We can order the a in such a way that a .,a € <f(x)>» and a

IJ-}. p -_f p-f-l',"."
a € <flx)D> —<fg(m)> Therefore it is x€ A n. fﬁAp, and so
W(m)r]Af Z4Z, Vi = 1,...,p. Hence there are in W(x) p points X ’?p
such that x . €Af ¥t = 1,...,p. Then it is z¢ W(a:i,)ﬂ...f’]ﬁ’(mp) C
V(Ai)fj...f1V(Af). Moreover it is me;zé+if7.,.szn, and by z7) it

follows wELVKAf+ )N . .f)VCAﬁ). Hence we obtain the contradiction
zevial)n .. an(Af)

Now 1f we eon81der any o-pattern kA of g, we obtain the sought functio
In fact we have:
1') h: S=>G <8 completely o-regular (see [5], Proposition 7).
11') h 7s weakly p-constant by the definition of o-pattern of a quasi-
constant function.
111') h 18 completely o—-homotopic to f. Since the homotopy F 1s

completely quasi-regular by iii), there exists an o-pattern E of F

(which is completely o-regular by rﬁj, Proposition 7). Moreover we can
choose E such that E(x,0) = f(x), E(x,1) = h(x), VYx €S, since f and #
are completely o-regular i.e. f(x)€ H({f(x)>) = H(<F(x,0)>) and

hix)€E H(¢g(xz)>) = H(KF(x,1)>), Vxe€S. Then h is completely o-homotopic

to f by FE. O

REMARK 1. If W is a closed set, we can give the function g, by

choosing as constant image of XjE.P any vertex of H({f(?j)}).

REMARK 2. - If S is a compact metric space, we can determine a real
positive number » and choose partitions P with mesh {r. In fact, we
have just to calculate enZ(AI,...,An), Yn-tuple Agse i@ non-headed ;

"
so the real number » is given by% inf(enZ(AI,...,An)).

REMARK 3. - If ¢ is an undirected graph, the function g can Dbe
choosen quasi-constant. Moreover if S is a compact metric space, Dy
Remark to Definition 2, we have just to consider the couples of non-

adjacent vertices aysay and then to find the distances d(Ah’Ak) rather
than the enlargabilities enZ(Ah,Ak). Consequently, if we put »' =
iﬂf(dfﬂh,ék)) and r = %inf(enZ(Ah,Ak)), since by Remark 3 to Definition
3 it fol}ows r' 4r, we can choose a covering P {X }, J€ J, with

mesh <-§- . So we obtain again Property 7 of [8]

3) The third normalization theorem.
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By comparing the second normalization theorem for directed and
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wndirected graphs, we remark an asymmetry since for the former we are able to construct
a q.constant function, while for the latter we obtain only a weakly q.constant fiunction
Nevertheless, by choosing a particular compact space S, also for directed graphs we

obtain results similar to those for undirected graphs. For this purpose we consider the
compact triangulable spaces and its finite decompositions C by (open) CW-complexes (see

(13], Cap. VII) which satisfy the condition:

- . — — b &
(1) vgel, & is a subcomplex of , 1.e. Vel, TNE¢E ;6/(25 —p 2 € g. (k)

DEFINITION 6. = Let C be a finitte cellular complex and D a subset of cells of C. We
denote by |C| a realization of C and by ]D] the subspace of C constituted by the points

of the cells of D.

REMARK. - Nevertheless, if there is no ambiguity, we denote by & both a cell and the
subspace |[]. So, for example, we write & rather than l&].

DEFINITION 7. - Let D be a non—empty subset of cells of a finite complex C. We call
star of a point x € [DI w.r.t. D, and write stp(x)_. the set of the cells of D whose
closure in |C|, and therefore in |D|, ineludes wx. Moreover we call star of a subset
xc|p| w.r.t. D, and write stD(X)_, the set of the cells of D, whose closure has a non-
empty intersection with X. Similarly we can define the star sty (@) of a cell of D
and the star stD(D’) of a subset D' of D. Then, 2f D = C, simply we write st(x), st(X)
.oy rather than stc(x), stC(X),...,

REMARK 1. - The stars are open sets 1in ’ Df . In fact their complements are closed in
| D| , since if for a cell 2z it is »c|P|, also it follows Z¢|D). Then, if D = ¢, the

complements of the stars are subcomplexes of C.

RE 2., = If x 1s any point of a cell & €D, then stD(a:) = stp(s’). In fact in fD]
it results « € 2 &St

DEFINITION 8. - Let D be a subset of cells of a finite cellular complex €. A cell

Te€D 18 satd to be maximal in D 2f 1t 78 T = stD(t').

REMARK, -~ A cell 1s maxtimal in D 1ff 1t 18 an open set in lDI Consequently the cells
maximal in a star are the cells maximal in ¢ which are included in the star.

DEFINITION 9. - Let D be a subset of cells of a finite complex C,
x a point of |D| and X a subset of |D). We denote by stg(m) (resp.

[ —

(%)

We add (1), since we consider cellular sibdivisions (triangulations and subdi-

visions into cwes) of this kind. Nevertheless we can obtain the same results also



m .
stD(X)) the set of the maximal cells of D, whose closure includes x
(resp. has non-empty intersection with X). If D = C simply we write
st (x) and stm(X), rather than stg(x) and st?(X).

REMARK. - Let x be any point of a cell § € D, then obviously it
m _ m
results st (z) = stpfg)-
DEFINITION 10. - Let C be a finite cellular complex and G a finite

graph. A function f: |Cl=G 28 called quasi-constant w.r.t. ¢ or (C-con
stant <f f ©s quasi-constant w.r.t. the partition determined by the
cellular decomposition of |Cl. Then, Zf D Zis a non-empty subset of
cells of C, the function f:|C|=G Zs called properly quasi-constant in

D w.r.t. ¢ or properly C-constant zn D, Z2f, for all the cells &  non-
maximal in D, there exists a cell T €D (different from & ), such that:

1) the restrictions of f to & and to © are identical.

11) € C .
At least 7f D = C the function f: |Cl=G is called properly quasi-constant

w.r.t. ¢ or properly C-constant.

REMARK. - A function f: |C|-»G (properly) C-constant is also (properlys

quasi-constant w.r.t. a cellular decomposition (' finer than C.

PROPOSITION 4. - Let C be a finite cellular complex, D a subset of
cells of C, G a finite graph and f:|Cl-G a C-constant function. Then
it results {f(x)> = f(st(z)), VxelC|.

Moreover, the function f i1s properly C-constant in D iff 1t s
flst, (6)) = f(stg(s‘))_, Ve e D.

At least, ©f D = C, the previous relation is equivalent to (flx)p =
flst'(x)), vxelc].

Proof. - i) Let v be any vertex of G and & any cell of C, then 1t
follows:
V€ <f(x)>4==pme7f<3=b le / zee and F&) = v ¢ ] /e€ st(x) and f(&)
= vg—veE f(st(x)).
ii) If it 1is f(sﬁpﬁf)) = f(stgﬁf), Ve € D, the function f is properly
C-constant in D, since, V€€ D, from fTe)E.f(sﬁgﬁﬁv) we obtain there
exists in D a maximal cell % such that €€ ¥ and f(¢) = f(?). The con-

verse follows from the definition of properly quasi-constant function.

iii) By Remark 2 to Definition 7, by Remark to Definition 9 and by 1),

—

the condition <(f(x))y = f(stm(x)), vxe|lc]l, is equivalent to f(st(’)) =
flet'(6)), ¥eeC. O




In order to employ briefer notations, we give the following:

DEFINITION 11. - Let C be a finite cellular complex and G a finite
directed graph. A completely o-regular function f:])C|—>G, which s
properly C-constant is called a function pre-cellular w.r.t. C or a

C-pre-cellular functzon.

PROPOSITION 5. - Let C be a finite cellular complex and G a finite
directed graph. Then every C-pre-cellular function f:lcl—a¢ is
characterized,up to complete o-homotopy, by the restriction of f to the

set of the maximal cells of C.

Proof. -Let g:]C}—#G be a C-pre-cellular function which takes the
same values as f on all the maximal cells of C. By Proposition 4 it
results ¢f(x)> = Flst"(x)) = g(stm(m)) = <g(x)>, Vxelc|. Since g is
c. o-regular, it 1is g(x)€ H({g(x)>) = H(Lf(x)>), 1.e. g 1s an o-pattern

of f and then g is c.o-homotopic to f. (See [5], Proposition 7).

THEOREM 6. - (The third normalization theorem). Let S be a compact
triangulable space, G a finite directed graph and f: S—>G a completely
o—regﬁlar funetion. Then, for every finite cellular decomposition C
of S with suitable mesh, there exists a C-pre-cellular function h: S->

G which ©Zs completely o—homotopize to f.

Proof. -Let C be a cellular decomposition of S with mesh < r, where
r = %inf(enZ(Al,...,An)), Vai,...,an non-headed n-tuple of G (see
Remark 2 to Theorem 3). Then we construct the function g by choosing,
Vegie;c, a vertex in H({f(E&)}) rather than in H({f(Gk)}) (see Remark
1 to Theorem 3). Hence, Vx € |C|, it is H(g(stm(m)))§; H(<g(x)>). Given,
indeed, a vertex a%;H(g(stm(m))) and a cell T ¢ st (x) such that g(?)
- a, l.e. ae;H({f(?)}), we prove that a i1is a predecessor of all the
vertices of ¢g(x)>. In fact if be <g(x)>and a 1s not a predecessor of
b, b is the image of a non-maximal cell §, while, by definition of g,
we have b€ H({f(ﬂ?)}). Since c & , and also @ Cc¥ , it is b€ F(¥).
Hence aq is not a head of f(?). Contradiction.
By remarking that, ¥Vx€6& , it 1is g(stm(m)) = g(stm(€7), we can define
the o-pattern 2 in the following way:

h(6’) a vertex of H(g(stmﬁ?))), Ve e c.
The function 4 is properly C-constant since, 1if ¥ 1s a maximal cell,
from g(st" (%)) = {g(Tﬂ} it resulss k(%) = g(?). Hence, by definition,
we have h(e') € g(st'(s)) = h(st"(¢)), Vee C. [




REMARK. - If G is an undirected graph, it 1s not necessary to
contruct also the o-pattern to obtain a properly quasi-constant functior

In this case the condition is reduced to kA(¢) = a vertex of g(stm(GJ).

4) The third normalization theorem for homotopies.
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Let e,f: S-»G be two functions pre-cellular w.r.t. two finite decom-
positions ¢ and X of S and F: SxI—>(G a complete o-homotopy between
¢ and f. Then, for every sufficently fine finite cellular decomposition
[ of SxI, by Theorem 6, the function F can be replaced by a P—pre—
cellular function g} SXI—=>G. In order that thae function gtmay also be
a homotopy between e and f, the restrictions of ﬁ to Sx{b}and SX{I}
must coincide with e and f. Hence it is necessary that % characterizes
on SK{O} and Sx{i} two decompositions ¢ and ¥ finer than ¢ and X, since
e and f are properly quasi-constant (see Remark to Definition 10).
Nevertheless, as, for example, the value of the function Z on Sx{d}
depends from the value assumed by the function F on the maximal cells
of the star st(Ea, in general the restriction h/|51is different from
e. Consequently, at first, we must replace the homotopy F by a homo-

topy M given by:

(e (x) Ve € S, Vt € 0_,-;—

. "7 27

Mlx,t) =4 F(x,3t-1) Vx € S, Vt € 303
| flx) Ve € S, I&X3 [—g—,l]

Then we have to costruct suitable cellular decompositions of the three

cylinders SX[b!%], Sx{%fg] and SX[%,%].

PROPOSITION 7. - Let S be a compact triangulable space, C a finite
cellular decomposition of S, G a finite graph and e: S—>G a properly
C-constant function. If we consider the decomposition L :{{Q},JOJZ[,
{II} of I and the product decomposition [" = CXL of the cylinder SxI,
then the function F: SxI->G, given by F(x,t) = e(x), Vx €S, Vt€I, s
properly [ —constant

Proof. — We have only to remark that a cell ? is maximal 1in [Miff

%':7€X]O,1[, where 2; is a maximal cell in ¢. Then it results F(?¥) =
=e(?'). O

. - - F F - - .
L = -th _’
REMARK Since the restrictions /SX{Q}and /SX[i}c01n01de Wl e

they are obviously (C-constant.



