving to the reader the obvious generalization to local charts,

our considerations being essentially local.
DEFINITION.
A CHART ADAPTED TO P is a chart

{x°,x1¥ c E - R x R3 ,

such that it is special and it factorizes through P, i.e. such that the

following diagram is commutative

RN
AN

)X

o

where x° : T > R 1is a normal oriented cartesian chart
Charts adapted to P exist by definition 1.

Hencefort we assume a chart x adapted to P to be given.

Representation of the position space P .

3 P results naturally into a ¢” manifold.
PROPOSITION.
There is a unique C" structure on P, such that the map p : & - P
is C . Namely it is induced by the charts adapted to {Tq e -
Qe

PROOF .

Unicity. If y : Vc P - RB is a chart which makes p ¢
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3

and if x : Uc E >R xR™ dis a C chart adapted to (T} epr then

the map (defined locally)

3 3 X! 3
RS RxR ——f LPop Lop’® |

o

which is the change from x toy, is C

Existence. The change of charts on P induced by charts adapted to

. o0
is C

1
{Tq’qu -

4 We get a first immediate representation of P.

The frame P determines a partition of E into the equivalence classes
{T } .

q'qeP

Then we get the natural identification of P with the quotient space E/P

P = E/P,
by writing q = p—1(q) = Tq
and [e-_] =q = !:e'] < > p(e) =q = p(e')

We will ofter identify P and E/P .

5 Choicing a time <1 € T and taking, for each equivalence class, its
representative, at the time 1, we get a second interesting representation
of P.

For this purpose, let us introduce three maps related with P,
DEFINITION.
Let 7, t' € T .

Then we define the three maps
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a) P : P> §
T T
given by q + the unique e € $Tn Tq ;
b) pT = p|$ : ST =P
T
P =P, o -
2 (<51) PT' P ST Soo-

6 Then we see that P 1is diffeomorphic (not canonically) to a 3-dimen-

sional affine space.

PROPOSITION.

v (=e]
The maps PT and p are inverse C diffeomorphisms:
T

u
P 1] I ° P ] = P n
(t",1") (t's1) (t"s1)
v
= id
and P(T,T) i g
T
v . @
hence P, is a C diffeomorphism
(T sT)
PROOF .
P and pT ave inverse bijections. Moreover, P> which is the gompo-
T

sition ST — [ -+ P, is C and det DP = det{oy.¥ xj
T

A p_)# 0, where y

is a special chart .
7 The relation among the different representation of P is shown by the

following commutative diagram



- 27 -

P
PT,/;? Q;PT
«
by 3 <
5 .
(t'1)

M - /M

3

Frame motion.

8 We need a further map given by the motions associated to the world
lines of P.

DEFINITION.

The MOTION of P 1is the map

P:TxP-~1I
given by (t:0)  ~ the unique e e S AT .

Thus P is the union of the family of maps {PT}TET previously

introduced; on the other hand, P is the union of the family of maps
{Pq}qGP , constituted by the motions associated with the world-lines of 7P.

The motion P characterizes the frame P.

9 For calculations it is more advantageous a further map, substantially

equivalent to P, which relates affine spaces.
DEFINITION.

We define the map

given by (t,e) = P(t,p(e))

Thus the following diagram is commutative by definition
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v
P
Txt ////”E
1d'lx'D\“T x P P
10 The following immediate formulas will be used in calculations.
PROPOSITION.
We have
a) t(P(r,e)) = : i.e t055=1d.ﬁ,
v
b) P (t(e),e) = e , i.e. Po j= 1dE ;
c) P (1,P (0,e))= P(t,e)

P characterizes the frame P.
. i
We have x” o P = EO . X o P =x

Rappresentation of E .

11 The frame P determines the splitting of the event space in space-time.

THEOREM.

The maps
(typ) : E - T xP and P:Tx¥->1(
are inverse C. diffeomorphisms.

Namely the following diagrams are commutative

E (t:p) 7 4p TxP—1t " g

\E L/P \, Pm/(t,p)

T x

Hence (&,p,P) results into a ¢” bundle, with fiber T.
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PROOF .

o0

P and (t,p) are inverse bijections. Moreover (t,p) is C and
det D(t,p) # 0

12 DEFINITION.

The FRAME BUNDLE is
= (E,p,P)

Thus we have two bundle structures on &, namely

3
m

(E,t,T), wich has an absolute basis T and a non canonical fiber

diffeomorfic to P or to ST, ¥ teT,

=2
1l

(E,p,P), wich has a frame depending basis P, diffeomorfic to
ST, ¥ 1eT, and an absolute fiber T.

The frame bundle =« characterizes the frame P.

Physical description.

A frame P 1is a set P of particles, never meeting, filling, at each
time 1€V, the whole space ST, with a C flow, hence first a frame is a con

tinuum and we study the absolute kinematics of its particles.

Such a continuum can be viewed as a frame of reference. In fact it deter
mines a partition of E in positions. Each position in the setof all events
touched by the same frame particle. Under this aspect we can identify the

set of positions with the setof particles P.

We can describe the frame, its motion, the positions and the splitting
of E 1into the space-time T x P, by a picture. Notice that we can con-
sider only the differentiable properties induced by the paper to P, in

the picture : in fact the affine and metrical properties of P are time

depending.
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>
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2 - FRAMES AND THE REPRESENTATION OF TE.

In this section we are dealing with the first order derivatives of the

frame and tangent spaces.

Frame velocity and jacobians.

1 The velocity of the frame is the vector field on E constituted by the
velocities of the world-lines of the frame. Hence it is the first derivati
ve of the notion with respect to time. On the orther hand, the jacobians
are the first derivatives with respect to event. We consider only free en
tities, for simplicity of notions, leaving to the reader to write them in

the complete form.
DEFINITION.
a) The (FREE) VELOCITY-FUNDAMENTAL FORM - of P is the map

D}ﬁ T xE~E .

The (FREE) VELOCITY-EULERIAN FORM - of P 1is the map

P = D}P s i E -k

b) The (FREE) JACOBIAN-FUNDAMENTAL-EULERIAN FORM - of P is the map

a, -

0Pt TXE -~ B eF .

The (FREE) JACOBIAN-EULERIAN-EULERIAN FORM - of P is the map

5 = Dzﬁ o J ¢+ B~ E* x I

The (FREE) SPATIAL JACOBIAN-FUNDAMENTAL- EULERIAN FORM - of P is the map

v v v - % -
P = DEP T xE~-9% @F

The (FREE) SPATIAL JACOBIAN-LAGRANGIAN-LAGRANGIAN FORM, RELATIVE TO THE
INITAL TIME <« € T AND TO THE FINAL TIME ' € 7, of P - is the map

v “y - -
b =DP, , . :% -3 @3

(t'7) (t't) ~ 7t -
We will denote by
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P:E~>TE , P: TE ~ TE P:TxTE - TE
the maps associated with P , @, p .

We will write

X = P(x), ¥ xeTE,
D
up = P(e)(u), ¥ X e TeE .

2 We get immediate important properties of these maps

PROPOSITION.

We have

a) teDF =]
b) to D=0

Hence we can write

DP: T xE-~U , ﬁzﬁ CTXxE-F @3

P:.E-U P:E-3"@3 P: E-E @3

Moreover, all the previous maps are expressible by P , P and 5:

v - v
c) P =P P

e) P=1d§:'t®P,

2]
v
A

hence P is a projection operator

d) D,F = P o (P o) ;
v Y
f) D2PT'I$T =Pl

We have also the group properties

9) (P > P ) o P =P,
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h) P(T,T) = 1d§ 5
hence P(T, 0) preserves the orientation of §
i) det P(T,,T) > 0.
We have
e) P=sx_, P= Dx @ &x.
0 1
PROOF

and b) follow from (II,1,10 a) , by derivation with respect to 7 and e.
follows from (II1,1,10 c), by derivation with respect to +t and taking oz1,

)
c)
d) follows from (II,1,10 b), by derivation with respect to e.
)
)
)

e) follows from (II,1,10 c), by derivation with respect to e.
f) follows from definitions.
g) and h) follows from (I1I,1,6).
i) P i i hism, h det P 03
i) (T,’T)(e) is an isomorphism, hence de (T,’T)(e) # 03
¥ h'4 . . .
det P(T’T)(e) =1, for (h), and P(T,’T)(e) is continuous with respect

to ', for (f)

Representation of TP .

3 In order to get the space T P handy, it is useful to regard it as a
quotient. In this way we could view T P as a quotient space TE[P' But a

reduced representation by means of TE is more simple, for the equivalence

/‘:p
classes have a unique representative for each time t e T.

PROPOSITION.

Let veTP. Then
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g, =Tp (v) = (T,p) (1) e TE

is a Cw submanifold.

Then we get a partition of %E, given by

v
TE = | ] 4& ,
veTP
and the quotient space %Efp, which has a natural C  structure and

whose equivalence classes are characterized by

[e,u] = [ e',u'] «—

=

i

. ple) = ple') , P(tle'),e)(u) = u' . (b)

We get a natural c” diffeomorphism between T¥ and ?E/p given by the
unique maps

v

AL TE{/‘p and TE/p L

which make commutative the two folloving diagrams, respectively,

T2P . 9 T
FxTPe—=~% L TF TE—2 o T
12+ + \ //q

v o
TP e—y T F TE
/P /P

PROOF .

(a) follows from (II,1,17).
(b) follows from

I - [ ! o _ ({a! [ comenf@ b ) =TP
[e,UJ L& 9U] —————=> (€ ,U ) € (TZP)TD(G,U) =€ U ) TF,

The €~ structure on TE/p is induced by the charts adapted to (T

We will often make the identification

v 1
™ =27 E/p .
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which is very useful in calculations.

4 Choicing a time <teT and taking, for each equivalence class, its re
presentative at the time <, we get a second interesting representation

of TP .
PROPOSITION.

% (o]
The maps TPT and Tp are inverse C diffeomorphisms
T

™ TP > T3
T

T

9 =% x%, Tp :T% =% x8%-»TW

T T T T T -

5 The relation between the different representations of TP 1is shewn

by the following commutative diagram

C‘—-——D—
) TP T E/P
TP, TP
T T
&.—-) = VI
TS . Ty &— Tt
T Tﬁ T
(t,7)
6 Taking into account the identification TP < TE/P , we get the following
expression of Tp and TP.

PROPOSITION.

a) Tp (esu) = [e, Ple)(u)]
b) T P (t,r3[e,u]) = (P(v,e),x P(P(x,e) + P(t,e)(u))

PROOF .

a) The following diagram is commutative
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B
id, x T T, P i
p
TxTE ! - TxTP 2 T=E
TE T TP u-———jg———v [ E/p
Hence we get
v

To(e,u) = (TpP)(t(e)se,u) .

b) The following diagram is commutative

v

TTIXTE — TTIXxTE —2t 78
. FTGepP) A
TTxTE/pT TTxTP -

Hence, we get

TP(t,r5 [esu]) = TP(1,0; TP(T’t(e))(E,U)) .

Frame vertical and horizontal spaces.

8 The bundle 1 = (&,p,P) induces two useful spaces.

DEFINITION.

The FRAME VERTICAL TANGENT SPACE is

TPE Ker Tp e— TE
The FRAME HORIZONTAL TANGENT SPACE, or FRAME PHASE SPACE is

Tl = TE .

9 We have several representations of these spaces.
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PROPOSITION.

q T
a) We have 'EPE = Ker Tp= I T.P .

Hence {P[ is the subspace of TE generated by the velocity of 7

v
T.E = {(e,u)eTE | u =1 P{e)} .

P
?PE is the € submanifold of TE characterized by
X' =0 .
Moreover, the maps
J v 4

T . -> M - ¥ E-J
|1P : TTxP TPE ] and (Tt,p) IPE_ T7Tx

(t5239) = (P(7,9),AP(P(7,q))) (e,aP(e)) = (t(e),rsple))

are inverse C. diffeomorphisms;
the maps

v o [o] v

IPE > TE and TE -~ TpE ,
given by  (e,AP(e)) =(e,1) and (e,A) = (e,\P{e))
are inverse C. diffeomorphisms;

the following diagram is commutative

y (Tt,p)
IPE —2 . T T xP

. e

o

b) The charts adapted to {1qjqu induce a C atlas on TPE )
Hence TPE is the space

I = {Le’V]}(e,v)eTE = {[e’u]}(e,u)eTE = {(e,u + T E)]
Moreover, the maps

TxTP - T and T.E - ¥Tx TP

P P
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induced by the diagrams

TZP o
ITXxTP——TE - TPE

and given by

u ¥
(T,[E,UJ) = [P(T’e)sP(Tse)(uu
are inverse C. diffeomorphisms;

the maps

given by [e,v] » (e,ﬁ(e)(v))

are inverse C diffeomorphisms;

the maps

TP[ - TE

given by [e,v] +(e;;(e)(v)+P(e))

- o - -
are inverse C diffeomorphisms;

and

and

and

and

and

and

the following diagram is commutative

TP

We will often make the identifications

i
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e

STTxP

—

_ﬂ‘-.
(a2 ]
1]

e
—<
(22 ]

i
- -
S|

= Tx TP

—
~
1

Frame metric function.

10 We get a "time depending” Riemannian structure on P, induced by the

_ family of diffeomorphisms

TP — T 3§

T

BEFINITION.
The FRAME TIME DEPENDING METRIC FUNCTION is the function

gp T x TP ——R

given by the composition

v 9
TxTP -TE ——R,

ie. g (s [eu]) = ——(Plre)(u)® .

ne

Taking into account T x TP =V, we will write also

Qp : VWV—R

11 PROPOSITION.

We have 9p = —%— g1.j %' %

Representation of T .

12 Most of the previous results can be sumarized in the following
fundamental theorem, which gives the representation of TE induced by

the frame.
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THEOREM.
The map TE - 1PE Xg TE s

given by the natural projections, is a o diffeomorphism.
v v
The map TE *E TPE - T ,

given by the natural inclusions, is a c” diffeomorphism.
The maps

t(t,p) : TE - TT x TP and TP TT¥xTP > TE

are inverse C diffeomorphisms.
Moreover we have the C diffeomorphisms

TPE - T x TP > TE and TE->TTxP - TPE .

Hence, the relation among the previous three representations of TE is

given by the following commutative diagram

(t,Tp T ox
u"’,,,f””’#b (t TP\\\\\h
TE é[ fPE ‘ > T -———————»tp £ iE TE
%i E o T E
";:flrﬁxm‘hhﬁ“ﬁh‘“‘“-; T ¥ x P
The maps

o

TE >TE ~Tx TP - T E

are given by

(e,u) = (e,P(e)(u)) » (t(e),[e,P(e)(u)]) = [e,u]
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The map

o

TE-T 8- TTxP > TE

are given by

The choice of the most convenient representation depends'on circumstances.
Some of these have & theoretical relevance, other a computational advantage.
So, for esplicite calculations, we will generally use the following identi-

fications

ne

TP = TE : and TxTP = T

/‘P

Notice that in the decomposition of the vector field x : £ - TE

X = x° P + iP t E - %PE + T E

the component x° 1is absolute, but the space ?PE is frame depending,

and the space TE is absolute, but the component X_ 1is frame depending.

P

Physical description.

P is the field of velocity the frame continuum. ﬁ is the spatial
projection operator induced by the velocity and P is the infinitesimal

displacement generated by the continuum motion on spatial vectors.

We identify (at the first order) each vector of TqP with a strip
having as first side the world-line q and as second side another world-1i

ne.

We can describe the situation by a picture.
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3 FRAMES AND THE REPRESENTATION OF T2E .

In this section we are dealing with the second order derivatives of

the frame and tangent spaces.

Frame acceleration, second jacobians, strain and soin .

1 The acceleration of the frame is the vector field on & constituted
by the accelerations of the world-lines of the frame. Hence it is the se-
cond derivative of the motion with respect to time. On the other hand,the
second and mixed jacobians are the second derivatives with respect to

event- event and time~ event. We consider only free entities.

DEFINITION.

For simplicity of notations, leaving to the reader towrite them 1in the

complete from .

a) The (FREE) ACCELERATION-FUNDAMENTAL FORM - of P is the map

2’\; -
D]P c: TxXxE - E

The (FREE) ACCELERATION-EULERIAN FORM - of P is the map

2 -

5 = D] Pojg:E ~>E

b) The (FREE) SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM - of < is the map

(\J -— -
DgP:TxE > Peie I

The (FREE) SECOND JACOBIAN-EULERIAN-EULERIAN FORM - of P is the map
=% =%

- 2 V) -
P = 02 Poj:E -~ E @ T @ E

The (FREE) SPATIAL SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM - of # is the map

Al
#*
Al

v
P:¥TxE - 3 03 @

The (FREE) SPATIAL SECOND JACOBIAN-LAGRANGIAN - LAGRANGIAN FORM WITH RESPECT
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TO THE INITIAL TIME 1 e T AND THE FINAL TIME ' e T - of P is the map

41

3 -3 es @

(T19T) (TI,T) B

- <<
1"
lww)
vl

c) The (FREE) MIXED SECOND JACOBIAN-FUNDAMENTAL-EULERIAN FORM of P

is the map

ﬂU

*
D2D1P cTxE - @ft

The (FREE) MIXED SECOND JACOBIAN-EULERIAN-EULERIAN FORM of P 1is the map

-

z " —% -
P = DZD]P oj:Ef - F @ £

The (FREE) MIXED SPATIAL SECOND JACOBIAN-EULERIAN-EULERIAN FORM - of P
is the map

X v -
P = DZD1P oj:E-+-9% @t

d) The (FREE) STRAIN-EULERIAN FORM - of P is the map

- $@9 .

i

QP =So

The (FREE) SPIN - EULERIAN FORM - of # 1is the map

v - -
W =B 0P L aes

P "2
The (FREE) ANGULAR VELOCITY-EULERIAN FORM - of ® s the map

oP:E » §

v
o = ¥

P

~n| =

2 We get immediate important properties of these maps.
PROPOSITION.

We have

v
a) tobD, P=0



hence we can write

ﬁﬁ:TxE+§ D

(NSRS

P £ -

Al
-

Moreover all the previous

d) D
e) p
f) P
9) p
h) P
i) (D
1) (

If u=u®P+ Up * E -t
m) D P(u) =u® P
n) We have
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2"u

D P =0,
.
0 DZDl P=20,

i % =% = ~ - -
P:TxE - FE @I x% DZD}P:TXE»E @ %
E-F ®E @3 P.f - @38

v - -
P:E -3 @3
maps are expressibie by ﬁ,ﬁ)DP and P
v _ ny
% = B oP
1
= v_ - v _ .
=-Petet-(DPoP@t-te (DPoP)
= DPoP
= DP (P
v o
= DP
v
2 v -
BP)T'|$T B P(I',T) ° P|$*
¥ Voo
01 P)oj=DP
s we can write
AL (0)) + 9x U,
2 Spllpl T X Up
EFlpo
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= k 1
P =r, Dx1 ®@ §x
10 k
2 k o o k i o o i
P=-rT_Dx°@Dx®-r, (Dx & Dx° + Dx° @ Dx ) ® 6x
00 io k
e = 1. 1 +r’ )bx' @Dd =3 g. Dx' @ Dx?
=% J»0 0J 071)
1 i j
w, = 2 (I’J oi " I‘_l OJ) Dx @ Dx
1/ ] kij
.= 3 det(g V) € i.01 éxk
PROOF .

a),b) and ¢) follow from (II,1,10 a) by double derivation with respect
to t,t; e.e. and rT,e.
d) follows from (II,1,10 ¢) by doublederivation with respect to < and
taking o = 1 .

e) follows from (II,1,10 b) by dcuble derivation with respect to e.

f) follows from (II,1,10 ¢) by doublederivation with respect to 1 and
with respect to t and e and taking o = 1.

g) follows from (II,2,2c) by derivation with respect to e.

h) follows from f).

i) follows from (II,1,10 c) by double derivation with respect to e and

taking t = t(e), o = .

v v
1) follows from DzD} P = D]DZP.
m) follows from g and f)
n). follows from (Lﬁ g)ij = Bogij = Fj,oi + Fi,oj .

Representation of T2P and VTP,

3 In order to get the space TZP handy, it is useful to regard it as a

quotient. In this way we could view TZP as a quotient space TZE/P. But a
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. 2 . _ .
reduced representation by means of T E/P is more simpie for the equiva

lence classes have a unique representative for each time <eT.

PROPOSITION.

Let v € T%P. Then

(=1 = o) - T (2)

isa C submanifold.

Then we get a partition of TZE, given by
2
e=(, >
veTop

and the quotient space TzE/P, which has a natural C~ structure and

whose equivalence classes are characterized by

lesu,v,w] = &' u' v '] comm P(e)=p(e'), P(t(e'),e)(u) = u' ,

(t(e'),e)(u,v) + P(tle')ye)(w) = w' (b)

0«

P(t(e'),e)(v) = v',

We get a natural o diffeomorphism between T2P and ¥2EIP given

by the unique maps

v2 22
T%P - T E/p and T E/P > TZP

which make commutative the following diagrams, respectively,

1%p
TxTép —2 79 % — 1%
‘ |
|
e l i \\\” c///ﬁ
Y 125
2 P P
PROOF .

Analogous to (II,2,3)
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4 Choicing a time <eT and taking, for each equivalence class, its repre

sentative at the time 1, we get a second interesting representation of

TP.
PROPOSITION.
The maps T2PT and sz* are inverse C  diffeomorphisms

(\" - - - - e ==
T2PT : T2P - T2$ =% x99I x¥x8§, sz : T2$ = $Tx$x$x$ > T2P

T T T T

5 The relation among the different representations of T%P is shown

by the following commutative diagram

e T,
T Pz/ TP A
<«
1% ¢ To§ o T
T T

& The previous representations of T%P reduce to analogous represen-

tations of v TZP.

COROLLARY.

The quotient space (szE)/P is a C submanifold of TZEAP and

its equivalence classes are characterized by

le,u,0,wl= [e',u',0,W] e p(e) = p(e'), P(t(e'),e)(u) = u',

P(t(e')e)(w) = w'.

The diffeomorphism TZP - T2E induces a diffeomorphism

[,P

P - (VTZE)FP

and the diffeomorphism T2E - T%P induces the inverse diffeomorphism

/P

(VTZE) > VTP .

/P
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Moreover, the following diagrams are commutative

2 inl ’ il

vi f ——— TE vl ———— T §
T2 p l E Tp ! i

vT%P

LL;) iip

/7 Taking into account the identification TP = T2E we get the

iy 2
/P

following expression of sz and TZP.

PROPOSITION.

a) T2p(e,u,v,u) = le,P(e)(u), Ple)(v), P(e)(u,v) + P(e)(w)

b) TZP(T,A,u,V; [e,u,v,w]) =

¥ - Y - 2

(P(t,e), AP(P(t,e)) + P(r.,e)(u), uP(P (v,e)) + P(r.,e)(v) ,

1]

Ay E(P(r,e) +AD§(P(T,e))(P(1,e}(v)) + ADﬁ(P(T,e)(P(T,e)(u)}+v5(69(t,e} +

+ P(t,e)(u,v) + P(r,e)(w)

PROOF.

Analogous to (11,2,6)

Frame connection and Cariolis map.

8 For each €T, we can view P as an affine space ,depending on -,
taking into account the isomorphism T x TP -~ TL. Hence we get a "time

depending” affine connection on P

v 2
FP T xs T P =+ vT2!P.

THEOREM.

There 1s a unique map



- 50 -

:‘;lerxstep - ng!P.

such that the following diagram is commutative

s T2 ¢ 3 WTC ¢
2
(t:T p) ¥ . ¥ TZD
P
TxsTaP . o1

Such a map is given by the following commutative diagram

s T & —  yT [
4.
2 2
(1)) 4 |
f':P ,
Txs T P —~ vl P

Namely we get

Y

v v -

s lesusuam]) = [P(r,e),P(1,e) (u); 0,P(t,e) (uu)+b(.e)(w)],

hence,if t(e) = 1

TP(T,[e,u,u,wj) = [e,u,0,w|
PROOF .
W,
(t’sz) is L ~Txs TP and (TZP) S Txs TP -5 T

(0,0,0)
are inverse C diffeomorphisms.

9 Then we can introduce the "following map", that will be used (III,1)
to define the covariant derivative of maps T »TP, hence the accelera

tion of observed motion .
DEFINITION.

The FRAME TIME DEPENDING AFFINE CONNECTION s the map
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o Txs TP - \;TZP,

given by (v,[e,u,u,w]) w[5(1,e),ﬁ(x,e)(u);O,ﬁ(T,e)(u,u )+ﬁ(f,e)@1ﬁ

10 The time depending affine connection {P does not sufficies for

Kinematics.Coriolis theorem, (III,1) which makes a comparison between

the acceleration of an observed motion and the observed acceleration of

I .
a motion, requires a further map RP T xs T2 P-v T2 P,which is obtei

ned taking into account the isomorphism T x TP - TE .

THEOREM.
There is a unique map
! 2 2

" . N J
p Txs TP TP

such that the following diagram is commutative

| |
¥ i 4
Txs TP — T s o718

(L,T p)

Such a map is given by the following commutative diagram

Namely we get

' 1
:P(t, e u,u,wl) =

~ L

= [P(ere),P(-»e) ()50, P(r,e)(w) + 2P(r,e)(P(x,e)(u), + P(P(1,e))]

hence, if t(e) = =,
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rp(alesusuaw]) = [e,u.0,w + 2 Ple)(u) + P(e)]
Thus we have
IR T
where
CP T xTP-TP and Dp : T xP - TP are given by
pY] v
Colr,le,u]) = [P(r,e) , 2P(P(r,e))(u)]
. - .
DP(T,e) = [P(r,e) , P (P(r,e))]
hence
v - 2 2
CP : T xs T2P -+ ‘JTZP and Dp T xs TP -ulp

are given by

Ny v

EP(T,{e,u,u,w]) Z[P(r,e),P(r,e)(u),0, 2 P(P(wse))(P(rre)(u)) ]

4

Dy (15 [esu,u,w]) =[P(t.e),P(1.e)(u).0, P(P(r.e)] -

PROOF .
2 2 2

3 ) L
(t,Tp) : TE - Tx ST%P and (T P)(1 1,0) s T xsTP >TE

are inverse C  diffeomorphisms.

11 Then we can give the following definition

DEFINITION.

The FRAME CORIOLIS MAP 1is the map

CP T x TP - TP

given by (T,LE,UJ,” {ﬁ(T,E), 2 5(P(T,E))(U)j

|
|
-

The FRAME DRAGGING MAP is the map
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DP T xP TP

given by (r,(e]) a-[;(r,e), P(P(t,e))]

Physical description.

el

is the field of acceleration of the field continuum. E;3 is the
rate of change, during time, of the spatial metric; :b describes the
rate of change, during time, of the spatial directions. This facts are

implicitly proved in the next section.

It is not easy to describe by picture the fundamental ,but not straight

forward,results of this section.
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4 SPECIAL FRAMES.

A classification of the most important types of frames can be performed
taking into account the vanishing of quantities occurring, in DP .
So we get a chain of four types, characterized by a more and more rich

structure of the fosition space P.

Affine frames.

1 DEFINITION

The frame P is AFFINE if

VZF-)

D =0

2 We have interesting characterizations of affine frames.
PROPOSITION.
The following conditions are equivalent.

a) P s affine.

b) D P depends only on time, i.e. D P 1is factorizable as follows

4 .\\\“D P
- .
| ¥ 7 %as
T
c) We have P=0

d) P depends only on time, i.e. P is factorizable as follows

id_xt el

X Am—— X
—

e) Let o€ T; then , ¥ 1 € T, the map
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is affine, i.e.

f) ¥ teT, the map

/

is affine, 1.e.

PROOF.
[t sufficies to prove f) === e), the other implications being
immediate., f) ==> e).
n, ny v 2%
r.e') = D(+ . S
Let D]P(\,e ) D1.(.,e) + D2D1P(_) (e'-e),
with t(e) =0 = t(e')

Then, by integration, we get

Y L

P(t,e') = P(t,e) + A(t)(e'-e)+B(1,e-e")

where

Al
i
L]

A(r)

is a linear map.
Moreover, for (II,1.10 a) and (II.1.10 b) also B8 1is linear with

respect to (e-e').

v
Then P(r,e') = P(r,e) + D,P(t)(e'~e) .

Here by abuse of notation we have written

- - - A -

5P T -3"9% :P:FxT-3 @5, .
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as 5 P, 5, ... depend only on time.

Hence the motion of an affine frame P 1is characterized by the

motion of one of its particles

_* -
Pq T~ and by € ! T-%3 @¢%,0:7T-+3% .

3 Let P be affine. since p depends only on time, we can get a

¥
reduction of the representation of TP by TE

/P writing
(E[xi)/P;'(Pxﬁx?;)[P=Px(Tx§)/P.
THEOREM.
a) Let P be the quotient space
P = (T 5 .
(T x§)
. - _ -' l.! I= v
given by [tou] = [t'u') <= u P(T.,T)(U) .
Then P results into a vector space, putting
y [t,u] = [t,au]
feo) + o) = [ s B ()]
For each +teT, the map
P— §
- v
[t',u] —— P (u)

is an isomorphism.

b) Let a

o be the map
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given by (qs[t,u]) » p(P(1,q) +u)

Then the triple (P,ﬁ,op) is a three dimensional affine space.

c) For each 1 € T, the maps

p:% > P and P P> 3
are affine isomorphisms.
d) We get the splittings TP =P x P and TP=PxPxPxP,

writing

[e.u] = (p(e),[t(e),u]) and  [e,u,v,u] = (p(e),[t(e)u],[t(e),v][t(e)w)]]

RP results to be time independent and it is the affine connection of P
Lo S T%P - \;TZ P
P
(a,[c,u], [tou] s [t,w]) ~ (q,[t,ul,0,[t,w]) .
PROOF .

It follows from the fact that, ¥ t',t € T, the map

P : 3 -8,

(t',1) T T

is affine and from the properties

~ v n, n
(T",T') 0 P(TI,T) = P(T",T) 2 P(T,T) = TdsT
. C o 2 2 !
4 We get simplified formulas for Tp, Tp, TP, TP and ﬁp
COROLLARY.
We have

a) T op(e,u) = (p(e), [tle), P(e)(w)]).
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b) T P{t,r:q, t',ul ) = (P(1,9), AP(P(7,q) + P(T,T,)(u))

c) ﬁp(:;q,[r,u:,[T,Vj,[T,w]) =

= (Qs[rsul,0,[row + e () (u) + 2a,(c) x u+ P(P(t,9))]).

P

Rigid frames.

5 DEFINITION.

The frame P 1is RIGID if it is affine and

%0 -
6 We have interesting characterizations of rigid frames.
PROPOSITION.
The following conditions are equivalent.

a) P is rigid.
b) Let o e T; then, ¥ 1 ¢ T, the map

n.J

P 3 -3
(7,4) T
preservesthe distances, i.e.
Blemy® = By () 11 =l ee]
| e) - e i =) e-e
H (1,0) (t40) k a
c) ¥ ocel, the map
P‘[$ : $G -+ U
g

is affine and
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v v
d) We have P =0 and P : Tx & - S8 U(3)

PROOF .
a)<==>c) trivial.
a) ==>b) & is the Lie derivative of g ,ith respect P,i.e. the

derivative with respect to time of the deformations tensor g_o(b,P)—g.

Then €, = 0, by integration with respect to time, gives the result.

P

b) ==>d) It is known (the proov is a purely algebric computation,
making use of an orthogonal basis;that if A is an affine euclidean
space and f : A - A 1is a map which preserves the norm, then f

is an affine map with unitary derivative. Then we see that P(t,0) 1is
v

affine adn DP(T’O) e U( §)
d) ==>a) ﬁ(T, ) e U(%) gives
v Vt
P =P
(t,1") (t's7)
hence, deriving respect to t'
4 't .
P(T',T) © P(T',T) ]d$ »
we get
] v’t v \ft _
D]P(T,’T) 0 P(T,,T) + P(T,,T) 0 D] P(T,’T) =0
and, for ' = 1,
v v v
e («) =SD, P =D, P + 0Pt =0

P 1T (v,1) 1 (1,7) T (1,7) -

Hence the motion of a rigid frame P 1is characterized by the motion of one

of its particles ?q : T - E and by QP T3 .

/7 Let P be rigid.

THEOREM.
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P results into an affine euclidean space. In fact 9 results to

be time independent and we can define the map

which 1is aiven by t,u] = % u2

v
n
1

> results into the Riemannian connection of £ .

The affine connection

Translating frames.

8 DEFINITION

A frame P 1is TRANSLATING if it is rigid and

9 We have interesting characterizations of translating frames
PROPOSITION.
The following conditions are equivalent.

a) P 1is translating

b) Let o € T; then ¥ =t € T , the map,

(1,0) v T
is affine, with derivative DP = id- , i.e.
(1,0) $
v v
Py (1) = P(x) + (e'-e)
c) ¥ re T, the map
Pi$ : ST -~ U

is constant, i.e. Ple') = 5(e)
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Hence the motion of a translating frame is characterized by the

motion of one of its particles Pq S S

n

We will write P :T-U, P=DP: T8 . P=df-t@P:T-F @F .

v

10 Let ¥® be translating.Since P = id= , we can get a further reduction

$
of the representation of TP by TE/?, writing
- ", - -
(E x $)/P = (P xTx $)/p =P x 9

THEOREM.

Let P be translating.

a) The map
P - g,
given by [c,u] -,

is well defined and it is an isomorfism.

Then the map

given by (a,u)  ~p(P(7,q)+u),
does not depend on the choice of ~zeT.

b) The triple (P,$, €

P) is an affine euclidean space,

11 We get simplified formulas for T p, sz, T e, TP, %P .
PROPOSITION

Let P translating



12

13

14
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b) TP(t,x5q,u) = (P(t,q),AP(1) + u ,

2 - = -
T P(T,A,U,\‘;Q,U,V,W) = (P(T:Q):AP(T) +H,UP(T)+U,AP(T)+UP(T)+W)

C) ﬁP(T;q,U,U,W) = (q,U,O,W + E(T))

Inertial frames.

DEFINITION.

A frame P 1is inertial if it is translating and
P=o0.
PROPOSITION.
The following conditions are equivalent.

P is inertial,
b) P s translating and D P = 0.
P

is are affine map, i.e. (taking into account the properties (I1.1.10)

P(r,e) = e + P(r-t(e)), with P e U

el

d) E~U 1is a constant map .

Hence an inertial frame is characterized by its constantvelocity.

PROPOSITION.

We have

a) T p(e,u) = (p(e),u-uO‘ﬁ)

A1

sz(e,u,v,w) (p(e),u-u°P,v-v°P, w-w°P)
b) T P(t,23q,u) = (P(1,q),AP+u)

2 - - -
T P(tod,u,sVviq,au,vaw) = (P(1,9),AP + u.pP+v v Piw)

c) I results time independent and we get

P
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Physical description.

A frame P s affine if it preserves during the motion the spatiai
parallelogram rule; it is rigid if moreover it preserves spatial leghts
(hence also angles); it is translating if moreover it preserves spatial
directions; it is inertial if its world-lines are parallel straight-lines.

We can describe the four cases by a picture .

affine frame

Al l= |

riaid frame

-
-~
-~

N

translating frare

inertial frame

<<
<

-

&
<
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ITT CHAPTER
OBSERVED KINEMATICS

Here we analyse the one- body kinematics in terms of the positions
determined by a frame , introducing the observed motion and its velo-
city and acceleration. By comparison between the absolute and the ob
served motion we get the "absolute" velocity addition and Coriolis
theorem. Finally we make the comparison between the observed motions
relative to two frames, getting the velocity addition and Coriolis

theorem.
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1 OBSERVED KINEMATICS.

Let P a fixed frame and let M be a fixed motion. We analyse M

as viewed by P.

1 We first introduce useful notations.

o0

Let f:T - P bea C map.

a) We put f s(idﬁ,f) : T-TxP
dfz(idT,df) T >T x TP,
sz;(idT,dzf) LT AT x TP

b) df and dzf being functions on T, we can choose a natural re

presentative of the equivalence classes of TP and T%P. So we put

= [
df = kf,qpfj
and we get d°f= [f,D,f.Df sz]
by ,P,?’P
where DFf:T 3% and D2F . T - 3
P P

resemble derivatives of affine spaces, but are note properly such.

v v v2
c) We put odf = [y 0 Fpo dF T TP

v df = o " © 5 f: T -TP.
P Llp p

Observed motion and absolute velocity addition and Coriolis theorem.

2 The basic definition of observed kinematics is the following.

DEFINITION.
a) The MOTION OF M OBSERVED BY P 1is the map

MP =poM: TP .

b) The VELOCITY OF M OBSERVED BY P 1is the map

(dMo=TpodM:T TP,

P
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The VELOCITY OF THE OBSERVED MOTION MP is the map

d MP > T - TP .

c¢) The ACCELERATION OF M OBSERVED BY P 1is the map

(vdM_=TpovdM:T-TP.

P
The ACCELERATION OF THE OBSERVED MOTION MP 1s the map

v <2
v = || T - T .
o d M, ForP odM, s T-TP .

3  We can make the comparison between the observed entities and the

entities of the observed motion.

THEOREM. " ABSOLUTE VELOCITY ADDITION AND CORIOLIS THEOREM"

a) M= P oM,
. . v
i.e., putting E=7Tx#®P,
"\u v
M= M,
;—- o = = v = F_
[M,DM-P o M] = (d M), =d Mo = LM,DPMP]
i.e. DM-P oM = DPMP
M,0%M] = (v d M) = 0. d M =
- PP
= [M,D _P4_p+6p 5 ,PMP + Z,PoM?xD,PMP+P ° Mp)
i.e DM - ' D, M +( (DpM)+2 f_)xDM_+P » M
= | (epet) (2pellp ) xDpMy P
PROOF .

a) M =P o(t,p) oM="Po 1d M) =P e M



P
c) (vdMy=Tpe [l oerodM =1Lp °cTpol edM:=
:IIO;O'.
Ly ° T daM .
COROLLARY.
We have
xkoMPszExkoM
&k o dM, =D "
k! 2k ok i
XT o vpd My = DM +(r1j o MP}D M DM .
COROLLARY.

a) if P 1is affine, we have
D2M = DM + e (DM) + 20 x DM+ B o il
= DMy + ep (DM, X Bty -

b) If P 1is rigid, we have
DM = D2 M+ 20 x DM 4P ofl
1= DMy +ehy x DI, P
c) If P s translating, we have

2 2 =
DM = D'PMP + P

d) If P s inertial, we have

2 2
DM = DM, .
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Physical description.

The observed motion np is the map that associates, with each time

€T, the position constituted by the world-line of the frame, passing

throung M(rt)

The observed velocity and acceleration are the map that associate
with each time €T, the strips touched by the absolute velocity and

acceleration.

The difference between the observed acceleration and the acceleration of
the observed motion takes into account the variation, during the time,

of the affine properties of TP and of the projection T E — TP .

T Df”f M

Tt ocemeo- D \

z T----------s

]Tr-(nm} 'Hrfu' tren) ‘\

)

L]

1

v N
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2  RELATIVE KINEMATICS.

Let ?] and ?2 be two fixed frames and let the subfixes "1"
an "2" denote quantities relative to P] and PZ, respectively.
Let M be a fixed motion. We make a comparison between the kinema-

tics observed by ?1 and PZ.

Motion of a frame observed by a frame.

1 If we consider ?] as a set of wor]d—]tpes and P, as observing

2
P], we are led naturally to the following definition by (III,1,2).

We consider only free velocity and acceleration for simplicity of
notations, leaving to the reader to write them in the complete form.

Here D1P and Dip are the derivative in the sense of (III,1,1,b)
2 2

with respect to P2 and the suffix 1 denote partial derivative with

respect to the first variable, i.e. the time.

DEFINITION.
a) The MOTION OF P, OBSERVED BY P, is the map
P P T xE- P
= o : - |
Pla =P P X 2
The MUTUAL MOTLON of (P,,P,) is the map
N " N )
P =P, -P. : T xE-~-9%

(1,2) = "1 7 "2

W
b) The (FREE) VELOCITY OF THE OBSERVED MOTION P is the map

12
- Y -
Pl s (D, Po)es i B~ §
2
The (FREE) VELOCITY OF 5P] OBSERVED BY :Pz is the map
P._zPo°P:E~3%

12 2 1
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The (FREE) VELOCITY OF THE MUTUAL MOTION E(] gy s the map
D = 3] o1 - +-
0,2) ° D1P(1,2) J ot $ .
c) The (FREE) ACCELERATION OF THE OBSERVED MOTION ﬁ]z is the map
P = (DZ P..)ej: E =3
12 = Wyp Typ/%de '
2
The (FREE) ACCELERATION OF P OBSERVED BY-P, is the map
; '—'A p —)“
12 3P0 P B =8
The (FREE) ACCELERATION OF THE MUTUAL MOTION B(] p 10 the map
= 2 ~ . )
- J b
P2y 70 Py .
d) The (FREE) STRAIN OF THE OBSERVED MOTION 512 is the map
S0P, f -5 @3
192 72 " N
The (FREE) SPIN OF THE OBSERVED MOTION E]Z is the map
A v - -
g =5 DPL, B -8 @
The (FREE) ANGULAR VELOCITY OF THE OBSERVED MOTION 512 is the map
. _ EJ -
12 =% 0P

2 We can make the comparison between the observed entities and the

entities of the observed motion, as shown by (III,1,3) .

PROPOSITION.
v A" n,
a) Py (msPy) 3T X E > TxP, =k
b P = P = P - P = P
) P,y T P2 TP TP TPy,
c) P]’2 = P] = P]2+€p (P]2)+25’:p X P]2
2 2
d 5 :5 ‘: . = - N = - 8 - (3 -
VPP S T EmEy s gy Ty s By Ty
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3 We get an immediate comparison between the quantities "12" and "21".

COROLLARY.
D P2yt Py Paey T Py 0 Pae T P

4 We have time depending diffeomorphism between spaces concerning

?1 and ‘Pz.

PROPOSITION.

Let ~eT.

The maps

= b I -
Plac T P2 % N Py 7%

given by [é]] > [p1(T,e)]2,
and T Pio. ﬂP] - TlPZ,
given by [e,u]] > [ﬁ](f,e), 5](r,e)(u}]2 :

are C  diffeomorphisms
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of the motion M observed by P
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Velgcity addition and generalized Coriolis theorems.

As conclusion, we get the comparison between

and TPZ.

1

THEOREM. "VELOCITY ADDITION AND GENERALIZED CORIOLIS THEOREMS".

a) = p M
", 7 P2 3
b) DM =D + P <
0 T N S E
02 = D2 + oM(D
2 p Mo = Dp My + gDy
2 2 11
PROOF .
It follows from (I11,5,3) and (I11,6,2)
COROLLARY.
Let P, be inertial. Then we get

2

2 2 2 .
DM = D:PZMPz - 0?1%1 + eq)} M(D,, M, )+22, © M X

11

If £ is affine, we have

1
2

2 2
DM = DZP MPZ =D ?]ﬂp t e, (DP}MP1)+ 2 ¢

5 1 1
if ?] is rigid, we have

2 2

2
DM=0D P MPZ =D ?]MP]+ 2 QP] X QP]ﬂP

2

if P, 1is translating we have

velocity and acceleration

1

"

1

)+291

2

MXQP

1

MP +

]

p

12

° M.
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if ZP] is inertial, we have

Physical description.

The observed motion R P2 gives the position iniP_ touched

P?Ze ) 2

during time, by the particle of P, passing through e. The velocity and

1

the acceleration of 3]2 are calculed by ?2

cture and by its time depending affine structure, in the same way of

by its differential stru-

any observed motion.

The velocity and acceleration of‘P],ﬁ} 2(e) and EI1 2)(e). are
3 \ T

the spatial projections, performed by P,, of the absolute velocity

23
and acceleration of the particle of P], passing through e.

Notice that, in all the previous quantities, P, is involued only

1

through the motion of its only particle 318, while 'P2 can use also
its spatial derivative, which take into account the mutual motion of

its particles.

The nutual motion, velocity and acceleration P(] 2)(e) T8,

P(] 2)(e) e 3 ,5(] 2)(e) e $ are the absolute spatial distance and its

time first and second derivatives between the two particles, one of P]

and one Pz, passing through e.

- . . . 1' f‘ = - = - =
So it is not surprising P],2 # P2,1 » Pio # PZ]

The velocity addition theorem, relative to a motion M, gives the
classical result that the velocity of the observed motion by P2 is
the sum of the velccity of the observed motion by P], plus the veloci

ty of P, observed by P

1 2
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The generalized Coriolis theorem says that the acceleration of
the observed motion by ?2 is the sum of the acceleration of the

observed motion by Pz, plus the acceleration of P, observed by

1

-PZ plus the classical angular velocity term , plus a strain term.

When we consider rigid frames, we get, as a particular case, the

classical result.

We can describe such results by a picture.

1
i

observec bv P

mutual motion

velocity addition
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