Introduction - In the work (1) a general disjoint decomposition of semigroups was given, wich can be applied for the case of regular semigroups. The aim of the present paper is to obtain a characteristic decomposition of regular semigroups based on the decomposition studied in (1). We shall investigate the components of this decomposition and the interrelations between them.

By making use of the work (2) we study the cases of regular semigroups with or without left or right identity element.

Finally we make some special remarks.

Notations : For two sets A, B we write $A \subset B$ if A is a proper subset of B. By magnifying element we mean a left magnifying element.
§ 1 .

Let S be a semigroup without nonzero annihilator. This is not a proper restriction because every semigroup can be reduced to this case.

Then S has the following disjoint decomposition:

$$
S=\bigcup_{i=0}^{5} S_{i}
$$

where

$$
\begin{aligned}
& S_{0}=\{a \in S \mid a S<S \text { and } \exists x \in S, x \neq 0 \text { and } a x=0\}, \\
& S_{1}=\{a \in S \mid a S=S \text { and } \exists y \in S, y \neq 0 \text { and } a y=0\}, \\
& S_{2}=\left\{a \in S \backslash\left(S_{0} \cup S_{1}\right) \mid a S \subset S \text { and } \exists x_{1}, x_{2} \in S, x_{1} \neq x_{2}\right. \text { and } \\
& \left.\quad a x_{1}=a x_{2}\right\}, \\
& S_{3}=\left\{a \in S \backslash\left(S_{0} \cup S_{1}\right) \mid a S=S \text { and } \exists y_{1}, y_{2} \in S, y_{1} \neq y_{2}\right. \text { and } \\
& S_{4}=\left\{a \in S \mid\left(S_{0} \cup S_{1} \cup S_{1}=a y_{2}\right\},\right. \\
& S_{5}=\left\{a \in S\left|\left(S_{0} \cup S_{1}\right)\right| a S_{1} \cup S C S\right\},
\end{aligned}
$$

It is easy to see that the components $\mathrm{S}_{\mathrm{i}}(\mathrm{i}=0,1, \ldots, 5)$
are semigroups, $S_{i} \cap S_{j}=\varnothing(i \neq j)$ and the following relations hold:

It is evidence that an analogous
$11^{\prime} / \quad S=\bigcup_{i=0}^{5} T_{i}$
decomposition exists, where
$T_{0}=\{a \in S \mid S a \subset S$ and $\exists x \in S, x \neq 0$ and $x a=0\}$, $T_{1}=\{a \in S \mid S a=S$ and $\exists y \in S, y \neq 0$, and $y a=0\}$,
etc.

Our theorems concern for the decomposition /1/, but analogous results can be formulated for the decomposition / $/ 1$.

THEOREM 1.1. S_{5} is a right group.
PROOF. It is easy to see, that S_{5} is right simple and left cancellative, whence the ass ertion follows.

Let $\mathrm{s}_{\mathrm{o}} \cup \mathrm{s}_{2}=\overline{\mathrm{s}}_{2} \quad$ and $\quad \mathrm{s}_{1} \cup \mathrm{~s}_{3}=\overline{\mathrm{s}}_{3}$.

THEOREM 1.2. \bar{S}_{2} is a subsemigroup of S .
PROOF. If $s_{o} \in S_{o}$ and $s_{2} \in S_{2}$, then $s_{o} s_{2} \in \bar{S}_{2}$. There are elements $x, y \in S, x \neq y$ such that $s_{2} x=s_{2} y$. We have $\mathrm{s}_{\mathrm{o}} \mathrm{s}_{2} \notin \overline{\mathrm{~s}}_{3}$ and $\mathrm{s}_{\mathrm{o}} \mathrm{s}_{2} \& \mathrm{~s}_{5}$ because $\mathrm{s}_{\mathrm{o}} \mathrm{s}_{2} \mathrm{~S}=\mathrm{s}_{\mathrm{o}}\left(\mathrm{s}_{2} \mathrm{~s}\right) \subset \mathrm{C}$.

If $s_{o} s_{2} \neq 0$, then $\left(s_{o} s_{2}\right) x=\left(s_{o} s_{2}\right) y(x \neq y)$, whence $\mathrm{s}_{\mathrm{o}} \mathrm{s}_{2} \in \mathrm{~S}_{2} \varepsilon \overline{\mathrm{~s}}_{2}$. Similarly $\mathrm{s}_{2} \mathrm{~s}_{\mathrm{o}} \in \overline{\mathrm{s}}_{2}$. If $\mathrm{s}_{\mathrm{o}} \neq 0$ then $s_{2} s_{0} \neq 0$ because $s_{2} \in S_{2}$. Since $s_{0} \in S_{o}$, there is an element $z \neq 0$ such that $s_{o} z=0$, hence $\left(s_{2} s_{0}\right) z=0$. Therefore $s_{2} s_{o} \in S_{0}$. Q.e.d.

THEOREM $1.3 \overline{\mathrm{~S}}_{3}$ contains all the magnifying elements of S and only them.

PROOF. Let $a \in S_{1} \cup S_{3}$. If $a \in S$ and $a S=S$, further there is an $y \neq 0$ so that a $y=0$, then $S^{\prime}=S \backslash\{0\} \subset S$ and $a S^{\prime}=S$, whence a is a magnifying element. If $a \in S_{3}$ and $a S=S$, further there exist $x, y \in S(x \neq y)$ such that $a x=a y$, then $a(S-\{x\})=S$ and a is a magnifying element.

Conversely, if $a \in S$ is a magnifying element, then a $\& S_{0} \cup S_{2} \cup S_{4}$, and $a M=S(M \subset S)$. Thus there are $m \in M$ and $s \in S \backslash M$ such that $a m=a s$. Hence it follows that $a \in S_{1} \cup S_{3}$, q.e.d.

Remark. Theorem 1.2. and Theorem 1.3. imply
/3/

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{o} 2} \subseteq \mathrm{~s}_{0} \cup \mathrm{~s}_{2} ; \quad \mathrm{s}_{2} \mathrm{~s}_{0} \leq \mathrm{s}_{\mathrm{o}} \cup \mathrm{~s}_{2} ; \\
& \mathrm{s}_{1} \mathrm{~s}_{3} \subseteq \mathrm{~s}_{1} \cup \mathrm{~s}_{3} ; \quad \mathrm{s}_{3} \mathrm{~s}_{1} \subseteq \mathrm{~s}_{1} \cup \mathrm{~s}_{3}
\end{aligned}
$$

In what follows we assume S is a regular semigroup, i. e. to every $a \in S$ there is an $x \in S$ such that $a=a x a$ and $x=x a x / x$ is the inverse of $a /$. The ements $a x, x$ a are idempotent and $a S \geq a x S \geq$ axaS $=a S$ implies axS $=a S$ and similarly x a $\mathrm{S}=\mathrm{x} S$.

The regular semigroup S can contain a zero element hence the components S_{o} and S_{1} can exist in the decomposition /1/. THEOREM 1.4. The inverses of elements of \bar{S}_{3} are in S_{4} and the inverses of elements of S_{4} are in $\overline{\mathrm{S}}_{3}$. PROOF. Let $a \in \bar{S}_{3}$ and $x \in S$ an inverse of a, that is
$a x a=a$ and $x a x=x$. First of $a l l$, we show that $x S \subset S$. Suppose that $x S=S$, then there is a subset $S^{\prime} \in S$ such that a $S^{\prime}=S$ because a is a magnifying element. Hence it follows that x a $S^{\prime}=x S=S$. But we have $(x a) S=x S=S$ and x is idempotent, that is, x a is a left identity of S, therefore $(x a) S^{\prime}=S^{\prime} \neq S$, which is a contradiction. Thus $x S \subset S$, whence x is comtained by S_{0}, S_{2} or S_{4}. If $x \in S_{2}$, then
$x s_{1}=x s_{2}\left(s_{1} \neq s_{2}\right)$ and $(a x) s_{1}=(a x) s_{2}$. Since $(a x) S=a S=S$ and $a x$ is idempotent we obtain that $a x$ is a left identity of S, i.e. $(a x) s_{1}=(a x) s_{2}$ implies $s_{1}=s_{2}$, which is a contradiction. It can similarly be proved that $x \notin S_{0}$. It remains the case $x \in S_{4}$.

Conversely, let $b \in S_{4}$, that is, $S=S^{\prime} \subset S$. Let y be an inverse of b in S. Hence b y $S=b S=S^{\prime}$. Suppose that y $S \subset S$. Let $y S=S^{\prime \prime}(\neq S)$. Hence $b S^{\prime \prime}=b$ y $S=b S$. Thus there are elements $s \notin S^{\prime \prime}$, and $s^{\prime \prime} \in S^{\prime \prime}$ such that $b s^{\prime \prime}=b s$.

But every element a of S for which $a x_{1}=a x_{2}\left(x_{1} \neq x_{2}\right)$ is contained by $\mathrm{S}_{0} \cup \mathrm{~S}_{1}$ or $\mathrm{S}_{2} \cup \mathrm{~S}_{3}$, which is a contradiction with $b \in \mathrm{~S}_{4}$. Thus necessarily y $s=s$, that is, $y \notin S_{0} \cup S_{2} \cup S_{4}$. If y $\in S_{5}$, then $(y \quad b) S=y S=y(b S)=y S^{\prime}=S \quad\left(S^{\prime} \neq S\right)$, i.e., y $\in S_{1} \cup S_{3}$, wich is a contradiction. It remains the only case $y \in S_{1} \cup S_{3}=\bar{S}_{3}$, q.e.d.

It is casy to see, that the inverses of \bar{S}_{3} exhaust S_{4} and
the inverses of the elements of S_{4} also exhaust \bar{S}_{3}.

COROLLARY. 1.5. If a regular semigroup S does not contain magnifying elements $\left(\bar{S}_{3}=\emptyset\right)$, then $S_{4}=\emptyset$, and conversely, $S_{4}=\emptyset$ implies $\overline{\mathrm{S}}_{3}=\emptyset$.

COROLLARY 1.6. If a regular semigroup S does not contain left identity, then $\bar{S}_{3}=\emptyset$ and hence $S_{4}=\emptyset$.

For if $a \in \bar{S}_{3}$ and $x \in S_{4}$ is an inverse of a, then $a x$ is a left identity of S.

THEOREM 1.7. \bar{S}_{2} is a regular semigroup and the inverses of an element of $\overline{\mathrm{S}}_{2}$ are contained by $\overline{\mathrm{S}}_{2}$.

PROOF. Let $a \in \bar{S}_{2}$ and x an inverse of a in S. Since $a \in S_{0} \cup S_{2}$, we have a $S \subset S$. Assume that $x S=S$. Then $\left(\begin{array}{ll}x & a) S \\ =\end{array}\right.$ $=x(a S)=x S=S$, whence x is a magnifying element, i.e., $x \in \bar{S}_{0}$. But every inverse of \bar{S}_{3} is /by Theorem $1.4 . /$ in S_{4}, thus a $\in S_{4}$, which is a contradiction. Therefore $x S<S$. But $x \notin S_{4}$ because a $\in \bar{S}_{2}$. We conclude that $x \in S_{0} V S_{2}=\bar{S}_{2}$, q.e.d.

The above results yield the following result.

THEOREM 1.8. A semigroup S is regular if and only if it has a decomposition /1/

$$
s=\bigcup_{i=0}^{5} s_{i}
$$

where
a/ $\overline{\mathrm{s}}_{2}=\mathrm{s}_{\mathrm{o}} \cup \mathrm{s}_{2}$ is regular;
b/ the inverses of elements of $\bar{S}_{3}=S_{1} \cup S_{3}$ are contained by S_{4} and conversely;
c/ S_{5} is a right group.

PROOF. The necessity follows from Theorems 1.1., 1.4, 1.7. The sufficiency it follows from the fact that a right group is regular.

§. 2.

In this § we shall deepen our knowledge concerning the decomposition /1/ of a regular semigroup S as well as on the components $\overline{\mathrm{s}}_{2}, \overline{\mathrm{~s}}_{3}$ and $\overline{\mathrm{s}}_{4}$.

THEOREM 2.1. Let S be a regular semigroup without /left/ magnifying elements. Using the notations $\overline{\mathrm{S}}_{2}=\overline{\mathrm{S}}_{2}{ }^{1}, \mathrm{~S}_{5}=\mathrm{S}_{5}^{1}$ we obtain the following decompositions:
$S=\bar{S}_{2}^{1} \cup s_{5}^{1}$ and if \bar{S}_{2}^{1} has no magnifying element, $\bar{s}_{2}^{1}=\bar{s}_{2}^{2} U s_{5}^{2}$ and if \bar{s}_{2}^{2} has no magnifying element, $\bar{s}_{2}^{\mathrm{k}}=\overline{\mathrm{s}}_{2}^{\mathrm{k}+1} \cup \mathrm{~s}_{5}^{\mathrm{k}+1}$
where $\overline{\mathrm{S}}_{2}^{\mathrm{k}}$ are regular semigroups, $\mathrm{S}_{5}^{\mathrm{k}}$ are right groups and the following inclusions hold:

$$
\begin{array}{ll}
s_{5}^{k} S_{5}^{j} \leq s_{5}^{k} & (k \geqslant j) \\
s_{5}^{j} s_{5}^{k}=s_{5}^{k} & (k \geqslant j)
\end{array}
$$

/4/

$$
\begin{array}{ll}
\mathrm{s}_{5}^{\mathrm{k}} \overline{\mathrm{~S}}_{2}^{\mathrm{j}}=\overline{\mathrm{S}}_{2}^{\mathrm{j}} & (\mathrm{k} \leq \mathrm{j}) \\
\mathrm{S}_{2}^{\mathrm{j}} \mathrm{~s}_{5}^{\mathrm{k}} \subseteq \overline{\mathrm{~S}}_{2}^{\mathrm{j}} & (\mathrm{k} \leq \mathrm{j})
\end{array}
$$

PROOF. It is enough to give a proof for the following cases:

$$
s_{5}^{1} s_{5}^{k}, \quad s_{5}^{k} s_{5}^{1}, s_{5}^{1}-s_{2}^{j}, \quad s_{2}^{j} s_{5}^{1}
$$

because the proof is similar in the semigroups $\overline{\mathrm{S}}_{2}{ }_{2}$.
The proof is by induction on k and j. It is trivial that

$$
s_{5}^{1} s_{5}^{1}=s_{5}^{1}, \quad s_{5}^{1} s_{2}^{1}=\bar{s}_{2}^{1}, \quad s_{5}^{2} s_{2}^{1}=\bar{s}_{2}^{1} . \quad\left(s_{5}^{k} \in s_{5}^{k}\right)
$$

Hence

$$
s_{5}^{1} s_{5}^{2} \bar{s}_{2}^{1}=\bar{s}_{2}^{1}
$$

i.e., $s_{5}^{1} s_{5}^{2} \in S_{5}^{2}$ for all $s_{5}^{1} \in S_{5}^{1}$ and $s_{5}^{2} \in S_{5}^{2}$.

Since $\mathrm{s}_{5}^{1} \mathrm{~s}_{2}^{1}=\mathrm{s}_{2}^{1}$, furthermore $\mathrm{s}_{5}^{1} \mathrm{~s}_{5}^{2} \subseteq \mathrm{~s}_{5}^{2}$ and $\mathrm{s}_{5}^{1}\left(\mathrm{~s}_{2}^{2} \mathrm{~s}_{2}^{1}\right) \subset \mathrm{s}_{2}^{1}$, that is, $s_{5}^{1} s_{2}^{2} \in \bar{s}_{2}^{2}$, we conclude $s_{5}^{1} s_{5}^{2}=s_{5}^{2}$ and $s_{5}^{1} \bar{s}_{2}^{2}=\bar{s}_{2}^{2}$, whence $\mathrm{S}_{5}^{1} \mathrm{~S}_{5}^{2}=\mathrm{S}_{5}^{2}, \quad \mathrm{~s}_{5}^{1} \mathrm{~S}_{2}^{2}=\overline{\mathrm{s}}_{2}^{2}$.

Thus we have $\mathrm{S}_{5}^{1} \mathrm{~s}_{5}^{1}=\mathrm{S}_{5}^{1}, \mathrm{~S}_{5}^{1-1} \mathrm{~S}_{2}^{1}=\mathrm{S}_{2}^{1}, \mathrm{~S}_{5}^{1} \mathrm{~S}_{5}^{2}=\mathrm{s}_{5}^{2}$,

$$
\mathrm{s}_{5}^{1} \overline{\mathrm{~s}}_{2}^{2}=\overline{\mathrm{s}}_{2}^{2}, \quad \mathrm{~s}_{5}^{2} \mathrm{~s}_{5}^{1} \subseteq \mathrm{~s}_{5}^{2}
$$

because $s_{5}^{2} s_{5}^{1} s_{5}^{2}=s_{5}^{2} s_{5}^{2}=s_{5}^{2}$ and thus $s_{5}^{2} s_{5}^{1} \in s_{5}^{2}$.

The first step of the proof is true.

Now suppose that the following conditions hold:
$S_{5}^{1} S_{5}^{k}=S_{5}^{k}, S_{5}^{k} S_{5}^{1} \subseteq S_{5}^{k}, S_{5}^{1} \bar{s}_{2}^{j}=\bar{S}_{2}^{j}, \quad \bar{S}_{2}^{j} S_{5}^{1} \subseteq \bar{s}_{2}^{j}$.
By the definition we have $\mathrm{s}_{5}^{\mathrm{k}+1} \mathrm{~s}_{2}^{\mathrm{k}}=\overline{\mathrm{s}}_{2}^{\mathrm{k}}$. Hence

$$
\left(s_{5}^{1} s_{5}^{k+1}\right) \bar{s}_{2}^{k}=s_{5}^{1} \mathrm{~s}_{2}^{\mathrm{k}}=\overline{\mathrm{s}}_{2}^{\mathrm{k}},
$$

whence $\mathrm{s}_{5}^{1} \mathrm{~s}_{5}^{\mathrm{k}+1} \in \mathrm{~s}_{5}^{\mathrm{k}+1}$.
Thus we obtain

$$
s_{5}^{k+1}=\left(s_{5}^{1} s_{5}^{k+1}\right) s_{5}^{k+1}=s_{5}^{1} s_{5}^{k+1}
$$

whence

$$
\begin{aligned}
& s_{5}^{1} s_{5}^{k+1}=s_{5}^{k+1} \\
& \text { It holds }\left(s_{5}^{k+1} s_{5}^{1}\right) S_{5}^{k+1}=s_{5}^{k+1} \text {, furthermore } s_{5}^{k+1} s_{5}^{1} \in \bar{S}_{2}^{-k},
\end{aligned}
$$

thus
$s_{5}^{k+1} s_{5}^{1} \in S_{5}^{k+1} \quad$ implies $\quad S_{5}^{k+1} \quad S_{5}^{1} \subseteq S_{5}^{k+1}$.
We have also $\left(s_{5}^{1} s_{2}^{j+1}\right) \bar{S}_{2}^{j} \subset s_{5}^{1} \bar{s}_{2}^{j}=\bar{S}_{2}^{j}$, whence $s_{5}^{1} s_{2}^{j+1} \epsilon \bar{S}_{2}^{j+1}$
and $s_{5}^{1} \bar{S}_{2}^{j+1}=\bar{S}_{2}^{j+1}$ implies $S_{5}^{1-j}{\underset{2}{j+1}}^{j+1} \bar{S}_{2}^{j+1}$.
Finally we have $\mathrm{s}_{2}^{\mathrm{j}+1} \mathrm{~s}_{5}^{1} \in \overline{\mathrm{~S}}_{2}^{\mathrm{j}}$ and $\mathrm{s}_{2}^{\mathrm{j}+1} \mathrm{~s}_{5}^{1-\mathrm{S}}{ }_{2}^{\mathrm{j}}=\mathrm{s}_{2}^{\mathrm{j}+1} \mathrm{~s}_{2}^{\mathrm{j}} \subset \mathrm{s}_{2}^{\mathrm{j}}$,
whence it follows that $\mathrm{s}_{2}^{\mathrm{j}+1} \mathrm{~s}_{5}^{1} \in \overline{\mathrm{~S}}_{2}^{\mathrm{j}+1}$ and $\overline{\mathrm{S}}_{2}^{\mathrm{j}+1} \mathrm{~S}_{5}^{1} \subseteq \overline{\mathrm{~S}}_{2}^{\mathrm{j}+1}$.

COROLLARY 2.2. If S and $\mathrm{S}_{2}^{\mathrm{k}}(\mathrm{k} \geqslant 1)$ are regular semigroups without magnifying elements, then S has one of the following four types of decompositions:
a/ $s=\left(\left(\left((\ldots) \quad \cup \quad s_{5}^{4}\right) \cup s_{5}^{3}\right) \cup s_{5}^{2}\right) \cup s_{5}^{1}$,
with infinite number of components;
b/ $s=\bar{s}_{2}^{-1} \cup\left(\left(\left((\ldots) \cup s_{5}^{4}\right) \cup s_{5}^{3}\right) \cup s_{5}^{2}\right) \cup s_{5}^{1}$,
where \bar{S}_{2}^{1} is a semigroup of type \bar{S}_{2} and there are infinitely many components;
c/ $s=\left(\left(\left(s_{5}^{n} \cup \ldots\right) \cup s_{5}^{3}\right) \cup s_{5}^{2}\right) \cup s_{5}^{1}$,
where the number of components is n;
$\left.\mathrm{d} / \mathrm{s}=\left(\left(\left(\overline{\mathrm{s}}_{2}^{\mathrm{m}} \cup \mathrm{s}_{5}^{\mathrm{m}}\right) \cup \ldots\right) \cup \mathrm{s}_{5}^{3}\right) \cup \mathrm{s}_{5}^{2}\right) \cup \mathrm{s}_{5}^{1}$,
where the number of components is $m+1$.

We shall treat some properties of the semigroups \bar{S}_{3} and S_{4}.
THEOREM 2.3. Let $a, b \in \bar{S}_{3}$, an inverse of a is x. an inverse of b is $y\left(x, y \in S_{4}\right)$. Then $x y$ is an inverse of b.

PROOF. Since $a x$ and $b y$ are left identities of S, we have
$b a \operatorname{xy} b a=b(a x y) b a=b y b a=b a$,
xy ba $\mathrm{xy}=\mathrm{xyb}(\mathrm{a} x \mathrm{y})=\mathrm{x} y \mathrm{~b} y=\mathrm{x} y$, q.e.d.

THEOREM 2.4. If $a, b \in S_{4}$ and x is an inverse of a, y is
an inverse of b, then $y x$ and $a b$ are inverses of each other.
PROOF. By theorem 2.3. (y b y) (x a x) is an inverse of $a b$, i.e., $a b=a b(y b y)(x a x) a b=$
$=a(b y b) y x(a x a) b=a b y x a b$,
$y \mathrm{xab} y \mathrm{x}=\mathrm{y} \mathrm{b} \mathrm{y} \mathrm{x}=\mathrm{y} \mathrm{x}$
using that $\mathrm{x} a, \mathrm{y} \mathrm{b}$ are left identities of S . Q.e.d.

By Theorem 1.4. $\overline{\mathrm{s}}_{3} \mathrm{US}_{4}$ is a regular subset of S , but it fails to be a subsemigroup, because, e.g., $\mathrm{S}_{4} \mathrm{~S}_{3} \leq \mathrm{S}_{2}$ /cf.(2)/.

$$
\text { Let } \begin{aligned}
& x_{1}=\left\{x \in S_{4} \mid x \quad \text { is an inverse of some } a \in S_{1}\right\} \\
& x_{3}=\left\{y \in S_{4} \mid y\right. \\
&\text { is an inverse of some } \left.b \in S_{3}\right\}
\end{aligned}
$$

Then $s_{4}=x_{1} \cup x_{3}$.

COROLLARY 2.5. X_{1} and X_{3} are subsemigroups of S_{4}.
In general, if $A \subseteq \bar{S}_{3}$ is a subsemigroup, then the inverses of elements of A is a subsemigroup of S_{4}.

PROOF. This is an easy consequence of Theorem 2.3.

COROLLARY 2.6. $\overline{\mathrm{S}}_{3}$ and S_{4} have no idempotent elements. PROOF. Every element of $\overline{\mathrm{S}}_{3}$ is a magnifying one, thus $a \neq a^{2}$ ($a \in \bar{S}_{3}$). Assume that $e \in S_{4}$ is idempotent. Since e is an inverse of $e, e \in \bar{S}_{3} /$ by Theorem 1.4/, which is a contradiction. Q.e.d. THEOREM 2.7. Every element of \bar{S}_{3} and S_{4} generates an
infinite cyclic semigroup.

PROOF. In opposite case $\overline{\mathrm{S}}_{3}$ or S_{4} contains an idempotent element which is a contradiction by 2.6 .

THEOREM 2.8. 1./ $\overline{\mathrm{S}}_{3}$ has no/proper/right magnifying element.
2.1 S_{4} has no left magnifying element. 3./ If $1 \in S$ /i.e. S is a monoid/, then $S_{0} \cup S_{2} \cup S_{5}$ has no left or right magnifying element. 4. S_{5} has no left magnifying element.

PROOF. $/ 1 /$ is a consequence of [4], Chap.III. 5.6. (β) Since in the product $s_{4} S \quad\left(s_{4} \in S_{4}\right)$ the representation of each element is uniquely, thus the same holds for $s_{4} S_{4}$, and /2/ is true.
/3/ if follows from [4], Chap.III. 5.6. / $\gamma /$, because the union $S_{0} \cup S_{2} \cup S_{5}$ does not contain left or right magnifying elements of S.

Finally, S_{5} is a right group, and hence it has no left magnifying elements /cf. [4], Chap. III. 5.3. (γ)/.

§ 3.

In this \S results of the work [2] will be applied to the decomposition /1/ of regular semigroups.

For a regular semigroup S we shall investigate the following cases based on Theorem 4 in $[2]$:

1/ S has neither left nor right identity element;

2/ S has identity element;

3/ S has either left or right identity element.

In the case $3 /$ we may assume that S has only left identity element. In the opposite case we need study the decomposition /1'/ instead of /1/.

As it is well known an idempotent element e is O-primitive if it is minimal among the idempotents D_{e}, where D_{e} is the $\mathcal{D}^{\text {-class }}$ of e / Ois a Green's relation/.

In the case $1 / \mathrm{S}$ has no left magnifying elements /cf.corol$\operatorname{lary} 1.6 /$, that is, $S_{1} \cup S_{3}=\emptyset$ and $S_{4}=\emptyset$, furthermore $S_{5}=\emptyset$, because in the contrary case S would have a left identity element. Hence $\quad s=S_{0} \cup S_{2}=\bar{S}_{2}$.

In the case $2 /$ suppose that $1 \in S$ is the identity element. Then: a/ if 1 is O-primitive we have $S_{1} \cup S_{3}=\emptyset, S_{4}=\emptyset$,
while $S_{5} \neq \emptyset$ le.g. $1 \in \mathrm{~S}_{5} /$. In this subcase we arrive

$$
s=s_{o} U s_{2} \cup s_{5}
$$

b/ If 1 is not O-primitive, then there are magnifying elements, that is $\mathrm{S}_{1} \cup \mathrm{~S}_{3} \neq \emptyset, \mathrm{S}_{4} \neq \emptyset, \mathrm{S}_{5}$ is equal to the subsemigroup of all invertable elements and thus it is nonempty.

Since $\mathrm{S}_{4} \mathrm{~S}_{3} \subseteq \mathrm{~S}_{2}$ and $\mathrm{S}_{4} \mathrm{~S}_{1} \subseteq \mathrm{~S}_{\mathrm{o}}$, at least one of the subsemigroups $\mathrm{S}_{\mathrm{o}}, \mathrm{S}_{2}$ is nonempty. Hence we obtain

$$
s=\bar{s}_{2} \cup \bar{s}_{3} \cup s_{4} \cup s_{5}
$$

where all the components are nonvoid.
In the case $3 /$ suppose that e is a left identity
element of S. Then
a/ if e is 0 -primitive, then $s_{1} \cup s_{3}=\emptyset, s_{4}=\emptyset$, while $S_{5} \neq \emptyset /$ for example, $e \in S_{5} /$. Therefore

$$
s=s_{o} \cup s_{2} \cup s_{5}
$$

b/ If e fails to be \emptyset-primitive, then there are magnifying elements, that is $s_{1} U s_{3} \neq \emptyset, s_{4} \neq \emptyset, S_{5} \neq \emptyset$ and similarly to the case $2 / b$, we have $s_{o} \cup s_{2} \neq \emptyset$.

Hence

$$
s=\bar{s}_{2} \cup \bar{s}_{3} \cup s_{4} \cup s_{5},
$$

where all the components are nonempty.

Summing up the above statements:

THEOREM 3.1. Let S be a regular semigroup. Then
1/ if S has no left identity element:

$$
s_{1} \cup s_{3}=\emptyset, \quad s_{4}=\emptyset, \quad s_{5}=\emptyset .
$$

2/ If S has identity element:

$$
\text { a/ if } 1 \text { is } \circlearrowleft \text {-primitive, }
$$

$$
s_{1} \cup s_{3}=\emptyset, \quad s_{4}=\emptyset, \quad s_{5} \neq \emptyset .
$$

b/ If 1 is not 0 -primitive, we have

$$
s_{1} \cup s_{3} \neq \emptyset, \quad s_{4} \neq \emptyset, \quad s_{5} \neq \emptyset, \quad s_{0} \cup s_{2} \neq \emptyset
$$

3./ If e is a left identity of S :
a/ if e is -primitive, we get

$$
s_{1} \cup s_{3}=\emptyset, \quad s_{4}=\emptyset, \quad s_{5} \neq \emptyset
$$

b/ if e is not -primitive, we have

$$
s_{1} \cup s_{3} \neq \emptyset, \quad s_{4} \neq \emptyset, \quad s_{5} \neq \emptyset, s_{o} \cup s_{2} \neq \emptyset
$$

Finally we make some remarks concerning the decomposition /1/.
If $x \in S_{4}$, let $B_{x}=\{a \in S \mid a$ is an inverse of $x\}$.
If $a \in \bar{S}_{3}$, let $\quad C_{a}=\{x \in S \mid x$ is an inverse of $a\}$.
If $x \in S_{4}$ and $a \in B_{x}\left(a \in \bar{S}_{3}\right)$, then $a x$ is a left identity
of S, that is, $a x=e$ and $a y=e^{\prime} \quad\left(a \in \bar{S}_{3}, y \in C_{a}\right)$ are left dentitis of S.

THEOREM 4.1. /i/ If $x \in S_{4}$ then B_{x} fails to be a subsemigroup. /ii/ If $a \in \bar{S}_{3}$, then C_{a} fails to be a subsemigroup. PROOF. Suppose that B_{x} is a semigroup and $a, b \in B_{x}$. Then $a \mathrm{xa}=\mathrm{a}, \mathrm{b} \times \mathrm{b}=\mathrm{b}$ and $\mathrm{b} a \in \mathrm{~B}_{\mathrm{x}}$. Hence $\mathrm{b} a \mathrm{x} b \mathrm{a}=\mathrm{b} \mathrm{a}$. Since $a \mathrm{x}$ is a left identity element, hence $\mathrm{b}(\mathrm{b} a)=\mathrm{b} a$. On the other hand, b a $\in \bar{S}_{3}$, thus b a $S=S$, whence $b s=s$ for all $s \in S$, which is a contradiction $/ b$ is a left magnifying element!/

Let $x, y \in C_{a}$. If C_{a} is a semigroup, then $a(x y) a=$ $=(a \mathrm{x}) \mathrm{y} \mathrm{a}=\mathrm{y} a$. But $\mathrm{y} a \neq \mathrm{a}$, because y a is idempotent, while the element $a \in \bar{S}_{3}$ is not. Thus $x y \notin C_{a}$. Q.e.d.

Let $M \subset S$ be a subset of S such that $a M=S$. Then the set M is left increasable by a. Such left increasable set of a is not determined uniquely.

THEOREM 4.2. If $a \in \overline{\mathrm{~S}}_{3}$ then $a\left(\mathrm{~S}_{\mathrm{o}} \cup \mathrm{S}_{2} \cup \mathrm{~S}_{4}\right)=\mathrm{S}$. PROOF. Let $a \in \bar{S}_{3}$ and $x \in S_{4}$ an inverse of a. Then we have a $\times S=a S=S$ and $\times S \subset S$. On the other hand $\times S \subseteq S_{4} S$, furthermore, by making use the relations /2/ we get

$$
s_{4} s=s_{4}\left(s_{0} \cup s_{1} \cup s_{2} \cup s_{3} \cup s_{4} \cup s_{5}\right) \leq s_{0} \cup s_{2} \cup s_{4}
$$

Hence $x S \subseteq S_{0} \cup S_{2} \cup S_{4}$ and thus

$$
a\left(s_{0} \cup s_{2} \cup s_{4}\right)=s . \quad \text { Q.e.d. }
$$

Theorem 4.2. implies the existence $y_{a} \in S_{0} \cup S_{2} \cup S_{4}$ to every $a \in \bar{S}_{3}$ such that $a y_{a}=a$.

THEOREM 4.3. a/ If $a \in S_{3}$, then $y_{a} \notin S_{0}$.
b/ The elements $a \in \bar{S}_{3}$ for which $y_{a} \in S_{4}\left(a y_{a}=a\right)$ have a two-si ded identity element in S.

PROOF. a/ If $y_{a} \in S_{o}$, then there is $x \neq 0$ such that $y_{a} x=0$. Thus $a x=\left(a y_{a}\right) x=a\left(y_{a} x\right)=a 0=0$, whence $a \in S_{0} \cup S_{1}$ which is a contradiction.
b/ If $y_{a} \in S_{4}$, then there exists $b \in \bar{S}_{3}$, such that $b y_{a} b=b$ and $y_{a} b y_{a}=y_{a}$. Then $a y_{a} b=a b, a y_{a} b y_{a}=a b y_{a}$, that is $a y_{a}=a b y_{a}$ whence it follows that $a=a\left(b y_{a}\right)$. On the other hand $b y_{a}$ is a left identity element of S, whence $b y_{a} a=$ $=a=a b y_{a}$. Q.e.d.
$\left[\begin{array}{l}\text { [1] SZÉ, J. : "On the structure of finite semigroups" } \\ \text { DM 69-4.K.Marx Univ. /1969/ Budapest }\end{array}\right.$
[2] GERENTE,A. : "Elements inversibles et croissants dans un demi-groupe" C.R.Acad.Ic.Paris,t.274-Serie A /1972/, pp. 1775-1778.
[3] PETRICH,M. : "Introduction to Semigroups" Merrill Research and Lecture Series, Columbus /Ohio/
[4] LJAPIN,E.S. : "Semigroups" Trans.Math.Mon./3/ 1963
[5] CLIFFORD,A.H. ; PRESTON G.B.: "The algebraic theory of semigroups". Vol.I. Providence,Amer.Math,Soc. /1961/

[^0]
[^0]: universina degu stuul lecce
 facolta di scienze
 istituto di matematica
 N. dil inventario

