difficult to see that such subset must necessarily be $A \cap B \cap E_0$). So the mass

$$\beta_{1}(E) = \begin{cases} 0 & \text{if} & E \notin \mathcal{U}_{1} \\ \alpha_{1} & \text{if} & E \in \mathcal{U}_{1} \end{cases}$$

is atomic. Put $\mu_1 = \mu - \beta_1$; if the mass μ_1 is non-continuous, then

$$\alpha_2 = \inf_{\mu_1}(E^{(p)}) > 0,$$

p€₽

and so it is possible to go on in the same fashion.

After n steps, we get

$$\mu = \mu - \sum_{k=1}^{n} \beta_{k}$$

and, if μ_n is continuous, eq.(4) holds with $\mu_0 = \mu_n$ and with each β_k null for k > n. If μ_n is non-continuous for any n, we get a sequence (β_n) such that the corresponding series $\sum_{n=1}^{\infty} \beta_n(E)$ converges for every $E \in \mathcal{C}$ (since $\mu(E) < +\infty$). Then $\lim_{k \to \infty} \alpha_k = 0$, and it follows that

$$\mu = \lim_{n \to \infty} \mu$$
 is continuous.

3. Non atomic masses.

In the classical case of a measure, non-atomicity is equivalent to

- 7 -

continuity. This can be seen, for example, as an easy consequence of the following

<u>Theorem 2</u> (Saks) - Let μ be a <u>measure</u> on a σ -algebra $(2 \underline{c} \, \widehat{\mathcal{C}}(\Omega))$. Given any $\varepsilon > 0$, there exists pe \mathcal{D} such that each $E_k \varepsilon p$ is either an atom or $\mu(E_k) < \varepsilon$.

<u>Proof</u>: see [2], p. 308 .

This equivalence cannot be carried over to the general case of a mass: in [1] it is shown (cfr. also the following Theorem 5) that, if $\mu = \nu + \lambda$,

where v is atomic and λ is continuous, with $v < \lambda$ (i.e. v is absoluted tely continuous with respect to λ), then μ is both non-atomic and non-continuous.

In other words, while atomic masses are necessarily non-continuous (see Proposition 2), non-atomic ones can be either continuous or not.

For continuous masses, the following result has been established in [13]:

<u>Theorem 3</u> - Let μ be a <u>continuous</u> mass on a σ -algebra $\mathcal{C} \subseteq \widehat{\mathcal{P}}(\Omega)$. Then there exists a sequence (F_n) of mutually disjoint measurable sets, with $\mu(F_n) > 0$, such that $\sum_{n=1}^{\infty} \mu(F_n)$ equals any preassigned α , with $0 < \alpha < \mu(\Omega)$, and

(5)
$$\alpha = \sum_{n=1}^{\infty} \mu(F_n) = \mu(\bigcup_{n=1}^{\infty} F_n).$$

So to say, the mass μ "behaves" like a measure on each collection (F_n) : then it would seem interesting a deeper investigation of the family (or of some suitable subfamily) of all such sets obtained when α ranges

in the open interval from 0 to $\mu(\Omega)$.

A simple corollary of Theorem 3 is the following: the range of a continuous μ is the whole interval $[0,\mu(\Omega)]$. The latter statement is no langer true if μ is non-continuous: a counterexample is given in [1]; moreover, there it is shown that the range of μ need not even be a closed subset of \mathbb{R} , contrary to the classical case of a measure.

As far as continuous masses are concerned, let us quote also a recent result obtained through non-standard methods: a necessary and sufficient condition for the existence of a continuous mass, which is <u>invariant</u> for a transformation of Ω into itself, is given in [16].

We want now to extend Theorem 3 to the more general case of a non-atomic μ : the previous remarks show that we can hope, at most, in countable additivity on a suitable sequence of sets (and not also, as in eq. (5), in a beforehand given value of α).

<u>Theorem 4</u> - Let μ be a <u>non-atomic</u> mass on a σ -algebra $(\underline{\alpha} \underline{c} \, \underline{\mathscr{C}}(\Omega)$. Then there exists a sequence (A_n) of mutually disjoint measurable sets, with $\mu(A_n) > 0$, such that

(6) $\mu(\underset{n=1}{\overset{\infty}{\overset{}}}_{n}^{A}) = \underset{n=1}{\overset{\infty}{\overset{}}}_{\mu}(A_{n}).$

<u>Proof</u> - Let $B \in \mathcal{C}$, with $0 < \mu(B) < \mu(\Omega)$: then also $B' = \Omega - B$ satisfies $0 < \mu(B') < \mu(\Omega)$. At least one of them (call it B_1) is such that $\mu(B_1) \leq \frac{1}{2} \mu(\Omega)$. Now, let $B_2 \in \mathcal{C}$, $B_2 \subset B_1$, be such that $0 < \mu(B_2) < \mu(B_1)$

and
$$\mu(B_2) \leq \frac{1}{2}\mu(B_1)$$
. In general, we define $B_n \subset B_{n-1}$, with $0 < \mu(B_n) < \mu(B_{n-1})$

and
$$\mu(B_n) \leq \frac{1}{2} \mu(B_{n-1}) \leq \frac{1}{2^n} \mu(\Omega)$$
.

Put
$$A_n = B_n - B_{n+1}$$
: we have $\mu(A_n) = \mu(B_n) - \mu(B_{n+1}) > 0$ and
 $A_i \cap A_j = \emptyset$ for $i \neq j$. Moreover
 $\mu(\overset{\infty}{\underset{n=1}{}}A_n) = \overset{k}{\underset{n=1}{}}\mu(A_n) + \mu(\overset{\infty}{\underset{n=k+1}{}}A_n) = k$

- 9 -

$$= \sum_{n=1}^{k} \mu(A_n) + \mu(B_{k+1}) \leq \sum_{n=1}^{k} \mu(A_n) + \frac{1}{2^{k+1}} \mu(\Omega) .$$

As $k \rightarrow \infty$, we get

$$\mu(\underset{n=1}{\widetilde{U}}A_{n}) \leq \underset{n=1}{\widetilde{\Sigma}}\mu(A_{n})$$

which, taking into account Proposition 1, gives (6).

The next theorem will enable us to extend (in Section 4) the previous result also to a particular class of atomic masses.

<u>Theorem 5</u> - Let $\mathcal{A} \subseteq \mathfrak{S}(\Omega)$ be a σ -algebra, ν an atomic mass on \mathcal{A} , and λ a continuous mass on \mathfrak{A} such that $\lambda(A) > 0$ for any atom A of ν (e.g., such that $\nu <<\lambda$). Then $\mu = \nu + \lambda$ is non atomic and non-con tinuous.

<u>Proof</u> : see [1].

<u>Remark</u> - Put $v = \sum_{n=1}^{\beta} \beta_{n}$ in Theorem 1, eq.(4): v need not be atomic

(an example is given in [10], p. 47), and so we may have masses which are

at the same time non-atomic and non-continuous, but not of the form given

by Theorem 5.

- 10 -

<u>Corollary 1</u> - Let β be an ultrafilter mass and λ a continuous mass on $\mathcal{O}_{\underline{c}} \underline{c} \widehat{\mathbf{c}}(\Omega)$, with $\beta < <\lambda$. Then $\mu = \beta + \lambda$ is non-atomic and non-continuous.

<u>Corollary 2</u> - Let β be an ultrafilter mass on $\mathcal{Q}_{\underline{c}}\mathcal{P}(\Omega)$ such that $\beta <<\lambda$, where λ is a continuous measure on \mathcal{Q} . Then β cannot be a measure on \mathcal{Q} .

<u>Remark</u> - It is interesting also to look at Theorem 5 as another counterexample to known results for <u>measures</u>: in [7] it is shown that, given two measures λ and ν , with $\nu <<\lambda$ and λ non atomic (i.e.

continuous), then ν also is non-atomic. Actually, this need not be true if ν is only a mass (and <u>not</u> a measure), for example if it is an ultrafilter mass β , as that of Corollary 2. The existence of such a mass (given λ) can be proved (cfr.[1]) taking an $(\alpha$ -ultrafilter containing the filter

 $\mathbf{\mathcal{F}} = \{ \mathbf{E} \boldsymbol{\varepsilon} \, \boldsymbol{\mathcal{Q}} : \lambda(\mathbf{E}) = \lambda(\Omega) \} .$

4. Atomic masses and measurable cardinals.

.

Since the mass μ occurring in Theorem 5 is non-atomic (and non-continuous), Theorem 4 can be suitably applied to it, giving easily a countably additive sequence of sets also for the atomic mass ν .

<u>Theorem 6</u> - Let ν be an <u>atomic</u> mass on a σ -algebra $\mathcal{A}c\mathcal{P}(\Omega)$, such

that $v << \lambda$, where λ is a continuous measure on \mathcal{A} . Then there exists a sequence (A_n) of mutually disjoint measurable sets, such that

$$\nu(\underset{n=1}{\widetilde{U}}A_{n}) = \underset{n=1}{\widetilde{\Sigma}}\nu(A_{n})$$
.