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una esposizione completa) aleuni ded nostrd necenti nisultati sul
Le misune ginite semplicemente additive.
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1. Introduction and notations.

The aim of this paper is to extend (and collect in a self-contained
and expository account) some of our recent results concerning a finitely

additive "probability"(i.e., finite) measure u.

Among others, new topics dealt with in this note are: the construction
of countably additive sequences of sets for a non-atomic u (and not only
for a continuous one, as in [13]) and also for a particular kind of atomic
us a deeper discussion of the case of a u which is both non-continuous
and non-atomic (studied in [1]), leading to an interesting (we hope) re-
mark concerning the existence of measurable cardinals (Ulam's problem);
moreover, we touch upon non-standard methods through finitely additive
measures (as treated, e.g., in [4]) , sketching out the possibility of new
trends in this field.

Let © be an arbitrary (infinite) set, and (Q EFE%Q) a o-algebra.

A mass is a function

u:ar—r R

such that

(*)

The content of this paper has been also the subject of lectures given

by the third author (R. Scozzafava) during his staying at the Department

of Mathematics of the Karl Marx University (Budapest), in the Summer 1978.
The main results were also presented as a Short Communication at the

International Congress of Mathematicians (Helsinki, 1978).
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(a) u(E)p 0 forany Ee @ ,
(b) EFe@, ENF=0 = uEvuF)=u(E)+uF),

(c) u(n) <+« .

In particular, u 1is a (finitely additive) probability measure if

u(e) = 1.
When axiom (b) is replaced by the (stronger) condition
(b') FoeQ@, FonFyo=p fori#j = u(UF)= TuF),

we shall call yu (in short) a measure.

We may (and will) assume throughout the paper that, for every x € @,

(M u({x}) =0

since (if not) we might subtract from u the (trivial) measure

0 if Eca- Ao
m(E) =

u(Er‘\Ao) if Enno;e P,

where

AO = {x € @ : p({x}) > 0}

is (as it is well known) a countable set.

Proposition 1 - Let u be a mass on a o-algebra QA . Then, for every

sequence An e & , with AitﬂAj =@ for 1#Jj , we have



(2) W( UA ) 3 zu(A )

o«

A U _ A and then

Proof. Apply (b) to the n+1 sets A_,A n’k=h+1"k?

172t

apply (a) to the latter. g

Definition 1 - A mass is null if u(E) =0 for each Ee QL (i.e., if
u(Q) = 0).

Definition 2 - An atom for a mass p 1is a set Ae Q. such that

u(A) > 0 and w(@NS(A)) = {0,u(A)}.

Definition 3 - Amass u on (L is atomic if there exists an atom for ..

We denote by p = (E ,En} any finite partition of @, and by

1’E2""
35 the set of all measurable (i.e., with every Ene Q) p's.

Definition 4 - Amass 1 on Q. is continuous (or strongly non-atomic)

if, given ¢ > 0, there exists {E]’EZ""’En} =pe€ Fo) such that

W(E) <€ (K =1,2,...50).

Proposition 2 - If a mass u on (L is continuous, then u is non-ato

mic.

Proof. Obvious. g

Proposition 3 - If A s an atom for u , then

W ={Ee@: u(ENA) = u(A)}

is an C],qultrafiTter over 9 , i.e. an ultrafilter over © whose elements
belong to a . Conversely, given any L -ultrafilter WU over 2, the

set function



1 if Ee UL

L0 if  E¢W

is an atomic mass on G],

Proof: cfr., e.g. , [6] , p. 358.

Remark : According to our assumption 1), in this paper "ultrafilter",

always means free ultrafilter, i.e. N E = @ (while a fixed, or principal,
EelW

ultrafilter is one whose elements are the subsets of Q containing a given

point xeQ) .

Definition 5 - A two-valued (0 and u(Q)) atomic mass on (A is called

ultrafilter mass.

2. A theorem by B. de Finetti.

Given any pe% , Choose E(p)ep such that

(p)
w(BYT) 2 ulEL)

for every Ek €ep (k=1,2,...,n), and put

(3) oy = inf w(EPy .
ped

Clearly, wu is contimuous if and only if a; = 0.



1 if Ee UL

L0 if  E¢W

is an atomic mass on G],

Proof: cfr., e.g. , [6] , p. 358.

Remark : According to our assumption 1), in this paper "ultrafilter",

always means free ultrafilter, i.e. N E = @ (while a fixed, or principal,
EelW

ultrafilter is one whose elements are the subsets of Q containing a given

point xeQ) .

Definition 5 - A two-valued (0 and u(Q)) atomic mass on (A is called

ultrafilter mass.

2. A theorem by B. de Finetti.

Given any pe% , Choose E(p)ep such that

(p)
w(BYT) 2 ulEL)

for every Ek €ep (k=1,2,...,n), and put

(3) oy = inf w(EPy .
ped

Clearly, wu is contimuous if and only if a; = 0.



For the sake of completeness, we recall here a decomposition theorem,
essentially given by B. de Finetti in [3] ; for a different proof, see
also [13]. The one given here is a direct proof avoiding the use of the

"coefficient of divisibility" introduced in [3] .

Theorem 1 - Let u be a mass on a o-algebra a _g@(sz) . Then

where each B, (if not null) is atomic and My is continuous (or null).
Proof - If u 1is continuous, there in nothing to prove, since (4)

is true with Hg = ¥ and with each Bn null. Let now u be non-conti-

nuous: then a, > 0 and so, by (3), for every partition p € i’ the set

E(p) is such that u(E(p)) > a;, and there is a partition PoE ﬁb

(Po)
such that w(E °) < 20, .

Let fg ={Eep0 : u(€) 3 a;}: there exists (again by (3) , and remem-
bering (1)) a set Eoe ii such that u(A) > o; for at least a proper

subset A ¢ E0 . It follows then easily that
U, —€ea: wEne) s ap

is an @ -ultrafilter over « (the only thing which may not be com-

pletely trivial is that A,B 6111 implies AF\BeTi]; but, since only
one of the four subsets into which A and B divide E0 (i.e.,

(A—B)rﬂEo,(B-A)ero,Af\Bf\Eo, Eo -(A v B)) can have a mass 3 a;, it is not



difficult to see that such subset must necessarily be Ar\Br\Eo). So

the mass

0 if E ¢t

o) if E elU,

B, (E) T

is atomic. Put w; = u - g,; if the mass u; is non-continuous, then

a, = inf u (EPY) 5 0,
ped

and so it is possible to go on in the same fashion.

After n steps, we get
U = u - I Bk

and, if M is continuous, eq.(4) holds with My = Mo and with each

Bk null for k > n. If M is non-continuous for any n, we get a se-

quence (sn) such that the corresponding series Elsn(E) converges for

n

every Ee L (since u(E) < + =), Then 1lim o, =0, and it follows that

ks

= 1im is continuous.
Yo "n L
N>

3. Non atomic masses.

In the classical case of a measure, non-atomicity is equivalent to
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continuity. This can be seen, for example, as an easy consequence of

the following

Theorem 2 (Saks) - Let u be a measure on a o-algebra (Q,E(s"(sz).

Given any ¢ > 0, there exists pe 33 such that each EkEp is either

an atom or u(Ek) < g.
Proof : see [2], p. 308 . g

This equivalence cannot be carried over to the general case of a mass:
in [1] 14t is shown (cfr. also the following Theorem 5) that, if p=v+i,
where v is atomic and X is continuous, with v<<x (i.e. v is absolu
tely continuous with respect to 1),then u is both non-atomic and

non-continuous.

In other words, while atomic masses are necessarily non-continuous (see

Proposition 2), non-atomic ones can be either continuous or not.
For_continuous masses, the following result has been established in [13]:
Theorem 3 - Let . be a continuous mass on a o-algebra (& gﬁ?(@) .

Then there exists a sequence (Fn) of mutually disjoint measurable sets,

with u(Fn) > 0, such that nzlu(Fn) equals any preassigned o , with

0 <a<yu(Q), and

o0
oo

(5) o=Z.u(F ) =u(U F).
So to say, the mass u "behaves" like a measure on each collection
(Fn) : then it would seem interesting a deeper investigation of the family

(or of some suitable subfamily) of all such sets obtained when o ranges



in the open interval from 0 to u(Q).

A simple corollary of Theorem 3 is the following: the range of a
continuous u 1is the whole interval [O,u(Q)J. The latter statement
is no langer true if yu 1is non-continuous: a counterexample is given
in [1]; moreover, there it is shown that the range of u need not even

be a closed subset of R, contrary to the classical case of a measure.

As far as continuous masses are concerned, let us quote also a recent
result obtained through non-standard methods: a necessary and sufficient
condition for the existence of a continuous mass, which is invariant

for a transformation of o into itself, is given in [16].

We want now to extend Theorem 3 to the more general case of a non-ato
mic  u: the previous remarks show that we can hope, at most, in counta
ble additivity on a suitable sequence of sets (and not also, as in eq.

(5), in a beforehand given value of «).

Theorem 4 - Let u be a non-atomic mass on a o-algebra Clg@(sz).
Then there exists a sequence (An) of mutually disjoint measurable sets,

with u(An) > 0, such that

oo 0

(8) HpdAn) =pku(Ay) -

Proof - Let Be(& , with 0 < u(B) < u(Q): then also B' = q - B
satisfies 0 < u(B') < u(Q). At least one of them (call it BI) is such

:
that u(B]) < 5 u(Q) . Now, let B, € a , B, cB

> be such that O<u(82)<u(81)

']!

q . .
and u(B u(B]). In general, we define Bn c Bn » With 0<u(Bn)<u(Bn_])

-1
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Put An = Bn - Bn+1: we have u(An) = u(Bn) - u(Bn+1) >0 and
AirWAj =@ for i # j. Moreover
y A) = X A : A) =
lJl(n21 n) _nglu( n) ¥ u(n—--kﬂ n) -
k k .
=n£Tu(An) ¥ “(Bk+]) En§1u(An) MY u(g)

u(nglAn) SnE]“(An) ’

which, taking into account Proposition 1, gives (6). -

The next theorem will enable us to extend (in Section 4) the previous

result also to a particular class of atomic masses.

Theorem 5 - Let (Q ¢ §(2) be a o-algebra, v an atomic mass on (2,
and A a continuous mass on & such that A(A) > 0 for any atom A
of v (e.g., such that wv<<i). Then u = v + 1 is non atomic and non-con

tinuous.

Proof : see [1]. g

Remark - Put v = ¢ B, in Theorem 1, eq.(4): v need not be atomic
n

(an example is given in [10] , p. 47), and so we may have masses which are
at the same time non-atomic and non-continuous, but not of the form given

by Theorem 5.
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Corollary 1 - Let B8 be an ultrafilter mass and A a continuous

mass on CZ,EEKQ), with B8<<i. Then u =8 + 1 is non-atomic and

non-continuous.

Corollary 2 - Let B be an ultrafilter mass on Qc®(Q) such
that R<<x, where A 1is a continuous measure on @) . Then g cannot

be a measure on (1.

Remark - It is interesting also to look at Theorem 5 as another

counterexample to known results for measures: in [7] it is shown that,
given two measures i and vswith v<<)i and A non atomic (i.e.
continuous), then v also is non-atomic. Actually, this need not be true
if v is only a mass (and not a measure), for example if it is an
ultrafilter mass B, as that of Corollary 2. The existence of such a mass
(given 1) can be proved (cfr.[1]) taking an Q -ultrafilter containing

the filter

F=1Ee@: A(E) = A ()} .

4. Atomic masses and measurable cardinals.

Since the mass u occurring in Theorem 5 is non-atomic (and non-conti
nuous), Theorem 4 can be suitably applied to it, giving easily a countably

additive sequence of sets also for the atomic mass .

Theorem 6 - Let v be an atomic mass on a o-algebra (l_g@(sz), such
that v<<i, where A is a continuous measure on (L . Then there exists

a sequence (An) of mutually disjoint measurable sets, such that

\J(g

n Ap) =n£1v(An)

1n
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Proof - Use Theorem 4 for u = v + X, taking into account the coun-
table additivity of . g

Now, in order to deal with the so-called "Ulam's measure problem", we
recall some known facts about ultrafilter over a set q; we limit

owrselves to free ultrafilters(cfr. the remark following Proposition 3).

Definition 6 - An ultrafilter W over g« is s-complete if, given

any sequence of sets A e U , one has nCHAn e U.

Proposition 4 - Let B8 be an ultrafilter mass on (@ =%(a), and let

U be the corresponding (free) ultrafilter. Then B8 1is a measure if and

only if W s s-complete.

Proof - Countable additivity of g implies that, given any sequence
of sets A e W , f ‘= q - u U A’
n or A =a-A ¢ we must have ndiA ¢ U

oo

Therefore o - U.A' = gj1A

n21n e W , 1.e. W is s-complete. The

n

converse is also easily seen, since g 1is two-valued.

Definition 7 - Let Q@ be a set: card @ is said measurable when there

exists a &-complete free ultrafilter over q .

Corollary 3 - An ultrafilter measure exists on C2=(3(Q) if and only

if card @ 1is measurable.

(Notice that the latter measure is finite,defined for all subsets of

Q, and zero on singletons).

The question concerning the existence of measurable cardinals (known

also under the name of Ulam's measure problem) cannot be settled in ZFC

(Zermelo-Fraenkel set theory with the Axiom of Choice).
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It was shown that a measurable cardinal (assuming its existence)
must be very large and, in fact, must be an inaccessible cardinal:
really, if k is a measurable cardinal, then there are k inac-
cessible cardinals preceding it (cfr., e.g., [11], p. 26 and [14],
p. 26).

Moreover, the existence of a measurable cardinal settles many

mathematical problems: see[8].

On the other hand, if we assume that "all" sets are constructi ble
(the so-called "axiomof constructibility" V = L), no measurable cardinal
exists: in fact, if there is a measurable cardinal, then V =L " is

as false as it possibly can be" (cfr.[14], p. 31).

Notice that,by Corollary 3, the existence of an ultrafilter measure

on GD(Q) is equivalent to the statement that card o is measurable ,

while an uitrafilter mass always exists, by a classical result due

to Tarski [15].

Proposition 5 - Let card @ = ¢ and assume the continuum hypothesis

(CH). Then no ultrafilter measure exists on @3(9) (i.e., under CH,

¢ is not a measurable cardinal).

Proof - See [17] or [11]. g

We point out that Corollary 2 (cfr. Section 3) gives non-existence

of a particular class of ultrafilter measures, without any assumption on

the cardinality of @.

We end this Section with a necessary condition for a cardinal to be
measurable, which gives an interesting remark to Ulam's measure

problem; we state first the following obvious
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Lemma - Let Q be a set such that card @ 1is measurable, and let
B be the corresponding ultrafilter measure. Then B8(E)>0 implies

card E >§¢5 i

Theorem 7 - Let B be an ultrafilter measure on & (). Then, given

any continuous measure A on Cl_g‘?(ﬁ), necessarily g L (i.e., B

is singular with respect to 1) and there are sets E ¢ @, with card E>3¢0 s

such that a(E) = 0.

Proof - It is essentially a reformulation of Corollary 2, taking into

account the preceding Lemma. g

Remark - Theorem 7 can be Tooked at to give some grounds for the
acceptance or not of the axiom concerning the existence of measurable
cardinals: for example, if we assume that, given a set @, there exists
at least a continuous measure on a o¢-algebra CLE(P(Q), vanishing only

on countable (%) sets, then card Q is not measurable.

This result is also a partial converse to a theorem given by Ulam
(cfr. Satz 2, p. 147) in [17]: he proved that, if card o 1is not measurable
and there exists a measure on Q, then this measure is necessarily conti-

nuous.

(*) Here it would be possible to replace "countable sets" by “"sets of
cardinality less than card Q", just using a suitable definition of
measure, in which countable additivity is replaced by the "natural”
stronger requirement (cfr.[14], p. 20).
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5. Non-standard methods.

It is well-known that ultrafilter masses (or measures:this stronger
terminology may be used when the cardinality of the index set is measu
rable)are a tool in non-standard analysis for the construction of the

relevant superstructure.

In [4] it is shown how some fundamental ideas in this field may be
introduced through a finitely additive probability measure u (i.e.,
a mass) on the index set, extending the concept of ultrapower to that

of"u-power".

To facilitate the exposition, the attention was confined to a stru
cture f; = <E, R>, consisting of a non-empty set E and a set R
of relations on E. Given an index set J, let u be a mass on (3(J),

with u(J) = 1: the superstructure *f;= <*E, *!R> consists of the set

*E of all functions f : J > E (modulo yu-null sets) and any relation

R € *(R "is true" (loosely speaking) in the "model" * é? if and only
if it is true in t? for almost all Jj € J (here each value of one of
the "equivalent" functions, with domain J, defining an element of *E,
is a point of E; *E is a proper extension of E, by virtue of condi
tion (1) : cfr.[4]) .

Let us consider, to be definite, the structure given by the ordered
field R. It is clear that, using u-powers instead of ultrapowers
(i.e., arbitrary masses on J instead of ultrafilter ones), *R is not
necessarily a field (and, moreover, it is only partially ordered): take,

for example, A c J with 0 < u (A) < 1. Its characteristic function X

is not equivalent to the null function 0, and so gives rise, in *2?,

to an element (i.e., an equivalence class modulo u-null sets) [XA] which



_]5_

. *. . . -
is not "0 = [0]; the same is true for X, , . But X, .X; , =0, and

so in  *€ the product [XA] . [XJ-A] of this two non-null elements is

null (i.e., *R has zero divisors).

This fact, from the usual point of view adopted in the costruction of
non-standard models of the reals, should be considered a "defect", since
it is possible (as it is well known) to build up an enlargement *R which
is an ordered field (though, of course, a non-archimedean one). But it
is possible to look at the question fromdifferent viewpoints, similar
(apart from the dropping out of the condition of o¢-additivity for the
measure on the index set) to those sketched by D . Scott in [12] .

A problem of interest in probability theory is the following: if we
take u to be a_measure, it does not exist a denumerable "uniform"

(and measurable) partition of the index set J = U.E , with u(E )=0
) n=1"n n
for each n, otherwise

(ea]

0 =n§1p(En) = p(ng]En) =1 (impossible).
On the other hand, if u 1is only a mass and such a partition exists,
the latter inequality is consistent with Prop. 1; moreover we show the pos

sibility of looking at it as a sort of "non-standard" countable additivity.

To begin with, we may give a meaning to n§1 *an (with *an € *R) by

*

choosing suitable representatives a of a (n=1,2,...) such that

(=]

n§1an(i) converges for almost all i e J, and by putting
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<o

(7) nf1 % [(n§1an(i))iea]

Now, we remark that, since X. =0 for almost all j € J, we have

[XE 1 = %o ; on the other hand, nz Xe =Xy = 1, and so [XJ] = "1
n]

If we apply (7) to 21*0 =n§I[XE ]» choosing X as representative of
n n
[ 1 we get
n
a0 * o «© *
nf1 0 *nd [XEn:| - [nEIXEa] - [XJ] =1

So an uniform probability distribution on a countable set does not

conflict, in 'R, with "countable additivity" of u .

We point out that this approach differs from the well-know one (see,
e.g., [5] , [®]) through #-finite sets: is there some hope that such "mo-

dels"would open new trends in this field?
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