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Introduction

Ohm's law is usualIy assumed to be one of the simplest

experimental laws in physics. The textbooks of generaI

physics at the undergraduate level mainIy deal with either

its elementary consequences or with conduction models that

can give an "expIanation" of it. Careful discussions about

the breakdowns of Ohm's law can be found in various places,

but they are generalIy concerned with its failures at high

frequencies, high values of the electric field and so on,

and not with the compatibility of this equation with

Maxwell's equations. On the other hand, most treatises on

electricity and magnetism introduce Ohm's law in MaxwelI's

equations without adequate care(l) although some important

consequences are deduced from it, like electromagnetic

wave behaviour in conductors and the relaxation time for

the dissipation of charge. There exist, indeed, some gra

duate level textbooks on electromagnetism(2) (Il) that

contain a deeper insight into the question; in these, it

is generally assumed that the conductivity tensor o depends

on the magnetic field Band o is expanded in powers of B,

thus obtaining a generalization of Ohm's law.

These approaches are clearly unsatisfactory from a modern

point of view, since it is well known that a proper

discussion of the conduction phenomena can be given only

in a quantum-mechanicaI framework(3); however, even from

an elementary and non-quantum point of view some objections

can be made to the treatments described above. Indeed. we

will show that, introducing Ohm's law into MaxwelI's equa

tions Ieads to inconsistencies within the- framework of
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c12csical ~l?ct~amagnelism> while, on the ot"~r h~~~, ~

~eneralization of Ohm's law obtained assurning hat the

c0nduc~ivity t~nso? a (epepd~ on Band expanding it in

powers of B is rather formaI and obscures (cxpecially

{rom a didactical point of view) the role of special re

lativit) ahd of t e Lorentz force; moreover, the coeffi

citlnts of t!le scries must Le determined within the mor"

difficult framework of <: transport theery. T CIS, axp,'

cially for didactical purposes, a non-quantum approaeh

te conduction which neither leads to inconsistencies nor

is purely forma' seAms desirable. Hence, we wil1 alsa

show that a generalized form of the conduction law can ha

deduced by making use of a slight generalizatioll ot the

non-quantum conduction model which is often used to give

an elem"ntary microscopic interpretation of Ollm's law.

This generalized law coincides, in the non reldtivistlc

limit, with the one that is usually found In solid state

physics texts • and it avoids the above inconsist~ncie<

taking into account relativistic mechanics and the magne

tic fjeld (i.e. the Lorentz invariance of Maxwel]'s

equations). Finally we wi11 llse this law to show that

it implies some refinements of the concept of Tesistanc~

~ince the fields now influenee the resistance) Dnd that

it allows a deeper understanding of the Hall effect, at

]east as far as the non-quantum electromagnetic theol")'

of this effect is reliable.
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§l- We first point out the symbols that will be used

in the sequel. Wc will write Maxwell's equations in Gaussian

units and denote the mean current density by J, the electric

and the magnetic fields by E and B, the dielectric constant

by c, the magnetic permeability by ~, the speed of light In

vacuum by c, the conductivity by o. Furthermore we set:

p(P,t)=mean charge density inside the conductor at point P,

time t

p (P,t) = mean charge density at P,t of charge carriers
c

ps = mean charge density of non-moving charges

v(P,t) = IDean velocity at P, t of the charge carriers .(VVe
ouserve explici ly that P=PsTPc' and that Ps do~s not Gcp0nd

on P, t).
We now intend to discuss briefly the unsatisfactory

character of some results which follow from OhE.'s law when

it is introduced into Maxwell's equations inside conductors

without appropriate criticismo For simplicity we will limit

ourselves in the main part of this work to cnnsider homo

geneous isotropic conductors (some indications on possible

generalizations will be given in ~6). Then, the conductivity

o is a scalar and Ohm's law in differential form reads

J = trE (1.1)

It lS well known that, if we a sUme that eq,(l.l) is correct,

we get from Maxwell's equations

-t/1
p (P,t) = p (P,O) e (T=C/41rO) Cl .2)

Now, let us consider an homogeneous and isotropic conductor

where the current is due to thc motion of negative charge

carriers of a given typc only.
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Let S be a closed surface internaI to the conductor, let D

be the domai n enciosed by it, and suppose that p(P,O) = O

outside S; then, p(P,t) = O, because of eq,(I.Z), outside

S. The totai charge Q(t) inside S at time t is given by

Q(t) = r p(P,t) dD = Q(O)e-t/T
) D

Let S' be another closed surface internaI to the conductor

and enclosing S, let D' be the domain enciosed by S' and

let n (P,t) be the normal to S' directed outwards. The cur

rent I I through S' is given by

I I =
,
• 5 '

J
d

n dS'= -
dt

(

I
! D I

p (P, t)dD'
d i

I
dt ) D

p(P,tldD=

.c!Q

dt

l
+ -- Q(O)

-ti.
e

Now, observe that f
c

= - r
s

at any point of S' and at any tim~,

since ~ (P,t) = O if P belongs to S'. Hence we get

J = p v
c

- p v
S

Substituting into the expression af l', we have

,
, 5 '

v . n dS I =
l

P T
5

Q(O)
-t/T

e

Let A' be the area of S' and set v = v·n; then, we get
n

l

A'
) 5 l

l
P T

S

-ti.
e

Q(O)

A'
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Since Q(O) and A' are arbitrary, for any tI> O we can choose

Q(O) and A' such tha t

SO t ha t

A'

(t -t)/1
<v > ~ C e l

n

t /T
c 1 p e l

5

Hence, <v n > >c for any t such that O<t<t
1

; this obviously

contradicts the special relativity.

As a second example of the inadequacy of Ohm's law in its

form (1.1), consider a conductor where a current J flows In

the presence of a stationary magnetic field. Then, the poten

tial , of the electric field inside the conductor follows the

Laplace's equation, while the boundary conditions that we

must associate with this equation to determine , do not

change because of the magnetic field. Therefore, eq.ll.li

cannot explain, not even qualitatively, any effect, such as

the Hall effect, caused by the presence of a magnetic field.

For this reason most textbooks, when dealing with the Hall

effect in the framework of the classical electromagnetisln

consider only particular cases and obtain equations that,

while correct, are not consistent with the usual practice

of writing J ~ oE into Maxwell 's equations inside conductor5~4J

Finally, we remark that even simple conduction models for me

dia in which the current is due to only one kind of charge

carrier show that an equation of the forill

J ~ !c<p E
c

( 1. 3 I



plus if p is positive,
c

realistic than eq. (1.1).

(where a is the mobility of the charge carriers and it is

always positive, and the sign is

minus if p is negative) is more
c

Anyway, it is easy to show that not even eq. (1.3) is con-

sistent with the special relativity. (5) Analogously, the

magnetic field does not enter into eq.(1.3), so that we

can aga in predict that no effect such as the Hall effect

can be interpreted by it.

§Z- The inconsistencies discussed in the last section

suggest that a more appropriate formulation of the conduc

tion law inside conductors should be given. To this end

we remind that eq.(l.l) becomes

--+
J = a(E + E )

-+
when an "effective" field E adds to E.

Then, if we consider a homogeneous isotropic conductoT where

the CUTrent lS due to the motion of charge carriers of one

type only, one immediately thinks that the generaI law of con

duction has the form(Z)(3)

-
J = ± a p (P,t) f(P,t)

c
( Z. l )

-
where we calI f the total force acting on the unitary charge

inside the conductor(6) and the sign is chosen as in eq.(1.3).

Note that eq. (2.1) takes into account eq.(l.3), and that n

may depend on the frequence w of the force (this implies Fourier

transforms(7). The force t(P,t) generally includes the magne

tic field; if only electromagnetic fields act inside the con

ductor, eq.(Z.l) takes the forro

J = ± n p E ±
c

ap
C vxB =

c
± Cl p E

c
n

± - JxB
c

( Z• Z)
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Thus, we are led to think that eq,(ll) must be replaced by

eq. (2.2). Attaining a full generalization of this equation

goes beyond the limits of the present article. We restrict

ourselves here to observing that, considering an isotropic

and homogeneous conductor where n kinds of charge carriers

exist, eq. (2.2) holds separately for any kind of charge car

rier. Denoting al y quantity related to the carriers of type

t by the suffix l, we get

Cl e
:top E ±

~ c ~ c
I 2 .3)

where the sign, as usual, is plus for positive carriers and

mlnus for negative carriers. Hence the total current density

will be given by

(2.41

'lote that L~!Cl~J~ is not generallv proportional to J; the

eq. (2.41 IS then more difficult to discuss than eq. U.2 j •

~ 3-

( 2 . 2)

,
ln S2 we have introduced the conduction equations

and (2.41. We note that these equations have becn.
written on a phenomenological basis, without any "justlfica-

tion" in the framel"ork of a conductlon model and without

taking explicitly into account sreclal relativity.

Thus, in particular, we cannot pretend that they are relatlvi

stically consistent, even if \Ve expect that any relatlvistlc

correction will be neglegible for most practical purposes.

We intend now to show that, making use of an clemen!ary

conduction model, a form for the conduction law can be sug-
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gested which is reIativisticaIIy correct (because of the way

it has been obtained) and which coincides with eq.(2.2} if we

assume that in the Iatter the coefficient a is independent

of E and B only where smaII conduction velocities are concer

ned. To this end, we consider the simple conduction model

used by some textlbooks to give an elementary "expIanation"

of Ohm's Iaw, taking into account the magnetic force acting

on the charge carriers and using relativistic instead of

cIassicaI mechanics. The following assumptions wiII be made(8):

a} the conductor is made of neutral atoms and charge carriers,

and the atoms interact with the carriers only at short

range: if no field exists, the carriers move freeIy be-

tween two collisions.

b) the density of the carriers is very Iow, so that we can

ignore their mutuaI interactions.

c) no statistical correlation exists between the velocity

and momentum of a carrier before a collision and its ve-

locity and momentum afterwards.

d) the electric and magnetic fields inside the conductor are

so small that they do not alter the mean free time T be

tween two collisions of a given carrier with an atom (if

the temperature is fixed), and they vary so slowlY ln space

and time that they are nearly constant during this time

and along the mean free path of the charge carriers.

e) (Ergodic hypothesis). The mean statistical value of any dina

mical quantity relative to a charge carrier, taken over a

great number of carriers, lS equal to the mean time value

of this quantity during a sufficiently large number of col

Iisions of a given charge carrier (under the assumption

that E and Bare nearly constant during this period).
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having charge

- lO ~

us consider the carriers of a given type,

q and rest mass M , and let AN be their number
o

in the volume AV.

Let u.(t) and p.(t) be the speed and the momentum of the
l l

i-th carrier of this kind at time t, suppose that its last

collision with an atom took pIace at time t., and let s. be
l l

its displacement in the interval (t. ,t). We have
l

( t
p.(t)=P.(t.)+1 (qE+g u. (t')xB)dt' =

l l l I c l

) t.
( tl

= Pi(t l ) + qE(t-t.) El B xl u.(t')dt' =
l c l

) t·
~

= p. (t. ) + qE(t-t.) - El B x S.
l l l C 1

Summing over the AN carriers and dividing by AN we get

L·P.(t.)
l l l

carriers at time

= p(t)

(9)
t ;

is the mean momentum in AV of our

is zero since the momenta

p.(t.) are directed at random;
l l

l l -
'N L. (t-t.) and -N ~.s.
u l l AlI

are the mean time T and the mean displacement 5 between two

colIisions. Let calI v(t)
l

I·li.(t) the velocityus = -- mean
A N l l

(9) -
in AV of our carrier at time t ; then, 5 = vT, as can be

easily demonstrated making use of assumption e), so that we

can write (omitting t in p(t) and v(t))

p = qET + El Tv x B
c
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Hence, setting N : 6N/6V and M : lcl we get
Ivi

2 2
Nqv ~ E Lt:!I l

B+ V X
M Il c

Now, Nq is the density

Therefore we obtain

p of the carriers and Nqv
c

J.

- oT - l oTJ : ~ p E + - ~ J x B
M c c M

(3.1)

Eq. (3,1) coincides with eq,(2,2) (hence with eq.(2.4) if more

glithan one kind of charge carriers exist) if we set IM : Ci,

Anyway, i t mus t be stressed tha t Ci depends now, through M,

on the velocity of the charge carriers; hence, it does not de

pend on E and B only if these fields are so small that the ve

locity acquired by the charge carriers because of them is ne

glegible if compared with the speed of light,

Under these assumptions, and if, on top of this, the mean

termal velocity is so low that for any charge carrier the re-

be distinguished from the restlativistic mass cannot

can set Ci : I~_I -Igll
'" - Mo

: Ci

o
and write

mass, we

J ± Ci p E ±
o c

Ci
o

J x B
c

(3, 2)

This equation is actually the one which has a practical rele

vance, even if eq. (3,1) is theoretically interesting in 501

ving the first paradox we discussed in ~1.

Finally, we remark that the mode l discussed thus far is pro

bably, even amongst the classical ones, much too simple for

most physical conductors. \Ve know that more complex non quan

tum models exist in literature (which, anyway, do not take in

to account relativistic mechanics and magnetic field); these
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lead to substitute the mean time T with the "relaxation

time" T, and introduce the frequency when periodic fields

are considered; but the linear dependence of J on E is pre-
(3)

served . Thus, when we introduce the magnetic field, we

expect that eq. (3.2) will be confirmed even by more sophi

sticated models.

§4- In this section we intend to deduce some elementary conse-

quences of eq. (2.2),

l) Joule effect inside conductors

It is clear that eq. (2.2) does not change the usual

expression for the power dissipated by the current due to

a given type of charge carrier. The total power W dissipa

ted in the unity of volume inside a homogeneous isotropic

conductor with many kinds of charge carriers has the form

iV - \'
- i~

l
( 4 . l )

where the conductivity a = a p is not rigorously constant
l l l

for the given medium since O depends on the specific situa
l

tion and may vary from point to point. On the contrary, the

change in a due to the relativistic mass of the charge car
~

riers canusually be neglected.

II) Charge diffusion

It is not possible to deduce the behaviour of p(P,t)

starting from p(P,o)without considering simultaneously the

behaviour of J, E and B. Using the continuity equation, Max

well's equations and eq. (2,2), we find non-linear equations

even in the simple case of a conductor with only one kind of

charge carriers; this is due to the term JxB that appears
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(Z)
in eq.(Z.Z) . Furthermore, the dependence of a on the

velocity of the charge carriers [and consequently on the

fields) cannot be neglected now; indeed we are not "a prlO-
-

ri" assured about E and B being small enough, and the presence

of strong fields, like In the neigbourhood of a concentra

tion of charge, causes a local increase of resistivity. In

conclusion, no simple [and paradoxical) equation of the form

(l.Z) can be given now.

In particular, we shall show in §5 tha t the l imi! of p (P, t)

as t+· is not necessarily zero.

III) Steady states, resistance and the Hall effect

Let us study a steady state inside a conductor with one

type of charge carriers only. Generally, E and B will both

be different from zero; in particular, E is a static field

and its potential f obeys Poisson's equation

Z
'V '? = -4np ( 4 . 2)

As we have already been, we cannot set p = O, even as a limit

when t+·, since eq.(l.Z) does not work now.

Let Sl and Sz be two surfaces (even internal) of the con

ductor that are maintained at potentials ~l and ~2 respec

tively, and let SI be the "lateral surface"of the conductor

(i.e ,the set of the points of its surface which do not

belong to Sl or to SZ). Then, eq.(4.Z) must be associated

with the boundary conditions

J·n .. OatS
l

(4 .3)

( 4 .4)
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Making use of eq.(2.2), we have from eq.(4.4)

il
dn

= -
l
cp

c
(J x B) • n ( 4 .5)

Thus, we see that , is now connected to the other unknown

quantities of the problem (in particular, ID the magnetic

field) both by eq. (4.2) and by the boundary condition (4.5).

Hence the usual discussions which lead to the concept of

resistance as a characteristic of a given conductor (rela

ted to a given position of the terminals SI and S2 ) do

not hold any longer, even if this concept is stilI meaning

ful whenever the magnetic field can be ignored.

A generaI discussion of our problem is not simple, although

wc can get some results that do not require a complete solu-

tion of i t. To do this, let us calI

field whose potential '0 satisfies

boundary conditions (4.3) and d,
o-dn

Then the field

E (P) a conservative
o

the eq.v2fo=O with the

= o.

E
o

is conservative and its potential ~ =~ -, satisfies eq.
1 o

(4.2), is zero at SI and S2 and satisfies eq.(4.5) at SI'

Thus, we see that E can be divided into the sum of two

fieIds: the first, E , is the "usual" field, that is, the
o

one which would appear in the conductor if eq.(l.l) were

correct, and E reduces to

a conservative, generally

E only if B =
o

non-soJenoidal

O. The second, El ia

fieId, which appears

when B differs from zero: we shall calI it "transverse" in

the sense that its line integraI along any path connecting

SI with S2 is zero. Now, observe that B can be written as
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the sum of the field B. generated by J itself plus the
l

"external" field B
e

B = B. + B
l e

Generally, Bi cannot be zero, so that El lS not rigorously

zero even if B = O; that is,a transverse electric field
e

always exists. Yet, B. is often neglegible for any practi-
l

cal purpose: is this case, El appears only if Be 1 O, gi-

ving rise to the Hall effect, and it can be found solving

eq.(4.Z) with the boundary conditions given above. However,

this cannot be made without considering the whole problem

of charge and fields inside the conductor.

~5- By considering particular simple problems we can

achieve a better understanding of the implications of eq.

(Z. Z) •

For instance, we can study a steady state in absence of

any external magnetic field for a cylindrical conductor

of infinite length with one type of charge carrier only.

In this case, the conditions (4.3) must be slightly changed

because of the conductor being infinite: we shall suppose

that two given cross sections SI and Sz of the cylinder,

d cm, apart, are equipotential surfaces, and that their

potentials are ~l and

choose the axis of the

lfz respectively, withfl>'PZ' We

cylinder as the polar axis, oriented

fram SI to SZ' far a cylindrical coordinate system (r, e ,z),

and denote the unitary vectors t~ngent to the coordinate
~ . .

lines by r, e, z. Then the symmetry of the system implies

that p, J, E, H, depend only on r; mareover, being\1.J=O,
- • A
J , r must be zero, while J'.e = O since, if it were not,
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no cross section of the conductor cou1d be an equipotential

surface.Therefore we can set

J = J(r) z (5 .1)

Eq.(S.l) imp1ies that the condition (4.4) lS automatica11y
A

satisfied and that B= B(r) e, where

B (r) =
r

(r
4,,~ I J(r')r' dr'.
rc J o

Moreover, E being conservative, its component a10ng the polar
•axis cannot depend on r, whi1e E· e must be zerojthen, it

lS
- ~ ...
E = E z + E (r)r

z r

E (r) =
r

(r

4" I p (r')dr'.
Er I

J o

~rprob1em is thus reduced to the eva1uation of per) and J(r).

Using eq.(Z.Z) we get the scalar equations

J(r) = :!: Cl p E
c z

(5. Z)

o = ± p E (r) '!'
c r

l
c

J(r)B(r)

where the upper sign

one ho1ds when Pc is

ho1ds when p is positive and the lower
c

negative. Hence, we have

l

cE
z

E (r) = :!:
r

l
B(r)

c
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that is

per) ~ ± .u!.
2

c
J(r)

and therefore

Jer) ~ ±

2
c 1

aE
z

e p +
5

( 5 • 3 )

equations in a more

is a characteristicsince Ps

obtain the final

has the meaning defined in ~ 1), to-

of eqs. (5.2), gives J(r) and p ; our
C

parameter

form, observe that, being J ~ p v, the quantity
c

the mean velocity v of the charge carriers in

Then, setting I~ ~ n, we can write

problem is thus solved,

± aE represents
z

the direction ~.

of the given medium. To

transparent

Eq. (5.3), (where Ps

gether with the first

and

J (r) ~ (p - p )v
s

2
n

vJ(r)p ~ +
2

c

that is
2 2 2 2

TI V
(l

TI v -l
p ~ - ) Ps2 2

c c

J ~ -v(l-
2 2

TI v -1
2 )

c
p

s

The same calculatioTI with Ohm's law in its usua1 form wou1d

have given p~O, J ~ - p v; the correctioTIs that we have ob
s
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tained are neglegible in most cases. However, our example

exhibits two interesting theoretical features. First, we

see that p can be different from zero in a steady state (10t
Secondly, let S be a cross section of the conductor;

then the total current I will be given by

S
2 2

-l
I Cl

n v
(<fl-<f2) ( 5 • 4 )= JS = + a - p - )

d s 2
c

Eq. (5.4) shows that I is not proportional to (<1\-(j?Z)

because v depends on (fl-~2) and, moreover, a depends on v,

so that the concept of resistance has a meaning only in the

non-relativistic limit, that is, when v«c; in this case, eq.

(5.4) reduces to its usual expression.

As a second example, we could study an infinite conductor

having a rectangular cross section when an external magnetic

field is applied which is normal to one side of the conductor.

This is the case that is more frequently studied in the text

books; if we suppose that the magnetic field generated by the

current fIowing in the conductor i tself is neglegible, set

ap=a, and suppose that a is nearly constant, eq.(2.2) would

reproduce well known results.

§6- We will conclude this article by dealing briefly

with a further generalization of eq. (2.2). Consider a homo

geneous, non isotropic conductor with only one type of charge

carrier; let us denote the components of any vector in the

x,y,z, directions by the indices 1,2,3, and use the summation

convention over repeated indices. Then we get, substituting

the mobility tensor (a
ik

) for the scalar Qobility a

l
J. = ± p a·kEk ± - a.k(JxB)k (i,k = 1,2,3) (6.1)

l c l C l
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The homogeneity condition can be re1axed if a
ik

is supposed

to depend on the pointj it any case, (a.
k

) is a symmetric
(11) l

tensor .

Eq. (6. 1) can also be written in the form

1 [ -1 1
(JxB)i]E. = ± . (a )ikJk +

l Pc c

that is

E. = (Pik + qik)Jkl

(6.2)

(6.3)

where Pik is a symmetric tensor and qik an antisymmetric

tensor, and it is

l -1
Pik = ± (li ) i vP

C

O a -8
(6.4)

l
Z y

(qik) = - -8 o BI(CP %
c

B B oy x

Eqs. (6.2) and (6.3) agree with Landau-Lifchitz's equations;

moreover, eq.(6.4) gives, at 1east when a does not depend on

the speed of the charge carriers, i.e. in the non-re1ativistic

limit, an explicit form for Pik and qik that does not appear

in Landau's book.

Finally, this generalization can be trivia11y extended to

conductors with many kinds of charge carriers, fo'llowing the

same methods used in §2 to extend eq. (2.2) .
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