REMARK. - If G is an undirected graph, it is not necessary to contruct also the o-pattern to obtain a properly quasi-constant function In this case the condition is reduced to $h(\sigma) = a$ vertex of $g(st^m(\sigma))$.

Let $e, f: S \rightarrow G$ be two functions pre-cellular w.r.t. two finite decompositions C and K of S and $F: S \times I \rightarrow G$ a complete o-homotopy between e and f. Then, for every sufficiently fine finite cellular decomposition Γ of $S \times I$, by Theorem 6, the function F can be replaced by a Γ -precellular function $\hat{h}: S \times I \rightarrow G$. In order that the function \hat{h} may also be a homotopy between e and f, the restrictions of \hat{h} to $S \times \{0\}$ and $S \times \{1\}$ must coincide with e and f. Hence it is necessary that \hat{h} characterizes on $S \times \{0\}$ and $S \times \{1\}$ two decompositions \tilde{C} and \tilde{K} finer than C and K, since e and f are properly quasi-constant (see Remark to Definition 10). Nevertheless, as, for example, the value of the function \hat{h} on $S \times \{0\}$ depends from the value assumed by the function F on the maximal cells of the star $st(\tilde{C})$, in general the restriction $\hat{h}/|\tilde{C}|$ is different from e. Consequently, at first, we must replace the homotopy F by a homotopy M given by:

$$M(x,t) = \begin{cases} e(x) & \forall x \in S, & \forall t \in \left[0, \frac{1}{3}\right] \\ F(x, 3t-1) & \forall x \in S, & \forall t \in \left[\frac{1}{3}, \frac{2}{3}\right] \\ f(x) & \forall x \in S, & \forall t \in \left[\frac{2}{3}, 1\right] \end{cases}$$

Then we have to costruct suitable cellular decompositions of the three cylinders $Sx\left[0,\frac{1}{3}\right]$, $Sx\left[\frac{1}{3},\frac{2}{3}\right]$ and $Sx\left[\frac{2}{3},1\right]$.

PROPOSITION 7. - Let S be a compact triangulable space, C a finite cellular decomposition of S, G a finite graph and e: $S \rightarrow G$ a properly C-constant function. If we consider the decomposition $L = \{\{0\},]0, 1[, \{1\}\}\}$ of I and the product decomposition $\Gamma = C \times L$ of the cylinder $S \times I$, then the function F: $S \times I \rightarrow G$, given by F(x,t) = e(x), $\forall x \in S$, $\forall t \in I$, is properly Γ -constant.

Proof. - We have only to remark that a cell \mathcal{C} is maximal in Γ' iff $\mathcal{C} = \mathcal{C} \times [0, 1[$, where \mathcal{C}' is a maximal cell in \mathcal{C} . Then it results $\mathbf{F}(\mathcal{C}) = e(\mathcal{C}')$. \Box

REMARK. - Since the restrictions $F'_{S \times \{0\}}$ and $F'_{S \times \{1\}}$ coincide with e, they are obviously *C*-constant.

So we obtain:

THEOREM 8. -(The third normalization theorem for homotopies). Let S be a compact triangulable space, G a finite directed graph, C,D two finite decompositions of S and e,f: $S \rightarrow G$ two functions pre-cellular w.r.t. C and D respectively, which are completely o-homotopic. Then, from any finite cellular decomposition Γ_2 of $S \times \left[\frac{1}{3}, \frac{2}{3}\right]$ of suitable mesh which induces on the bases $S \times \left\{\frac{1}{3}\right\}$ and $S \times \left\{\frac{2}{3}\right\}$ decompositions \widetilde{C} and \widetilde{D} finer than C and D, we obtain a finite cellular decomposition Γ of $S \times I$ and a homotopy between f and g which is a Γ -pre-cellular function.

Proof. - Let $F: SXI \rightarrow G$ be a complete o-homotopy between e and f. We define the complete o-homotopy $M: SXI \rightarrow G$ between e and f as in the introduction of this paragraph. Then, if we consider the restriction of M to $SX\left[\frac{1}{3},\frac{2}{3}\right]$, we can determine the real number r, upper bound of

the mesh. Now if Γ_2 is a finite cellular decomposition, satisfying the conditions of the theorem and with mesh < r, we can consider the cellular decomposition $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ of the cylinder $S \times I$, such that: i) Γ_1 is the product decomposition $\widetilde{C} \times L_1$ of $S \times \left[0, \frac{1}{3}\right]$, where $L_1 = \left\{\{0\}, \\]0, \frac{1}{3}\left[\frac{1}{3}, \left\{\frac{1}{3}\right\}\right\}$. *ii)* Γ_3 is the product decomposition $\widetilde{D} \times L_3$ of $S \times \left[\frac{2}{3}, 1\right]$, where $L_3 = \left\{\left\{\frac{2}{3}\right\}, \\]\frac{2}{3}, 1\left[\frac{3}{3}, \left\{1\right\}\right\}\right\}$. Then we define the function $\widehat{g}: S \times I \rightarrow G$, given by: $\widehat{g}(G') = \left\{ \begin{array}{c} M(G'), & VG' \in \Gamma - \Gamma_2, \\ a \text{ vertex of } H(\left\{M(\overline{G})\right\}), & VG' \in \Gamma_2. \\ a \text{ vertex of } H(\left\{M(\overline{G'})\right\}), & VG' \in \Gamma_2. \\ \end{array} \right\}$ Afterwards, by Theorem 6, we construct the o-pattern \widehat{h} of \widehat{g} , by choosing as element of $H(\widehat{g}(st^m(G')))$, the value $\widehat{g}(G') = M(G')$ if $G' \in \Gamma - \Gamma_2. \\ By construction <math>\widehat{h}$ is a \widehat{F} -pre-cellular function. Hence \widehat{h} is the sought homotopy since $\widehat{h}/_{S \times \{0\}} = e$ and $\widehat{h}/_{S \times \{1\}} = f$. \Box

REMARK. - The finite cellular decomposition Γ induces on the bases $S \times \{0\}$ and $S \times \{1\}$ the decompositions \tilde{C} and \tilde{D} .

5) The second normalization theorem between pairs.

Given a set A, a non-empty subset A' of A, a finite graph G and a subgraph G' of G, we can generalize Definition 4, by considering function $f: A, A' \rightarrow G, G'$ which are quasi-constant w.r.t. a partition $P = \{X_j\}, j \in J$, of A. In this case it follows that the image of every X_j , such that $X_j \cap A' \neq \emptyset$, necessary is a vertex of G'. Moreover, if A is a topo