4§1f- We first point out the symbols that will be used
in the sequel. We will write Maxwell's equations in Gaussian
units and denote the mean curvent density by 3, the electiric
and the magnetic fields by E and g, the dielectric constant
by ¢, the magnetic permeability by u, the speed of light in
vacuum by ¢, the conductivity by o. Furthermore we set:

o(P,t)=mean charge density inside the conductor at point P,

time t
pC(P,t) = mean charge density at P,t of charge carriers
p, = mean charge density of non-moving charges

;(P,t) = mean velocity at P, t of the charge carriers,{h?é
observe e¢xplicitly that p:psfpc, and that P o does not cepena
on P,t}

We now intend to discuss briefly the unsatisfactory
character of some results which follow from Ohm's law when
it 1s introduced into Maxwell's equations inside conductors
without appropriate criticism. For simplicity we will limit
ourselves 1n the main part of this work to cannsider homo-
geneous isotropic conductors (some indications on possible
generalizations will be given in §6). Then, the conductivity

g 1s a scalar and Ohm's law 1n differential form reads

(1.1)

trié

J =«

[t is well known that, if we assume that eq.(l.1) 1is correct,

we get from Maxwell's equations

-t/
o(P,t) = p(P,0) e (t=¢/4mo) (1.2)
Now, let us consider an homogeneous and isotropic conductor
where the current is due to the motion of negative charge

carriers of a given type only.



Let S be a closed surface internal to the conductor, let D
be the domain enclosed by 1t, and suppose that p(P,0) = O

outside S; then, p{(P,t) = 0, because of eq.(1.2), outside

S. The total charge Q(t) inside S at time t 1s given by

{ , -t/ 1
Q(t) = | p(P,t) dD = Q(0)e

)

Let S' be another closed surface internal to the conductor
and enclosing S, let D' be the domain enclosed by &' and
let n (P,t) be the normal to S' directed outwards. The cur-

rent I' through S' is given by

S _ d ( d
["' = | J + n dS's= " 3% | o(P,t)dD' = - 1t . p(P,t)dDs=
.'Sl JD! JD
d 1 -t/
- -8R -y — Q(0) '
dt
Now, observe that EC= - ?5 at any point of S' and at any timg,
since E)(P,t) = 0 1f P belongs to S'. Hence we get
J = pV==-pv
C S
Substituting into the expression of I', we have
(
- - 1 -t
Vo mds' = - —— Qo) e T
¢
':S' S
Let A' be the area of S' and set v.ooE E-H; then, we get
( — — -
L V » n dS'=<y »>= - 3 & t/ Q(O) _

A' | ;__'_r ;'Jtlu



Since Q(0O) and A' are arbitrary, for any t1> 0 we can choose

Q(0) and A' such that

(
9N . . CtTp etl/T
A )

so that

o (t -t)/x
c e 1

I

<V 2

Hence, Vo> >C for any t such that O<t<t this obviously

]
contradicts the special relativity,

As a second example of the 1nadequacy of Ohm’'s law 1n 1ts
torm (1.1), consider a conductor where a current J flows in
the presence of a stationary magnetic field. Then, the poten-
tial @ of the electric field inside the conductor follows the
Laplace's equation, while the boundary conditions that we
must associate with this equation to determine $ do not
change because of the magnetic field. Therefore, eq.(1.1)
cannot explain, not even qualitatively, any effect, such as
the Hall effect, caused by the presence of a magnetic field.
For this reason most textbooks, when dealing with the Hall
effect in the framework of the classical electromagnetisin
consider only particular cases and obtain equations that,
while correct, are not consistent with the usual practice

= . .. (4
cE into Maxwell's equations inside conductors.

of writing J
Finally, we remark that even simple conduction models for me-
dia in which the current is due to only one kind of charge

carrier show that an equation of the form

J = tap L (1.3)



(where o is the mobility of the charge carriers and it 1is
always positive, and the sign is plus if P 1s positive,
minus 1if Dc 1s negative) 1s more realistic than eq,.(1,1).
Anyway, it is easy to show that not even eq. (1.3) is con-
sistent with the special relativity.(s) Analogously, the
magnetic field does not enter into eq.(l.3), so that we
can again predict that no effect such as the Hall effect

can be 1interpreted by it.

§E%- I'he inconsistencies discussed in the last section
suggest that a more appropriate formulation of the conduc-
tion taw inside conductors should be given. To this end

we remind that eq.(l1.1) becomes

-.-.-.-.+ [
when an "effective" field E adds to E.

Then, 1f we consider a homogeneous isotropic conductor where
the current 1is due to the motion of charge carriers of one

type only, one immediately thinks that the general law of con-

(2)(3)

duction has the form

J =+ o p (P, 1) £(P,t) (2.1)

where we call t the total force acting on the unitary charge

.. 6 _ _ | . ;
inside the conductor( ) and the sign is chosen as in eq.(1.3).

Note that eq. (2.1) takes 1nto account eq.(1.3), and that o

may depend on the frequence w of the force (this implies Fourier

(7)

transforms ;} The force %{P,tj generally includes the magne-

tic field; if only electromagnetic fields act inside the con-
ductor, eq.(2.1) takes the form

J = ¢+ o p E % = vxB =% a p E + -~ JxB (2.2)
C C C C



Thus, we are led to think that eq.(11) must be replaced by
eq. (2.2). Attaining a full generalization of this eguation
goes beyond the limits of the present article. We restrict
ourselves here to observing that, considering an 1isotropic
and homogeneous conductor where n kinds of charge carriers
exist, eq.(2.2) holds separately for any kind of charge car-

rier. Denoting ary quantity related to the carriers of type

t by the suffix L, we get

.
0
)
="
-
o=

where thesign, as usual, is plus for positive carriers and
minus for negative carriers. Hence the total current density

will be given by

Note that E“tuEJi 1s not generally proportional! to J,; the

¥

-

eq. (2.4) 1s then more difficult to discuss than eq. (.

§3- In %2 we have 1ntroduced the conduction equations
(2.2) and (2.4). We note that these eguations have been
written on a phenomenological basis, without any "justifita-
tion'" 1n the framework of a conduction model and without
taking explicitly into account special relativity.
Thus, in particular, we cannot pretend that they are relativi-
stically consigtent, even 1f we expect that any relativist:c
correction will be neglegible for most practical purposes.

We 1ntend now to show that, making use of an clementary

conduction model, a form for the conduction law can be sug-

o ]



gested which is relativistically correct (because of the way

1t has been obtained) and which coincides with eq.(2.2) 1f we

assume that 1n the latter the coefficient o 1s 1ndependent

of E and B only where small conduction velocitlies are concer-

ned. To this end, we consider the simple conduction model

used by some textgbooks to give an elementary "explanation'

of Ohm's law, taking into account the magnetic force acting

on the charge carriers and using relativistic instead of

classical mechanics. The following assumptions will be made(g):

a) the conductor is made of neutral atoms and charge carriers,
and the atoms interact with the carriers only at short
range: 1{ no field exists, the carriers move freely be-
tween two collisions,

b) the density of the carriers is very low, so that we can
ignore their mutual interactions.

C) no statistical correlation exists between the velocity

and momentum of a carrier before a collision and its ve-
locity and momentum afterwards,

d) the electric and magnetic fields inside the conductor are
so small that they do not alter the mean free time T be-
tween two collisions of a given carrier with an atom (if
the temperature is fixed), and they vary so slowly 1in space
and time that they are nearly constant during this time

and along the mean free path of the charge carriers.,

e) (Ergodic hypothesis). The mean statistical value of any dina-

mical quantity relative to a charge carrier, taken over a
great number of carriers, is equal to the mean time value
of this quantity during a sufficiently large number of col-
lisions of a given charge carrier (under the assumption

that E and B are nearly constant during this period),
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Then,let us consider the carriers of a given type,
having charge g and rest mass Mo’ and let AN be their number
in the volume AV,

Let ;i(t) and Ei(t] be the speed and the momentum of the
i-th carrier of this kind at time t, suppose that its last
collision with an atom took place at time t., and let s. be

1 1
its displacement in the interval (ti’t)' We have

ft
- =“- !’t - o 1 o ! —
pi(t) pit i}+ (qE+C ui(t }JxB)dt

)
.
1 L
- - o) _ 4 o ; v
= t - t' =
pi( 1) + gqE(t ti) - B X | ui{t )d
Jti
- o 9 7 -
= t + -t. B .
Pi( i} qE(t t1] = B x s,

Summing over the AN carriers and dividing by AN we get

“ : 1 . \ i 1 9- g 1 - T
At) = — ) .p.(L.) + ) (t=-t. )~ B —_— ) .5
A N Elpl( ) A N lel( l)I qE A N zl(t tlJ C : A N “]“'1 1

Now, Elﬁ Eigi(t) = E(t] is the mean momentum in AV of our
[9)' Z""

ip,(ti) 1S zero since the momenta
1

carriers at time t

(t.) are directed at random; —— ).(t-t.) and — ).S.
pl( 1) A N Ll( l) A N 53_ 1

are the mean time T and the mean displacement s between twoO
1

collisions. Let us call v(t) = N

fﬁui(t) the mean velocity
i

A
q - _
in AV of our carrier at time t( ); then, s = vT, as can be
easily demonstrated making use of assumption e), so that we

can write (omitting t in p(t) and v(t))

E = qET + % T; X E
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Hence, setting N = AN/AV and M = Lﬂl~ we get

|V
2 2
M M C

Now, Nq 15 the density P of the carriers and Nq; = J.

Therefore we obtain

|
H
=

E + = = 3
pc + - Y J x B (3.1)

Eq. (3.1) coincides with eq.(2.2) (hence with eq.{2.4) 1f more
than one kind of charge carriers exist) 1f we set 1%I| = .
Anyway, it must be stressed that o depends now, through M,

on the velocity of the charge carriers; hence, it does not ce-
pend on E and B only 1f these fields are so small that the ve-
locity acquired by the charge carriers because of them 1s ne-
glegible 1f compared with the speed of light,

Under these assumptions, and if, on top of this, the mean

termal velocity is so low that for any charge carrier the re-

lativistic mass cannot be distinguished from the rest mass, we

can set a = |92| z|91] = q and write
M M 0
0
P — {] —— P
J = + a p E # — J x B (3.2)
o C c

This equation is actually the one which has a practical rele-
vance, even 1f eq. (3.1) 1s theoretically interesting 1in sol-
ving the first paradox we discussed 1in §1.

Finally, we remark that the model discussed thus far is pro-
bably, even amongst the classical ones, much too simple for
most physical conductors. We know that more complex non quan-
tum models exist in literature (which, anyway, do not take in-

to account relativistic mechanics and magnetic field); these
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lead to substitute the mean time T with the ''relaxation
time" 1, and introduce the frequency when periodic fields
are considered; but the linear dependenceof J on E is pre-

(3)

served Thus, when we introduce the magnetic field, we
expect that eq. (3.2) will be confirmed even by more sophi-

sticated models.

§4- In this section we i1ntend to deduce some elementary conse-

quences of eq. (2.2).

1) Joule effect insiﬁe conductors

[t 1s clear that eq. (2.2) does not change the usual
expression for the power dissipated by the current due to
a given type of charge carrier. The total power W dissipa-
ted in the unity of volume inside a homogeneous isotropic

conductor with many kinds of charge carriers has the form

1
1 =2 -
W= J = J 4.1
?E, o ? 1 ZEL o 1 ( )
YR s
where the conductivity o, T @,p, is not rigorously constant

for the given medium since 0 depends on the specific situa-
tion and may vary from point to point. On the contrary, the
change 1n a due to the relativistic mass of the charge car-

4
riers canusually be neglected.

IT) Charge diffusion

[t 1s not possible to deduce the behaviour of p(P,t)
starting from p(P,0)without considering simultaneously the
behaviour ot 3, E and B. Using the continuity equation, Max-
well's equations and eq. (2,2), we find non-linear equations
even 1n the simple case of a conductor with only one kind of

charge carriers; this 1s due to the term JxB that appears
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(2)

in eq.(2.2) . Furthermore, the dependence of o on the
velocity of the charge carriers [{and consequently on the
fields) cannot be neglected now; indeed we are not "a prio-
ri'" assured about E and B being small enough, and the presence
of strong fields, like in the neigbourhood of a concentra-
tion of charge, causes a local increase of resistivity. In
conclusion, no simple [and paradoxical) equation of the form
(1.2) can be given now,

In particular, we shall show in §5 that the limit of p(P,t)

as t+e 1s not necessarily zero.,.

IIT) Steady states, resistance and the Hall effect

W i

Let us study a steady state inside a conductor with one
type of charge carriers only. Generally, E and B will both

be different from zero; in particular, E is a static field

and 1ts potential P obeys Poisson's equation

?2? = =d47p (4.2)

As we have already been, we cannot set p O, even as a limit

when t-»e~, since eq.(1.2) does not work now.

Let S1 and S2 be two surfaces (even internal) of the con-

ductor that are maintained at potentials ¢, and ¢, respec-

tively, and let S1 be the "lateral surface''of the conductor

(1.e .the set of the points of its surface which do not

belong to S, or to SZ)' Then, eq.(4,2) must be associated

1
with the boundary conditions

? = ?1 at Sl
(4.3)

? = ¢2 at 82
ang

Jn = 0 at S1 (4.4)
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Making use of eq.(2.2), we have from eq.(4.4)

’E“"El.-?c(jxg) - (4.5)
Thus, we see that @ is now connected to the other unknown
quantities of the problem (in particular, to the magnetic
field) both by eq.(4.2) and by the boundary condition (4.5).
Hence the usual discussions which lead to the concept of
resistance as a characteristic of a given conductor (rela-

ted to a given position of the terminals S, and 82 ) do

1
not hold any longer, even 1f this concept is still meaning-
ful whenever the magnetic field can be ignored.

A general discussion of our problem is not simple, although
we can get some results that do not require a complete solu-
tion of it. To do this, let us call EO(P) a conservative

field whose potential @ satisfies the eq.?Z?D=O with the

0
boundary conditions (4.3) and d?o
an Y
Then the field
E, = E - E
El 0

1s conservative and its potential ¢1=¢>- P satisfies eq.

(4.2), is zero at S1 and 82 and satisfies eq.(4.5) at S

Thus, we see that E can be divided into the sum of two

B

fields: the first, Eo’ 1s the "usual" field, that 1s, the

one which would appear in the conductor if eq.(l1.1) were

correct, and E reduces to EG only 1if B = O. The second, El 18

a conservative, generally non-solenoidal field, which appears
when B differs from zero: we shall call it "transverse" in
the sense that its line integral along any path connecting

S1 with S_ 1s zero. Now, observe that B can be written as

2
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the sum of the field Ei generated by J itself plus the

"external" field B

Generally, Bi cannot be zero, so that E, 1s not rigorously

1

zero even 1if Be = 0; that is,a transverse electric field

always exists. Yet, Bi is often neglegible for any practi-

cal purpose: is this case, E_, appears only 1if Ee # 0, gi-

1
ving rise to the Hall effect, and it can be found solving
eq.(4.2) with the boundary conditions given above. However,
this cannot be made without considering the whole problem

of charge and fields inside the conductor,

§5- By considering particular simple problems we can
achieve a better understanding of the implications of eq.
(2.2),

For instance, we can study a steady state in absence of

any external magnetic field for a cylindrical conductor

of infinite length with one type of charge carrier only.

In this case, the conditions (4.3) must be slightly changed
because of the conductor being infinite: we shall suppose
that two given cross sections S1 and 82 of the cylinder,

d cm. apart, are equipotential surfaces, and that their
potentials are (Fl and ?2 respectively, with ?lgh@z. We
choose the axis of the cylinder as the polar axis, oriented

from S, to S for a cylindrical coordinate system (r, 6,2z),

1 27
and denote the unitary vectors tangent to the coordinate
A A

lines by r, 6, 2. Then the symmetry of the system implies

that p, J, E, ﬁ, depend only on r; moreover, beingﬁh3=0,

= A . —. A _ : .
J v r must be zero, while J*+8% = O since, if it were not,
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no cross section of the conductor could be an equipotential

surface.Therefore we can set
J = J(r) % (5.1)

Eq.(5.1) implies that the condition (4.4) is automatically
- A
satisfied and that B= B(r) 8, where

4wy

B (r) = J(r')r' dr'.

re ) o

Moreover, E being conservative, its component along the polar
. — & .
axis cannot depend on r, while E - 8 must be zero;then, it
1S
- -~ ™
E=E 2z + E (r)r
Z r

where Ez = (?1 - ?é)/d and

Our problem is thus reduced to the evaluation of p(r) and J(1).

Using eq.{2.2) we get the scalar equations

J(T)

i
H
2
©
rr

(5.2)
1

O = ¢ pCEr[r) ¥ — J(r)B(r)

where the upper sign holds when P 1s positive and the lower

one holds when 2 1s negative., Hence, we have

- Er(r) = % L B(r)

a b ¢
7



that 1is

and therefore

J(r) = + —
EY Z

(p. .+ o) (5.3)

Eq. (5.3), (where p has the meaning defined in.%l), to-

S
gether with the first of eqs. (5.2), gives J(r) and ac; our
problem 1s thus solved, since P 1S a characteristic parameter

of the given medium, To obtain the final equations in a more
transparent form, observe that, being J = .Y, the quantity
* aEz represents the mean velocity v of the charge carriers in

the direction Z. Then, setting Vvep = n, we can write

v = ¢ u(@l —*Pz)/d

and
J(r) = (p = p )V
n2
p =+ = vd(r)
C
that is 5 5 > 5
n v n v -]
O = = 2 (1- 2 ) pS
C C
2 2
_ n v -1
J = =v(1 Cz ) 2

The same calculation with Ohm's law in 1ts usual form would

have given p=0, J = - pSV; the corrections that we have ob-
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tained are neglegible in most cases. However, our example

exhibits two interesting theoretical features. First, we

see that p can be different from zero 1n a steady statefiol
Secondly, let S be a cross section of the conductor;

then the total current I will be given by
ZVZ 1
) (9,79,) (5.4)

J§

Il =JS = % « S o (1 -
d S -

Eq. (5.4) shows that I is not proportional to (@l—qa)

because v depends on (Tl*qb) and, moreover, a depends on v,
so that the concept of resistance has a meaning only in the
non-relativistic limit, that i1s, when v<<c; 1in this case, eq.
(5.4) reduces to its usual expression.

As a second example, we could study an infinite conductor
having a rectangular cross section when an external magnetic
field 1s applied which is normal to one side of the conductor.
This 1s the case that is more frequently studied in the text-
books; if we suppose that the magnetic field generated by the
current flowing in the conductor itself 1s neglegible, set
ap=0, and suppose that ¢ is nearly constant, eq.(2.2) would

reproduce well known results,

§6- We will conclude this article by dealing briefly

with a further generalization of eq.(2.2). Consider a homo-
geneous, non isotropic conductor with only one type of charge
carrier; let us denote the components of any vector 1n the
X,y¥,2, directions by the indices 1,2,3, and use the summation
convention over repeated indices. Then we get, substituting

the mobility tensor (a.,) for the scalar mobility «

1k

J. = 1 E + = u.k(JXB)

i o e Bt T ey (i,k = 1,2,3) (6.1)



The homogeneity condition can be relaxed if o,
to depend on the point; it any case,

tensor
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g 1S supposed

(u.k) is a symmetric
(11) .

Eq.(6.1) can also be written in the form

_ 1 |, =1 - 1 - -
Ei = % o (a )ika + . (JxB)i (6.2)
that is
By = (yy * a5 dy (6.3)
where 2 1s a symmetric tensor and q,q an antisymmetric

tensor, and it 1is

Egs.

plk - Dc (= )1P
0 B,-B Lo
y 4
I S
\ (qlk) - ¥ Co Bz 0 B
C
B 8 O
Y X

(6.2) and (6.3) agree with Landau-Lifchitz's equations;

moreover, eq.(6.4) gives, at least when o does not depend on

the speed of the charge carriers, i.e. in the non-relativistic

limit, an explicit form for P,

and q. that does not appear

k k

in Landau's book.

Finally, this generalization can be trivially extended to

conductors with many kinds of charge carriers, following the

same methods used in §2 to extend eq.(2.2).



