- 14 -

5. Non-standard methods.

It is well-known that ultrafilter masses (or measures: this stronger terminology may be used when the cardinality of the index set is measured rable) are a tool in non-standard analysis for the construction of the relevant superstructure.

In [4] it is shown how some fundamental ideas in this field may be introduced through a finitely additive probability measure μ (i.e., a mass) on the index set, extending the concept of ultrapower to that of μ -power".

To facilitate the exposition, the attention was confined to a structure $\mathscr{C} = \langle E, R \rangle$, consisting of a non-empty set E and a set R of relations on E. Given an index set J, let μ be a mass on $\mathscr{P}(J)$, with $\mu(J) = 1$: the superstructure $*\mathscr{C} = \langle *E, *R \rangle$ consists of the set *E of all functions $f: J \rightarrow E$ (modulo μ -null sets) and any relation $R \in *R$ "is true" (loosely speaking) in the "model" $*\mathscr{C}$ if and only if it is true in \mathscr{C} for almost all $j \in J$ (here each value of one of the "equivalent" functions, with domain J, defining an element of *E, is a point of E; *E is a proper extension of E, by virtue of condition (1): cfr.[4]).

Let us consider, to be definite, the structure given by the ordered field R. It is clear that, using μ -powers instead of ultrapowers (i.e., arbitrary masses on J instead of ultrafilter ones), ^{*}R is <u>not</u> necessarily a field (and, moreover, it is only partially ordered): take,

for example, A c J with $0 < \mu$ (A) < 1. Its characteristic function x_A is not equivalent to the null function 0, and so gives rise, in $*\mathcal{E}$, to an element (i.e., an equivalence class modulo μ -null sets) $[x_A]$ which

is <u>not</u> *0 = [0]; the same is true for x_{J-A} . But $x_A \cdot x_{J-A} \equiv 0$, and so in *2 the product $[x_A] \cdot [x_{J-A}]$ of this two non-null elements is null (i.e., *R has zero divisors).

- 15 -

This fact, from the usual point of view adopted in the costruction of non-standard models of the reals, should be considered a "defect", since it is possible (as it is well known) to build up an enlargement ^{*}R which is an ordered field (though, of course, a non-archimedean one). But it is possible to look at the question from different viewpoints, similar (apart from the dropping out of the condition of σ -additivity for the

measure on the index set) to those sketched by D . Scott in [12] .

A problem of interest in probability theory is the following: if we take μ to be a measure, it does not exist a denumerable "uniform" (and measurable) partition of the index set $J = \int_{n=1}^{\infty} E_n$, with $\mu(E_n) = 0$

for each n, otherwise

$$0 = \sum_{n=1}^{\infty} \mu(E_n) = \mu(\sum_{n=1}^{\infty} E_n) = 1 \quad (impossible).$$

On the other hand, if μ is only a <u>mass</u> and such a partition exists, the latter inequality is consistent with Prop. 1; moreover we show the po<u>s</u> sibility of looking at it as a sort of "non-standard" countable additivity.

To begin with, we may give a meaning to
$$n = 1$$
 * a_n (with * $a_n \in R$) by choosing suitable representatives a_n of * a_n (n = 1,2,...) such that

$\sum_{n=1}^{\infty} a_n(i)$ converges for almost all i ϵ J, and by putting

(7)
$$\sum_{n=1}^{\infty} \sum_{n=1}^{*} a_n = \left[\left(\sum_{n=1}^{\infty} a_n(i) \right)_{i \in J} \right] .$$

Now, we remark that, since $x_{E_n} = 0$ for almost all j $\in J$, we have $\begin{bmatrix} x_{E_n} \end{bmatrix} = {}^*0$; on the other hand, $\sum_{n=1}^{\infty} x_{E_n} = x_J \equiv 1$, and so $\begin{bmatrix} x_J \end{bmatrix} = {}^*1$.

- 16 -

If we apply (7) to
$$\sum_{n=1}^{\infty} \sum_{n=1}^{*} \sum_{n=1}^{\infty} [x_{E_n}]$$
, choosing x_{E_n} as representative of

.

7

[x_E], we get n

$$n = \frac{\tilde{\Sigma}}{n} = n = \frac{\tilde{\Sigma}}{n} [x_{E_{n}}] = [n = \frac{\tilde{\Sigma}}{n} x_{E_{n}}] = [x_{J}] = *1$$
.

So an uniform probability distribution on a countable set does not conflict, in R, with "countable additivity" of μ .

We point out that this approach differs from the well-know one (see, e.g., [5], [9]) through *-finite sets: is there some hope that such "models"would open new trends in this field?