$$\hat{h}$$
 coincides with M on $S \times \left[0, \frac{1}{3}\right]$ and $S \times \left[\frac{2}{3}, 1\right]$. \Box

REMARK. - If G is an undirected graph, it is not necessary to construct the extension \hat{k} of the function F. (See Remark to Theorem 11).

7) Case of n subspaces and n subgraphs.

The previous results can be easily generalized to the case between (n+1)-tuples (see [3], §8b and [5], §11). Let S be a compact topological space, G a finite directed graph, S_1, \ldots, S_n closed subspaces of S and G_1, \ldots, G_n subgraphs of G, such that S_j is a subspace of S_i and G_j a subgraph of G_i , $\forall i, j = 1, \ldots, n, j > i$. In this case we have to consider functions $f: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ between (n+1)-tuples and their restrictions $f_1: S_1 \rightarrow G_1$,

 $\dots, f_n: S_n \to G_n.$

7a) Given a c.o-regular function $f: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$, where S is compact and S_1, \ldots, S_n are closed subspaces, by [5], § 11.6, we can construct n closed neighbourhoods U_i of S_i , $i = 1, \ldots, n$ and a c.o-regular extension $k: S, U_1, \ldots, U_n \rightarrow G, G_1, \ldots, G_n$ such that $k: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ is c.o-homotopic to f. Now, for all the pairs U_i, S_i , $i = 1, \ldots, n$, we determine a closed neighbourhood K_i of S_i , included in \tilde{U}_i . Then, if the filter \mathcal{W} is the uniformity of S, by following the proof of Proposition 9, we can obtain: i) a vicinity $V \in \mathcal{W}$ such that $V(A_1^k) \cap \ldots \cap V(A_n^k) \neq \emptyset$, Vr-tuple a_1, \ldots, a_r non-headed of G; ii) $\forall i = 1, \ldots, n$ a vicinity Z_i of the trace-filter \mathcal{W}_i of \mathcal{W} on $U_i \times U_i$, such that $Z_i(A_1^{k_i}) \cap \ldots \cap Z_i(A_s^{k_i}) = \emptyset$, $\forall s$ -tuple a_1, \ldots, a_s non-headed of

 G_i , and, consequently, we obtain a vicinity $V_i \in \mathcal{W} / Z_i = V_i \cap (U_i \times U_i)$. At least, we choose a symmetric vicinity W, such that $W \circ W \subset V \cap V_1 \cap \ldots$ $\cap V_n$ and $W(K_i) \subseteq U_i$, $i = 1, \ldots, n$.

Given, now, a W-partition
$$P = \{X_j\}$$
, $j \in J$, of the space S , we define a relation $g: S, \mathring{K_1}, \ldots, \mathring{K_n} \rightarrow G, G_1, \ldots, G_n$ by putting, $\forall X_j$, $j \in J$, the

constant value:

$$g(X_{j}) = \begin{cases} \text{a vertex of } H_{G}(\{f(X_{j})\}) & \text{if } X_{j} \cap K_{1} \neq \emptyset \text{ and } X_{j} \cap K_{2} = \emptyset \\ \text{a vertex of } H_{G_{1}}(\{f_{1}(X_{j})\}) & \text{if } X_{j} \cap K_{1} \neq \emptyset \text{ and } X_{j} \cap K_{2} = \emptyset \\ \text{a vertex of } H_{G_{n}}(\{f_{n}(X_{j})\}) & \text{if } X_{j} \cap K_{n} \neq \emptyset. \end{cases}$$

Similarly to Proposition 9, we verify that g is c. quasi-regular and that every o-pattern h of g is c.o-homotopic to f. Hence we can give:

THEOREM 13. - (The second normalization theorem between n-tuples). Let S, S_1, \ldots, S_n be a (n+1)-tuple of topological spaces, where S is compact and S_1, \ldots, S_n are closed subspaces of S, G, G_1, \ldots, G_n a (n+1)tuple of finite directed graphs and f: $S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ a completely o-regular function. Then, if the filter W is the uniformity of S, we can determine n closed neighbourhoods K_i of S_i , $i=1,\ldots,n$ and a vicinity $W \in W$ such that, for all the W-partitions $P = \{X_j\}, j \in J,$ there exists a function h: S, $K_1, \ldots, K_n \rightarrow G, G_1, \ldots, G_n$ which is complete ly o-regular, weakly P-constant and completely o-homotopic to f. \square

REMARK 1. - If S is a compact metric space, we can determine a posi-

tive real number r and consider partitions with mesh $\langle r$.

REMARK 2. - If G is an undirected graph, the function g can be choosen P-constant. Moreover, since it is not necessary to replace f with an extension k, we have only to consider a symmetric vicinity $W / W \circ W \subset V \cap V_1 \cap \cdots \cap V_n$.

7b) Now let C, C_1, \ldots, C_n be a (n+1)-tuple of spaces which consists of a finite cellular complex C and of n subcomplexes C_1, \ldots, C_n . A function $f: |C|, |C_1|, \ldots, |C_n| \rightarrow G, G_1, \ldots, G_n$ is called pre-cellular w.r.t. C, C_1, \ldots, C_n if: i) $f: |C|, |st(C_1)|, \ldots, |st(C_n)| \rightarrow G, G_1, \ldots, G_n$ is c.o-regular; ii) $f: |C| \rightarrow G$ is properly C-constant; iii) $f: |C| \rightarrow G$ is properly C-constant in C_1 (in C_2, \ldots, C_n). Now, if $f: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ is a c.o-regular function, where S is a compact triangulable space, S_1, \ldots, S_n closed triangulable subspaces of S, we can consider c.o-regular extension $k: S, U_1, \ldots, U_n \rightarrow G, G_1, \ldots, G_n$ and determine the positive real number $r = inf(\frac{E}{2}, \frac{E_1}{2}, \ldots, S_n)$

$$\begin{split} & \underbrace{\xi_n}{2}, \eta_1, \eta_2, \dots, \eta_n \end{split} \text{ where } \mathcal{E} = inf(enl(A_1^k, \dots, A_n^k)), \quad \forall r-\text{tuple } a_1, \dots, a_n \text{ non-headed of } G, \quad \mathcal{E}_i = inf(enl(A_1^ki, \dots, A_{s_i}^ki)), \quad \forall s_i \text{-tuple } a_1, \dots, a_{s_i} \text{ non-headed of } G_i, \text{ and } \eta_i \text{ are such that } \qquad \forall^{\eta_i}(S_i) \subset U_i, \quad i=1,\dots,n. \\ & \text{Given then a finite cellular decomposition } C, C_1, \dots, C_n \text{ of } S, S_1, \dots, S_n \\ & \text{with mesh } < r, \text{ we consider the following partition of } C: D_0 = C-st(C_1), \\ & D_1 = st(C_1)-st(C_2),\dots, D_n = st(C_n) \text{ and we construct the c.quasi-regular function } g: |C|, |st(C_1)|,\dots, |st(C_n)| \rightarrow G, G_1,\dots, G_n, \text{ by putting, } VD_i, \end{split}$$

 $\forall \boldsymbol{\epsilon} \in D_i$, $g(\boldsymbol{\epsilon}') = a$ vertex of $H_{G_i}(\{k(\boldsymbol{\epsilon}')\})$, where $G_0 = G$. We separate the cells of C, besides using the subsets D_i , also in the following way:

At least, we can construct, by induction, the o-pattern h in n+1 steps by putting:

in the first step:
$$\begin{cases} h(\mathcal{C}) = g(\mathcal{C}) \\ h(\mathcal{C}) = a \text{ vertex of } H_{\Gamma}(g(st^{m}(\mathcal{C}))) \\ h(\mathcal{C}_{1}) = a \text{ vertex of } H_{\Gamma}(g(st^{m}(\mathcal{C}_{1}))) \end{cases}$$

in the second step:
$$\begin{cases} h(\mathcal{C}_{1}) = a \text{ vertex of } H_{\Gamma}(h(st^{m}_{C_{1}}(\mathcal{C}_{1}))) \\ h(\mathcal{C}_{2}) = a \text{ vertex of } H_{\Gamma}(h(st^{m}_{C_{1}}(\mathcal{C}_{2}))) \\ h(\mathcal{C}_{3}) = a \text{ vertex of } H_{\Gamma}(h(st^{m}_{C_{2}}(\mathcal{C}_{3}))) \\ h(\mathcal{C}_{3}) = a \text{ vertex of } H_{\Gamma}(h(st^{m}_{C_{2}}(\mathcal{C}_{3}))) \end{cases}$$

in the (n+1) step: $h(\mathfrak{G}_n) = a$ vertex of $H_{\Gamma}(h(st_{\mathcal{C}_n}^m(\mathfrak{G}_n)))$, where, $\forall \lambda \in \mathcal{C}$, we put $\Gamma = G_i$ if $\lambda \in D_i$. Hence we obtain:

THEOREM 14. - (The third normalization theorem between (n+1)-tuples). Let S, S_1, \ldots, S_n be a (n+1)-tuple of topological spaces, where S is a compact triangulable space, S_1, \ldots, S_n are closed triangulable subspaces, G, G_1, \ldots, G_n a (n+1)-tuple of finite directed graphs and f: $S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ a completely o-regular function. Then, for every finite cellular decomposition C, C_1, \ldots, C_n of S, S_1, \ldots, S_n with suitable mesh, there exists a function h: $S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ pre-cellular w.r. t. C, C_1, \ldots, C_n and completely o-homotopic to f. \Box

By a procedure similar to that one used in the proofs of Theorems 8

and 12, we also obtain:

THEOREM 15. - (The third normalization theorem for homotopies of functions between (n+1)-tuples). Let S, S_1, \ldots, S_n be a (n+1)-tuple of topological spaces, where S is a compact triangulable space, S_1, \ldots, S_n are closed triangulable subspaces, G, G_1, \ldots, G_n a (n+1)-tuple of finite directed graphs, C, C_1, \ldots, C_n and D, D_1, \ldots, D_n two finite cellular decompositions of S, S_1, \ldots, S_n and $e, f: S, S_1, \ldots, S_n \rightarrow G, G_1, \ldots, G_n$ $modeling functions pre-cellular w.r.t. <math>C, C_1, \ldots, C_n$ and D, D_1, \ldots, D_n respectively, which are o-homotopic. Then, from any finite cellular decomposition of the (n+1)-tuple $S \times \left[\frac{1}{3}, \frac{2}{3}\right], S_1 \times \left[\frac{1}{3}, \frac{2}{3}\right], \ldots, S_n \times \left[\frac{1}{3}, \frac{2}{3}\right], of$ suitable mesh, which induces on the bases decompositions finer than $<math>C, C_1, \ldots, C_n$ and D, D_1, \ldots, D_n , we obtain a finite cellular decomposition $\Gamma, \Gamma_1, \ldots, \Gamma_n$ of the (n+1)-tuple $S \times I, S_1 \times I, \ldots, S_n \times I$, and a homotopy between e and f, which is a pre-cellular function w.r.t. $\Gamma, \Gamma_1, \ldots, \Gamma_n$.

Since the *n*-cube I^n is a triangulable compact manifold, we can apply the results of the previous paragraphs to the case of absolute and relative *n*-dimensional groups of regular homotopy. So we can choose, as representative of any homotopy class, a loop which is pre-cellular w.r.t. a suitable cellular decomposition of I^n . Now, the cellular decompositions of I^n which are relevant for applications, are the triangulations and the subdivisions into cubes (the latter are determinated by a partition into k parts of equal size of every edge of I^n). To construct the absolute groups $Q_n(G,v)$ we consider *o-regular loops* i.e. *o-regular functions* $f: I^n, I^n \to G, v$ where I^n is the boundary of I^n and v a vertex of G, whereas, in the case of relative groups $Q_n(G,G',v)$ we use the *o-regular relative loops*, i.e. *o-regular functions* $f: I^n, I^n, J^{n-1} \to G, G', v$ where J^{n-1} is the union of the (n-1)-faces of I^n , different from the face $x_n = 0$. Since the subspaces I_n , J^{n-1} are an

union of faces of I^n , they are closed subspaces, which can be triangulated and subdivided into cubes. So, by applying the third normalization theorem (see Theorems 11 and 14), directly we obtain:

THEOREM 16. – On the previous assumptions, in every o-homotopy class of the group $Q_n(G,v)$ (resp. $Q_n(G,G',v)$) there exists a loop which is pre-cellular w.r.t. a suitable triangulation (subdivision into cubes) of I^n .