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b/ for k=1,2,..es,n the functions \?k are continuous
and for fixed XagosesXy 99 Xy 190009X) they are concave in Xy o

Undey these assumptions the game has at least one equilibrium point,

Proof, See J,B, Rosen [8] . <]

Remark, If we assume that the functions Y , are strictly
concave in Xy s then the uniqueness of the equilibrium point in
general is not true /see Example 4./, For the uniqueness of the
equilibrium point of n-person games J,B, Rosen [8] gave gufficient
conditions, but the assumptions of the next paragraphs are

independent of the conditions introduced by J,B. Rosen,

2o The solution of a special clags of concave games

Let us assume that for k=l,2,ce¢ey

= {5 | & €RF L b (&)1 ol,
where
a/ D - RE ‘i
Ek) = R » R (gﬁy C R s the components of -h-k are

concave, continuously differentiable functions;

b/ X, 1is bounded, and in each point of X  the Kuhn-Tuckex
regularity condition holds /see G, Hadley (3]/ ;

c/ Y, is continuous concave in x, for fixed ZXjje..;

seey X

210 RyepprecesXy and continuously differentiable with

respect to Xy o

w The game F = (Il; Xl“”"xn y \Pl””’ "Fn) has

at least one equilibrium point,



- ] o

Proof, It ig obvious that all conditions of the Nikaidoe

-]1goda theorem are satisfied, .

et k=l1l,2,+00y,n and for fixed strategy vector
X = (x?, xg,...,x::) consider the mathematical programming

problem

B (E) 2 8

Oy (Boors By veor 22 ) = max

(8)

F

I"e_i—ma—h A vector _x_ﬁ = ( E?’Iil’ 5:) is an eqtﬁ.llbrlum

point if and only if for k=1,2,...,0 X, 18 an optimal solution
of the problem (8) ,

Proof, a/ If gc_: is a feasible solution, then the constraint
implies that ;;_;5; & Xk y thus x™ = (_x_if,...,gg) is a strategy vector,

If ;; ig an optimal solution, then for any feasible solution

=" 1 oy # 5%
J'_Ck G x’k! L?k (Elll-l, _}E_k,iii, -}-:-n)':; \-Fk (Elllll’ E_kjill, éﬂ)'
Thus _}_gi is an equilibrium point,

b/ If }_H is an equilibrium point, then inequalities
(1) imply that the components E: are optimal solutionsof tke
pr‘ﬁblemﬂ (8) .

Lemma 6., A vector X% = (:_:g?,..., 3_5:) i an equilibrium point

if and only if for k=l,2,¢.6¢yn1 there exists a vector Wy & R ¢

such that

e = 0
Vi “Py;_ (Eﬁ) * u_kika Qi(i] = .QT
(z) 2 0 (9)
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/where Vk k?k is the gradient vector of { I with respect

to x, and V, h  is the Jacobian matrix of R/,

Proof, Under the assumptions given above, problem (8) is a
concave programming problem, It is known that the Kuhn-Tucker
equations and inequalities (9) are sufficient and necessary
conditions for the optimality of a vector x,. (k=1,2,...,n) /see

To the sake of simple notations let

Y (2 %) = Vihe) +m Uy by (&)

where x=(x x)
__1jliir, Loy o

Now we can prove our main theorem,

= . e
Theorem 2, A vector E# = (ET""’ En) 18 an equllibrium
: : : : : %
point 1f and only if there exists a vector gﬁ = p_if,...,gn ) such

that (gﬁ,lgﬁ) 1s an optimal solution of the mathematical prog-

ramming problem

1 -"-'_: O
k121«: (E’ Re) © 90" k=1,25000,1)
b (%) 20 9)
T /
n
S T, ,-
L Ek E‘K (;z_...k) —p (111 ¢
=1

Proof, a/ Let ;# be an equilibrium point /Lemma 4,

implies that there exists at least one equilibrium point./ Then

. i # # : : .
there exists a vector w = (Eq;e:-,ﬁﬁf) such tnat the equations

. - - " - e ¥ E = "
and inequalities are satisfied for u, = Y, s thus the value of

'
the objective function of the programming problem {lo) is zero

for u, = EE y X, = g? » Tor arbitrary feasible solution (z, G

s
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of (lo) the objective function value is nonnegative, thus

0, S
(g{_ , U ) 1s an optimal solution.

o/ let {gﬁ, u~) be an optimal solution of (1o) .

oince it is a feasible solution, each term of the objective
function is nonnegative, conseqeBTLY the value of the objective
function is nonnegative, sut for the equilibrium point of tiae

came /which exists/ the objective function has zero value,

thererore the optimality of (g? ’ g#) implies that the objective
ﬁ) must have zero value, cince all

function at the point (g# y U
terms are nonnegative in the objective function, all terms are

equal to zero, Thus the equations and inequalities (9) are valid

. . . A
for x =X, u = g# , consequently lemma 6, implies that X

is an equilibrium point. i

Remark 1,  Problem (1lo) is a mathematical programming

problem which can be solved by numerical methods /e.g., cutting

vlane or _radient type algorithms, see G, Hadley [3]/.

nemark 2, J1n the special case of n=2 and ‘fg = = Y,

problem (1lo) was discovered by lies Je Canon [2J'.
finally we willghaw well=xnown algorithms can oe derivec

rom tne above zeneral methoua as speclal cases,

1

general Eolxhedral 2 aine 3

Using the notations of Ixample 3. we have

-ITl

ol

o
Vk Yo (Z7)

2y ‘\"—-)

Vi B (%) EV
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gince

9, (=%) = & (2) %
B (Fy) = & = 2% Z o

Thus problem (lo) has
N
I-.l.k=9

T T . T
a{ (:_r(_) - H-_k -f=1k - _Q (k=l,2,.-.,n)

Ek'ﬁﬁk Y

(11)

13%

n
T : .
Z Ek(h.k*gkzgk) -—> min,
k=1l
let us obsexrve that the second constraint implies that
T T,
2 (2) = ¥ 2

and by using the fact that LFk (ZX) = &y (gc_)T X, We can write

problem (1l) in a more convemient form:

B 2 0 )
i T L
5 (Z) - &0 ) (sLZeeon)
A
S - & & 2 & )
n
2 (EE D, - ‘1’1{ _}_gﬂ —> min,
K=1 (12)
48 a speclal case let n=Z2, oince
m
a1 (X) = £ X 8 (%) =3 %,
where A = (aiu; ) and 3 = (a:-fzi ) y
N 172 - 172

problem (12) can be rewritten as



u-. = 0O
U, = X
u~ = 0
20 = =
m m i
i iy - L'L_.... __‘f" - L—)_
Lo & =L 2 = &
T, T (o
L1 2 7 B 20 T X 3)
Dy~ g & =8
O~ = A, X~ = U
=2 =L =L = -

A+ :-‘?)-3-{-2 —3 min ,

whicn is a quadratic programming problem with linear constraints,
et us observe that the unknown vector X9 Xos Uy 32) ig

W, + Wy 7 &1 +-EE dimensional, In a further special case when
B=- 4 /zero-sum case/, problem (13) is a linear programming

problem, which can be solved by the simplex method,

liixed extension of finite games

4is we have seen in Lxample 3.1n our case

Let us write the vectors u, in block form corresponcding

T0 the special block form of ék and b, , then we nave

R
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bk

notations problem (12} can be written in the form

where v, € , &, and A, are scalers, Using these special

£

Ve = 9 \
X, > 0
B > 0
T T T T T (k=1,2,.00,2)
a (X)) +t Yy =& L7 op L7 =0
(14)
% = 9
!—.T.}El.f;: - }
n
N\ r<0(k-[6k" ‘?k(é))ﬂmni
k=1

let us observe that the nonnegative vector v, appears only in
the fourth congtraint and we can introduce the new variable
\.("k = a(k - (5]:: s which is not necessarily nonnegative, Then we

cet by multiplying the objective function by =1 the followlng

problem:
a (x) £ ¥ 27
£ > 0 ? (%=1,2y.04,n)
1" x, =1 J (15)
n
; (‘fk (X)) - \{'k) —> max

which i1s the method of H, lidlls [6].

Bimatrix Fane s

From the previous case the bimatrix games can be obtalnec

by choosing n=2, Simple calculations show that



Hev
b
el
—t

g, (X)= & %5 » a, (X)) =

1
e

thus problem (15) can be written as

o X5 < f]_.]_-.
DT x g ¥, L
%, = O
=y = &
X, 2 8 (16)
17 %, =1
_}.i o = 1

T s
%1 (: ! ;’) N !"{_,, > LaX ,

T -

which is a quadratic programming problem with linear constraints
and it was discovered by 0,L., lLangasarian and i, Stone [5],

For matrix games B = - 4 , thus problem (16) is a linear

i,

prograuming problem, wiich can be gseparated with resgspect to the
variables (1{-1’ ¥ o) and (x5, Y1), and so problem (16) can be

reduced for two linear programming problems

é.}ig‘érli

x, > 0 (27)
T
L §2=1

and
T
- 4 X, £ {,2_];
% 20 13)
L E‘:.]_=l
r'r" _%mln 3

o

wnere the problems have @, + 1  ang gy ol va.rﬁlﬂi‘}lmﬁ) re8peC ILIVE LY



