APPENDICE

14. Semi-bande.

In anni recenti diversi autori (Benzaken-Mayr (1975) | 10|, Howie (1977) | 14|, Piochi (1981) | 12|,) hanno studiato con tecniche diverse i semigruppi generati daiidempotenti (o semi-bande).

Vogliamo qui indicare un diverso metodo di approccio allo studio di una se mi-banda, un metodo semplice, "diretto", che, comunque, permette di ottenere rapidamente qualche primo risultato.

Premettiamo le seguenti definizioni e i seguenti Teoremi già noti.

Sia S un semigruppo senza annullatori diversi da zero (si può supporre che ogni semigruppo soddisfi a questa condizione |1L|), allora -S ha la seguente decomposizione disgiunta (decomposizione sinistra di Szép):

$$S = \bigcup_{i=0}^{5} S_{i} \tag{1}$$

dove

$$S_0 = \{a \in S / aS \in S \in \exists x \in S, x \neq 0 \}' \text{ ax } = 0\}$$
 $S_1 = \{a \in S / aS = S \in \exists y \in S, y \neq 0 \}' \text{ ay } = 0\}$
 $S_2 = \{a \in S - (S_0 \cup S_1) / aS \in S \in \exists x_1, x_2 \in S, x_1 \neq x_2 \in ax_1 = ax_2\}$
 $S_3 = \{a \in S - (S_0 \cup S_1) / aS = S \in \exists y_1, y_2 \in S, y_1 \neq y_2 \in ay_1 = ay_2\}$
 $S_4 = \{a \in S - (S_0 \cup S_1 \cup S_2 \cup S_3) / aS \in S\}$
 $S_5 = \{a \in S - (S_0 \cup S_1 \cup S_2 \cup S_3) / aS \in S\}$

Dualmente si definisce per S la decomposizione destra di Szép

$$S = \bigcup_{i=0}^{5} D_i \tag{2}$$

Siano ora
$$S_i \cap D_j = C_{ij}$$
 e $\Gamma = \{C_{ij}\}_{i,j=0,1,...,5}$

Se i sottoinsiemi C_{ij} sono non vuoti, allora essi sono sttosemigruppi di S e risulta:

$$S = \bigcup_{i,j=0}^{5} C_{ij}, C_{ij} \cap C_{hk} = \emptyset$$
 se $(i,j) \neq (h,k)$ (3)

La decomposizione (3) di un semigruppo S viene detta 1a Γ -decomposizione di S.

Teorema 14.1. La I-decomposizione di una banda S è la seguente:

1) se 1 e S, allora
$$S_5 = D_5 = \{1\}$$
; $C_{25} = C_{52} = \emptyset$
 $S = C_{00} \cup C_{02} \cup C_{20} \cup C_{22} \cup \{1\}$;

2) se 1 ∉ S, allora

a) se
$$S_5 \neq \emptyset$$
, $C_{52} = S_5$, $C_{25} = \emptyset$,
 $S = C_{00} \cup C_{02} \cup C_{20} \cup C_{22} \cup S_5$

b) se
$$D_5 \neq \emptyset$$
, $C_{25} = D_5$, $C_{52} = \emptyset$
 $S = C_{00} \cup C_{02} \cup C_{20} \cup C_{22} \cup D_5$,

dove $S_5[D_5]$, se non è vuoto, è una banda zero-destra[sinistra], e C_{ii} (i,j = 0,2) è l'unione di bande rettangolari.

Dim. v. 13 , pag. 14.

Teorema 14.2. Un semigruppo S è una banda sse la sua decomposizione sinistra di Szép è così data:

1)
$$S_1 = S_3 = S_4 = \emptyset$$
;

- 2) S₅ è rettangolare e in esso ogni elemento è unità sinistra;
- 3) $S_i = {}_{a \in S_i}^{U} L_a$ (i=1,2), dove le classi L_a sono sottosemigruppi rettangolari di S_i .

Dim. v. |12|, pag. 9.

Sia ora S una semi-banda, ossia un semigruppo generato dall'insieme $E = \{e_i\}_{i \in I}$ di idempotenti. Ogni elemento s e S si può dunque scrivere nella forma $s = e_i e_i \dots e_i$, $k \ge 1$, e_i e E. $i = e_i e_i \dots e_i$

Se consideriamo i sottosemigruppi $e_i S$ di S (i e I), si ha, evidentemente, $S = \bigcup_{i \in I} e_i S_i.$

Sia
$$S^* = \bigcap_{i \in I} e_i S$$
.

Teorema 14.3. Se $S^* \neq \emptyset$, ogni elemento \bar{s} e S^* è uno zero a destra per S. Viceversa, se S ha elementi zero-destri, allora $S^*(\neq \emptyset)$ contiene tali elementi.

Dim. Sia \bar{s} e S*, per ogni e_i e E, poiché \bar{s} e e_i S, si ha $e_i\bar{s}=\bar{s}$.

Dunque anche per un qualsiasi elemento s e S si ha $s\bar{s}=\bar{s}$, cioé \bar{s} è uno zero a destra in S. Viceversa, se s_o è uno zero destro di S, si ha $e_is_o=s_o$, $\forall e_i$ e E, dunque s_o e e_i S, quindi, anche s_o e e_i S = S*.

In conclusione, il Teorema 14.3 dice che S* è costituito da tutti e soli gli (eventuali) zeri destri della semi-banda S.

Teorema 14.4. La semi-banda S non ha elementi accrescitivi sinistri [destri].

Teorema 14.5. Gli elementi u e S tali che uS = S [Su = S] sono tutte e sole le unità sinistre [destre] di S.

Dim. Se u è una unità sinistra di S, ovviamente uS = S. Viceversa, sia u e S tale che uS = S. Sia u = $e_1e_2...e_k$ ($k \ge 1$). Con lo stesso ragionamento usato nel Teorema 14.4 si ha che

$$e_1e_2...e_kS = S ===> e_2...e_kS = S ===> ... ===> e_kS = S,$$

da cui risulta che e_k è unità sinistra di S (poiché e_k e E).

Ma allora, analogamente, $e_1e_2\dots e_{k-1}S=S==>e_{k-1}S=S$, quindi anche $e_{k-1}(eE)$ è unità sinistra di S. Pertanto, proseguendo con questo ragionamento, si ha che e_1,e_2,\dots,e_k sono unità sinistre di S e quindi $u=e_1e_2\dots e_k=e_k$, cio u e E. Ma allora se uS=S ed ue E, uè una unità sinistra di S.

In termini di"decomposizione sinistra di Szép" di S, S = ${}_{i=0}^{5}$ S_i, il Teorema 14.5 afferma che S₅ è costituito da tutte e sole le unità sinistre di S; infatti per il Teorema 14.4 è S₁ U S₃ = Ø, quindi S₅ è l'insieme di tutti e soli gli elementi u e S t.c. uS = S.

Dualmente è D_1 U $D_3 = \emptyset$ e D_5 è costituito da tutte e sole le unità destre di S.

Teorema 14.6. $S - S_5$ è un sottosemigruppo di S. $[D-D_5$ è un sottosemigruppo].

Dim. Siano a,b e S-S₅. Per assurdo, sia abeS₅. Allora (ab)S = S, cioé a(bS) = S. Se bS = S, per il Teorema 14.5 b e E, e anzi b e S₅, ciò che è escluso; dunque bS c S; ma allora a è accrescitivo sinistro, contro il Teorema 14.4. Dunque ab e S-S₅.