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ATOMIC, NON-ATOMI C ANO CONTINUOUS

FINITELY ADDITIVE MEASURES: RESULTS

ANO APPLICATIONS(*)

E. BARONE, A. GIANNONE, R. SCOZZAFAVA

l. Introduction and notations.

(LECCE, I ta ly)

The aim of this paper is to extend (and collect in a self-contained

and expository account) some of our recent results concerning a finitely

addi ti ve "probabi l ity" (i .e., fi nite) measure \1.

Among others, new topics dealt with in this note are: the construction

of countably additive sequences of sets for a non-atomi c \1 (and not only

for a continuous one, as in [13J) and also for a particular kind of atomic

\1; a deeper discussion of the case of a \1 which is both non-continuous

and non-atomic (studied in [l]), leading to an interesting (we hope) re­

mark concerning the existence of measurable cardinals (Ulam's problem);

moreover, we touch upon non-standard methods through finitely additive

measures (as treated, e.g., in [4]) , sketching out the possibility of new

trends in this field.

Let n be an arbitrary (infinite) set, and o... ~C()(n) a a-algebra.

A mass is a function

such that

The content of this paper has been also the subject of lectures given
by the third author (R. Scozzafava) during his staying at the Department
of Mathematics of the Karl Marx University (Budapest), in the Summer 1978.

The main results were also presented as a Short Communication at the
International Congress of Mathematicians (Helsinki, 1978).



(a) Il(E) ~ O

(b) E,F e et

(c) Il(n) < + ~
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for any E e tL- ,

E r1 F = 0 ==!;> Il(E u F) = Il(E) + Il(F),

In particular, Il is a (finitely additive) probability measure if

When axiom (b) is replaced by the (stronger) condition

we shall call Il (in short) a measure.

We may (and will) assume throughout the paper that, for every x e n,

(l )

since (if not) we might subtract from Il the (trivial) measure

where

A = {x e n 1l({X}) > O}
o

is (as it is well known) a countable set.

Proposition l - Let Il be a mass on a a-algebra ~. Then, for every

sequence An e l!:t ,with Ai r1A
j

= 0 for i;' j , we have
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(2)

00

Proof. Apply (b) to the

apply (a) to the latter.•

n+l sets Al ,A2,···, A , k U lAk'n =n+
and then

Definition l - A mass is null if ~(E) = O fo.r eaeh Ee a. (i .e., if

~((l) = O).

Definition 2 - An atom for a mass ~ is a set Ae et sueh that

~(A) > O and ~(crnCP(A)) = {O,~(A)}.

Definition 3 - A mass ~ on et is atomie if there exists an atom for ~.

We denote by p = {E 1,E2, ... ,En} any finite partition of (l, and by

the set of all measurable (i .e., with every E e a) p's.
n

Definition 4 - A mass ~ on etis eontinuous (or strongly non-atomie)

if, given € > O, there exists {E1,E2, ... ,En} = p e 'b sueh that

~(Ek) < € (k = 1,2, ... ,n).

Proposition 2 - If a mass ~ on et is eontinuous, then ~ is non-ato

mie.

Proof. Obvious .•

Proposition 3 - If A is an atom for ~ , then

tt ={Ee~: ~(U'A) = ~(A)}

is an o'.ultrafilter over (l, i .e. an ultrafilter over (l whose elements

belong to a
set funetion

Conversely, given any a -ultrafilter 'Ll over (l, the
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l
~(E)= ~

l o

is an atomic mass on CJl

Proof: cfr .• e.g .• [6J • p. 358.

if

if

Ee U.

Remark : Accordi ng to our assumption l). i n thi s paper "ul trafi l ter".

always means free ultrafilter. i .e. n E = 0 (while a fixed. or principal.
EeU

ultrafilter is one whose elements are the subsets of n containing a given

point xen)

Oefinition 5 - A two-valued (O and ~(n)) atomic mass on tl is called

ultrafilter masso

2. A theorem by B. de Finetti.

Given any p,,:f) • choose E(P)ep such that

far every

(3)

Ek e P (k=1.2 •...• n). and put

Clearly. ~ is contilruous if and only if "I = O.
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For the sake of comp1eteness, we reca11 here a decomposition theorem,

essentia11y given by B. de Finetti in [3] ; for a different proof, see

a1so [13J. The one given here is a direct proof avoiding the use of the

"coefficient of divisibi1ity" introduced in [3J .

Theorem l - Let ~ be a mass on a o-algebra et. ~lf(n) . Then

(4)

where each (if not nu11) is atomic and ~ is continuous (or nu11).o

and with each f3 n null. Let now ~ be non-conti-

and so, by (3), for every partition p e j1 the set

~(E(P))
~ al' and there is a partition p e 1)

o

nuous: then ~l > O

E(P) is such that

Proof - If ~ is continuous, there in nothing to prove, since (4)

is true with ~ = ~o

such tha t

Let t =(Eepo : \l (E) ~ ~l}: there exists (again by (3)) and remem­

bering (l) a set Eoe t such that ~(A) ~ al for at 1east a proper

subset A c E It fo110ws then easi1y thato

is an Ct-ultrafilter over n

p1ete1y trivia1 is that A,B e lA
1

(the on1y thing which may not be com­

imp1ies A1"\ Be IL1; but, since on1y

one of the four subsets into which A and B divide E (i.e.,
o

(A-B)I"\E ,(B-A)i1E ,A!ìBilE ,E -(A u B)) can have a mass ~ al' it is not
O O O O



- 6 -

difficult to see that such subset must necessari1y be AI"\BI"\Eo)' So

the mass

if

if E e 1,(,1

is atomico Put ~l = ~ - ~l; if the mass ~l is non-continuous, then

a2 = inf ~I(E(P)) > O,
pe"

and so it is possib1e to go on in the same fashion.

After n steps, we get

n
= ~ - E ~

~n k= l k

and, i f ~n is continuous, eq . (4) ho l ds with ~o = ~n and wi th each

~k null for k > n. If ~n is non-continuous for any n, we get a se-
~

quence (~n ) such that the corresponding seri es E1~ (E) converges for
n= n

every Ee CA. (since ~(E) < + ~). Then lim ak = O, and it follows that
k--

~o = 1im ~n is continuous .•n__

3. Non atomic masses.

In the classical case of a ~ure, non-atomicity is equivalent to
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continuity. This can be seen, for examp1e, as an easy consequence of

the fo11owing

Theorem 2 (5aks) - Let ~ be a measure on a a-algebra <2 EIf(lI).

Given any e: > O, there exists pe ::tJ such that each Ekep is either

an atom or ~(Ek) < €O.

Proof : see [2J ' p. 308 .•

This equiva1ence cannot be carried over to the genera1 case of a mass:

in [lJ it isshown (cfr. a1so the fo11owing Theorem 5) that, if ~=vH,

where v is atomic and À is continuous, with v«À (i.e. v is abso1u

te1y continuous with respect to À), then ~ is both non-atomi c and

non-continuous.

In other words, whi1e atomic masses are necessari1y non-continuous (see

Proposition 2), non-atomic ones can be either continuous or noto

For con~inuous masses, the fo110wing resu1t has been estab1ished in [13J:

Theorem 3 - Let ~ be a continuous mass on a a-algebra é1 ~~(lI)

Then there exists a sequence (F) of mutua11y disjoint measurab1e sets,
n

with ~(F) > O,n

O < a < ~ (li), and

(5)

00

such that n~l~(Fn) equals any preassigned a, with

50 to say, the mass ~ "behaves" li ke a measure on each co11 ecti on

(F ) : then it would seem interesting a deeper investigation of the fami1y
n

(or of some suitab1e subfami1y) of a11 such sets obtained when a ranges
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in the open interval from O to ~(n).

A simple corollary of Theorem 3 is the following: the range of a

continuous ~ is the whole interval lO,~(n)j. The latter statement

is no langer true if ~ is non-continuous: a counterexample is given

in [l]; moreover, there it is shown that the range of ~ need not even

be a closed subset of R, contrary to the classical case of a measure.

As far as continuous masses are concerned, let us quote also a recent

result obtained through non-standard methods: a necessary and sufficient

condition for the existence of a continuous mass, which is invariant

for a transformation of n into itself, is given in [16J.

We want now to extend Theorem 3 to the more general case of a non-ato

mic ~: the previous remarks show that we can hope, at most, in counta

ble additivity on a suitable sequence of sets (and not also, as in eq.

(5), in a beforehand given value of a).

Theorem 4 - Let ~ be a non-atomi c mass on a a-a l gebra a ~!S'( n) .

Then there exists a sequence

with ~(A) > O, such that
n

(A ) of mutually disjoint measurable sets,
n

00 00

O<~(B )<~(B 1)n n-

Proof - Let Be ~ , with O < ~(B) < ~(n): then a1so B' = n - B

satisfies O < ~(B') < ~(n). At 1east one of them (cal1 it B
1

) is such

1
that ~(Bl) ~ "2 ~(n) Now, 1et B2 e et, B2 c Bl , be such that 0<~(B2)<~(B1)

l
~(B2) ~ "2 ~(Bl)' In genera1, we define Bn c: Bn_1, withand

and
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and

A. nA. = 0 for i F j. Moreover
l J

00 k 00

~(n~lAn) = El~(A ) + ~(n~k+1An) =n= n

k k l
= El~(A ) + ~(Bk+l) ~nh~(An) + 2k+l

~ ( Q) .
n= n

As k + 00 , we get

which, taking into account Proposition l, gives (6) .•

The next theorem will enable us to extend (in Section 4) the previous

result also to a particular class of atomic masses.

Theorem 5 - Let a~ <?(Q) be a a-algebra,,, an atomic mass on (1 ,

and À a continuous mass on a such that À(A) > o for any atom A

of ,,(e.g., such that "«À). Then ~ = " + À is non atomic and non-con

tinuous.

Proof : see [lJ .•

Remark - Put ,,= E 8n in Theorem l, eq.(4): " need not be atomic
n

(an example is given in [lOJ ' p. 47), and so we may have masses which are

at the same time non-atomi c and non-continuous, but not of the form given

by Theorem 5.
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Coro11ary 1 - Let B be an u1trafi1ter mass and À a continuous

mass on e:t EIf( n), with B«À. Then ~ = B + À i s non-atomi c and

non-continuous.

Coro 11 ary 2 - Let B

that B«À, where À

be a measure on 0..

be an ultrafilter mass on Cl E1'(n)

is a continuous measure on Cl. Then

such

B cannot

Remark - It is interesting a1so to look at Theorem 5 as another

counterexamp1e to known resu1ts for measures: in [7] it is shown that,

given two measures À and v,with v«À and À non atomic (i.e.

continuous), then valso is non-atomico Actua11y, this need not be true

if v is on1y a mass (and not a measure), for examp1e if it is an

u1trafi1ter mass B, as that of Coro11ary 2. The existence of such a mass

(given À) can be proved (cfr. [lJ) taking an Cl. -ultrafilter containing

the fi 1ter

4. Atomic masses and measurab1e cardina1s.

5ince the mass ~ occurring in Theorem 5 is non-atomic (and non-cont~

nuous), Theorem 4 can be suitab1y app1ied to it, giving easi1y a countab1y

additive sequence of sets a1so for the atomic mass v.

Theorem 6 - Let v be an atomi c mass on a a-a 1gebra (1. ~1'(n), such

that V«À, where À is a continuous measure on Cl... Then there exi.sts

a sequence (A ) of mutua11y disjoint measurab1e sets, such thatn
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Proof - Use Theorem 4 for ~ = v + À, taking into account the coun-

table additivity of À••

Now, in order to deal with the so-ca11ed "Ulam's measure problem", we

recall some known facts about ultrafilter over a set o; we limit

owrselves to free ultrafilters(cfr. the remark following Proposition 3).

Definition 6 - An ultrafilter lA. over O is 6-complete if, given

any sequence of sets A e tL , one has
n

Proposition 4 - Let B be an ultrafilter mass on Cl =~(o), and let

tl be the corresponding (free) ultrafilter. Then B is a measure if and

only if 'I.l is 6-complete.

Proof Countable addi ti vi ty of B impl ies that, given any sequence
~

of sets A e '\.L. , for A' = O - A pt we must have U A' •Un n n n;;l n
~

~

n A e 'U-Therefore o - U A' = i.e. U is 6-complete. Then= l n n= l n '

converse is also easily seen, since B is two-valued.

Definition 7 - Let O be a set: card O is said measurable when there

exists a 6-complete free ultrafilter over o.

Coro11ary 3 - An ultrafilter measure exists on (1 =9(0) if and only

if card O is measurable.

(Notice that the latter measure is finite,defined for all subsets of

o, and zero on singletons).

The question concerning the existence of measurable cardinals (known

also under the name of Ulam's measure problem) cannot be settled in ZFC

(Zermelo-Fraenkel set theory with the Axiom of Choice).
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It was shown that a measurab1e cardinal (assuming its existence)

must be very 1arge and, in fact, must be an inaccessib1e cardinal:

rea11y, if k is a measurab1e cardinal, then there are k inac­

cessib1e cardina1s preceding it (cfr., e.g., [l1J, p. 26 and [14],

p. 26).

Moreover, the existence of a measurab1e cardinal sett1es many

ma thema ti ca1 prob1ems: see [8] .

On the other hand, if we assume that "all" sets are co!",structt b1e

(the so-called "axiomof constructibility" V = L), no measurab1e cardinal

exists: in fact, if there is a measurab1e cardinal, then V = L " is

as false as it possib1y can be" (cfr. [14], p. 31).

Notice that,by Coro11ary 3, the existence of an u1trafi1ter measure

on eJ.>(fl) is eguiva1ent to the statement that card fl is measurab1e ,

whi1e an u1trafi1tpr mass a1ways exists, by a c1assica1 resu1t due

to Tarski [151.

Proposition 5 - Let card fl = c and assume the continuum hypothesis

(CH). Then no u1trafi1ter measure exists on

c is not a measurab1e cardinal).

~(fl) (Le., under CH,

Proof - See [17] or [11] .•

We point out that Coro11ary 2 (cfr. Section 3) gives non-existence

of a particu1ar c1ass of u1trafi1ter measures, without any assumption on

the cardina1ity of n.

We end this Section with a necessary condition for a cardinal to be

measurab1e, which gives an interesting remark to U1am's measure

prob1em; we state first the fo110wing obvious
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Lemma - Let n be a set such that card n is measurab1e, and 1et

~ be the corresponding u1trafi1ter measure. Then ~(E»O imp1ies

card E >~
o

Theorem 7 - Let ~ be an u1trafi1ter measure on 's? (n). Then, given

~ continuous measure À on a~ty(n), necessari1y ~ 1 À (Le., ~

is singu1ar with respect to À) and there are sets E c n, with card E>~
o

such that À(E) = O.

Proof - It is essentia11y a reformu1ation of Coro11ary 2, taking into

account the preceding Lemma .•

Remark - Theorem 7 can be 100ked at to give some grounds for the

acceptance or not of the axiom concerning the existence of measurab1e

cardina1s: for examp1e, if we assume that, given a set n, there exists

at 1east a continuous measure on a a-algebra a~P(n), vanishing on1y

on countab1e (-) sets, then card n is not measurab1e.

This resu1t is a1so a partia1 converse to a theorem given by U1am

(cfr. Satz 2, p. 147) in [17J: he proved that, if card n is not measurab1e

and there exists a measure on n, then this measure is necessari1y conti-

nuous.

(-) Here it wou1d be possib1e to rep1ace "countab1e sets" by "sets of
cardina1ity 1ess than card n", just using a suitab1e definition of
measure, in which countab1e additivity is rep1aced by the ·natura1~

stronger requirement (cfr. [14], p. 20).
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5. Non-standard methods.

It is we11-known that u1trafi1ter masses (or measures:this stronger

termino10gy may be used when the cardina1ity of the index set is measu

rab1e)are a too1 in non-standard ana1ysis for the construction of the

relevant superstructure.

In [4J it is shown how some fundamenta1 ideas in this fie1d may be

introduced through a finite1y additive probabi1ity measure ~ (i.e.,

a mass) on the index set, extending the concept of ultrapower to that

of"~-power".

To facilitate the exposition, the attention was confined to a stru

cture t; = <E, ~, consisting of a non-empty set E and a set ~

of re1ations on E. Given an index set J, 1et ~

·th (J) 1 h "1)= <*E, * m>Wl ~ =: t e superstructure ~ ~

be a mass on ip(J),

consists of the set

*E of a11 functions f: J ~ E (modulo ~-nu11 sets)

Re" R "is true" (loosely speaking) in the "model"

and any re1ation
*.0

(j if and on1y

if it is true in t for a1most all j e J (here each va1ue of one af

the "equiva1ent" functions, with domai n J, defining an e1ement *of E,

is a point of E; "E is a proper extension of E, by virtue of condi

tion (1) : cfr.[4J)

Let us consider, to be definite, the structure given by the ordered

fie1d R. It is c1ear that, using ~-powers instead of u1trapowers

(i.e., arbitrary masses on J instead of u1trafi1ter ones), *R is not

necessari1y a field (and, moreover, it is on1y partial1y ordered): take,

for examp1e, A c J with O < ~ (A) < 1. Its characteristic function xA

is not equiva1ent to the null function O, and so gives rise, in *"8,
to an e1ement (i.e., an equiva1ence c1ass modulo ~-nu11 sets) [X

A
] which
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is not ~O = [OJ; the same is true for X
J

_
A

. But XA . X
J

_A = O, and

so in ~.t>
c; the product of this two non-nul1 elements is

~

null (Le., R has zero divisors).

This fact, from the usual point of view adopted in the costruction of

non-standard models of the reals, should be considered a "defect", since

it is possible (as it is wel1 known) to build up an en1argement ~R which

is an ordered field (though, of course, a non-archimedean one). But it

is possib1e to look at the question fromdifferent viewpoints, similar

(apart from the dropping out of the condition of a-additivity for the

measure on the i ndex set) to those 5 ketched by D . Scott i n [12J

A problem of interest in probability theory is the following: if we

take ~ to be a measure, it does not exist a denumerable "uniform"

(and measurab1e) partition of the index set

for each n, otherwise

J = U1E ,with ~(E )=0n= n n

(impossible) .

On the other hand, if ~ is only a mass and such a partition exists,

the latter inequa1ity is consistent with Prop. l; moreover we show the po~

sibi1ity of 100king at it as a sort of "non-standard" countable additivity.

To begin with, we may give a meaning "" ~ ~ i<to E a (with a e R) byn=l n n

choosing suitable representatives of ~
( n 1,2, ... ) such thata a =n n

""
n~lan(i) converges for almost all i e J, and by putting
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(7)

Now, we remark that, since x
E = O for a1most all j e J, we have

n

[x 1 =
t o ~

XJ := 1, and so LX) = .l.on the other hand, n~lxE =E
nJ n

~ t ~

If we app1y (7) to n~l O =n~l [xE ], choosing
n

[\ 1 , we get
n

x
E

ÀS representati ve of
n

t
= [x) = 1 .

So an uniform probabi1ity distribution on a countab1e set does not

conf1ict, in ~,with "countab1e additivity" of ~ .

We point out that this approach differs from the we11-know one (see,

e.g., [5J ' [9J) through t-finite sets: is there some hope that such "mo­

de1s"wou1d open new trends in this fie1d?
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