We can order the a_i in such a way that $a_1, \ldots, a_p \in \langle f(x) \rangle$ and $a_{p+1}, \ldots, a_n \in \langle f(x) \rangle - \langle g(x) \rangle$. Therefore it is $x \in \overline{A_1^f} \cap \ldots \cap \overline{A_p^f}$, and so $W(x) \cap A_i^f \neq \emptyset$, $\forall i = 1, \ldots, p$. Hence there are in W(x) p points x_1, \ldots, x_p such that $x_i \in A_i^f$, $\forall i = 1, \ldots, p$. Then it is $x \in W(x_1) \cap \ldots \cap W(x_p) \subseteq V(A_1^f) \cap \ldots \cap V(A_p^f)$. Moreover it is $x \in \overline{A_{p+1}^g} \cap \ldots \cap \overline{A_n^g}$, and by *ii*) it follows $x \in V(A_{p+1}^f) \cap \ldots \cap V(A_n^f)$. Hence we obtain the contradiction $x \in V(A_1^f) \cap \ldots \cap V(A_p^f)$.

Now if we consider any o-pattern h of g, we obtain the sought function In fact we have:

i') h: $S \rightarrow G$ is completely o-regular (see [5], Proposition 7). ii') h is weakly p-constant by the definition of o-pattern of a quasiconstant function.

iii') h is completely o-homotopic to f. Since the homotopy F is completely quasi-regular by iii), there exists an o-pattern E of F (which is completely o-regular by [5], Proposition 7). Moreover we can choose E such that E(x,0) = f(x), E(x,1) = h(x), $\forall x \in S$, since f and h are completely o-regular i.e. $f(x) \in H(\langle f(x) \rangle) = H(\langle F(x,0) \rangle)$ and $h(x) \in H(\langle g(x) \rangle) = H(\langle F(x,1) \rangle)$, $\forall x \in S$. Then h is completely o-homotopic to f by E. \square

REMARK 1. If W is a closed set, we can give the function g, by choosing as constant image of $X_j \in P$ any vertex of $H(\{f(\overline{X}_j)\})$.

REMARK 2. - If S is a compact metric space, we can determine a real positive number r and choose partitions P with mesh $\langle r$. In fact, we have just to calculate $enl(A_1, \dots, A_n)$, $\forall n$ -tuple a_1, \dots, a_n non-headed; so the real number r is given by $\frac{1}{2}$ inf $(enl(A_1, \dots, A_n))$.

REMARK 3. - If G is an undirected graph, the function g can be choosen quasi-constant. Moreover if S is a compact metric space, by Remark to Definition 2, we have just to consider the couples of nonadjacent vertices a_h, a_k and then to find the distances $d(A_h, A_k)$ rather than the enlargabilities $enl(A_h, A_k)$. Consequently, if we put $r' = inf(d(A_h, A_k))$ and $r = \frac{1}{2}inf(enl(A_h, A_k))$, since by Remark 3 to Definition 3 it follows $r' \leq 4r$, we can choose a covering $P = \{X_j\}$, $j \in J$, with mesh $\leq \frac{r'}{4}$. So we obtain again Property 7 of [8].

3) The third normalization theorem.

By comparing the second normalization theorem for directed and

6

undirected graphs, we remark an asymmetry since for the former we are able to construct a q.constant function, while for the latter we obtain only a weakly q.constant function Nevertheless, by choosing a particular compact space S, also for directed graphs we obtain results similar to those for undirected graphs. For this purpose we consider the compact triangulable spaces and its finite decompositions C by (open) CW-complexes (see [13], Cap. VII) which satisfy the condition:

(1)
$$\forall \sigma \in C, \sigma \text{ is a subcomplex of } C, \text{ i.e. } \forall \epsilon \in C, \epsilon \cap \sigma \neq \phi \implies \epsilon \in \sigma$$
 (*)

DEFINITION 6. – Let C be a finite cellular complex and D a subset of cells of C. We denote by |C| a realization of C and by |D| the subspace of C constituted by the points of the cells of D.

REMARK. - Nevertheless, if there is no ambiguity, we denote by σ both a cell and the subspace $|\sigma|$. So, for example, we write $\overline{\sigma}$ rather than $|\overline{\sigma}|$.

DEFINITION 7. - Let D be a non-empty subset of cells of a finite complex C. We call star of a point $x \in |D|$ w.r.t. D, and write $st_D(x)$, the set of the cells of D whose closure in |C|, and therefore in |D|, includes x. Moreover we call star of a subset $X \subset |D|$ w.r.t. D, and write $st_D(X)$, the set of the cells of D, whose closure has a nonempty intersection with X. Similarly we can define the star $st_D(\sigma)$ of a cell of D and the star $st_D(D')$ of a subset D' of D. Then, if D = C, simply we write st(x), st(X)..., rather than $st_C(x)$, $st_C(X)$,...,

REMARK 1. - The stars are open sets in |D|. In fact their complements are closed in |D|, since if for a cell τ it is $\tau \subset |D|$, also it follows $\overline{\tau} \subset |D|$. Then, if D = C, the complements of the stars are subcomplexes of C.

REMARK 2. - If x is any point of a cell $\sigma \in D$, then $st_D(x) = st_D(\sigma)$. In fact in |D| it results $x \in \overline{z} \Leftrightarrow \sigma \subset \overline{z}$.

DEFINITION 8. - Let D be a subset of cells of a finite cellular complex C. A cell $\varepsilon \in D$ is said to be maximal in D if it is $\varepsilon = st_D(\varepsilon)$.

REMARK. - A cell is maximal in D iff it is an open set in |D|. Consequently the cells maximal in a star are the cells maximal in C which are included in the star.

DEFINITION 9. – Let D be a subset of cells of a finite complex C, x a point of |D| and X a subset of |D|. We denote by $st_D^m(x)$ (resp.

(*) We add (1), since we consider cellular subdivisions (triangulations and subdivisions into cubes) of this kind. Nevertheless we can obtain the same results also $st_D^m(X)$) the set of the maximal cells of D, whose closure includes x (resp. has non-empty intersection with X). If D = C simply we write $st^m(x)$ and $st^m(X)$, rather than $st_C^m(x)$ and $st_C^m(X)$.

REMARK. - Let x be any point of a cell $\mathbf{s} \in D$, then obviously it results $st_D^m(x) = st_D^m(\mathbf{s})$.

DEFINITION 10. - Let C be a finite cellular complex and G a finite graph. A function f: $|C| \rightarrow G$ is called quasi-constant w.r.t. C or C-con stant if f is quasi-constant w.r.t. the partition determined by the cellular decomposition of |C|. Then, if D is a non-empty subset of cells of C, the function $f: |C| \rightarrow G$ is called properly quasi-constant in D w.r.t. C or properly C-constant in D, if, for all the cells \mathfrak{G} nonmaximal in D, there exists a cell $\mathfrak{T} \in D$ (different from \mathfrak{G}), such that: i) the restrictions of f to \mathfrak{G} and to \mathfrak{T} are identical. ii) $\mathfrak{G} \subset \overline{\mathfrak{T}}$.

At least if D = C the function $f: |C| \rightarrow G$ is called properly quasi-constant w.r.t. C or properly C-constant.

REMARK. - A function $f: |\mathcal{C}| \rightarrow \mathcal{G}$ (properly) \mathcal{C} -constant is also (properly) quasi-constant w.r.t. a cellular decomposition \mathcal{C}' finer than \mathcal{C} .

PROPOSITION 4. - Let C be a finite cellular complex, D a subset of cells of C, G a finite graph and $f: |C| \rightarrow G$ a C-constant function. Then it results $\langle f(x) \rangle = f(st(x))$, $\forall x \in |C|$. Moreover, the function f is properly C-constant in D iff it is $f(st_D(G)) = f(st_D^m(G))$, $\forall G \in D$. At least, if D = C, the previous relation is equivalent to $\langle f(x) \rangle =$ $f(st^m(x))$, $\forall x \in |C|$.

Proof. - i) Let v be any vertex of G and σ any cell of C, then it follows:

 $v \in \langle f(x) \rangle \Leftrightarrow x \in \overline{V}^{f} \Leftrightarrow] \in / x \in \overline{C}$ and $f(\sigma) = v \Leftrightarrow] \in /\sigma \in st(x)$ and $f(\sigma)$

 $= v \leftrightarrow v \in f(st(x)).$

ii) If it is $f(st_D(\sigma)) = f(st_D^m(\sigma), \forall \sigma \in D, \text{ the function } f \text{ is properly}$ *C*-constant in *D*, since, $\forall \sigma \in D$, from $f(\sigma) \in f(st_D^m(\sigma))$ we obtain there exists in *D* a maximal cell \mathfrak{r} such that $\mathfrak{s} \in \mathfrak{\tilde{r}}$ and $f(\sigma) = f(\mathfrak{r})$. The converse follows from the definition of properly quasi-constant function. iii) By Remark 2 to Definition 7, by Remark to Definition 9 and by i), the condition $\langle f(x) \rangle = f(st^m(x)), \forall x \in [C]$, is equivalent to $f(st(\sigma)) = f(st^m(\sigma)), \forall \sigma \in C. \square$ In order to employ briefer notations, we give the following:

DEFINITION 11. - Let C be a finite cellular complex and G a finite directed graph. A completely o-regular function $f:|C| \rightarrow G$, which is properly C-constant is called a function pre-cellular w.r.t. C or a C-pre-cellular function.

PROPOSITION 5. - Let C be a finite cellular complex and G a finite directed graph. Then every C-pre-cellular function $f: |C| \rightarrow G$ is characterized, up to complete o-homotopy, by the restriction of f to the set of the maximal cells of C.

Proof. -Let $g: |\mathcal{C}| \to G$ be a \mathcal{C} -pre-cellular function which takes the same values as f on all the maximal cells of \mathcal{C} . By Proposition 4 it results $\langle f(x) \rangle = f(st^m(x)) = g(st^m(x)) = \langle g(x) \rangle$, $\forall x \in |\mathcal{C}|$. Since g is

c. o-regular, it is $g(x) \in H(\langle g(x) \rangle) = H(\langle f(x) \rangle)$, i.e. g is an o-pattern of f and then g is c.o-homotopic to f. (See [5], Proposition 7). \Box

THEOREM 6. - (The third normalization theorem). Let S be a compact triangulable space, G a finite directed graph and f: $S \rightarrow G$ a completely o-regular function. Then, for every finite cellular decomposition C of S with suitable mesh, there exists a C-pre-cellular function h: $S \rightarrow G$ G which is completely o-homotopic to f.

Proof. -Let C be a cellular decomposition of S with mesh $\langle r, where$ $r = \frac{1}{2}inf(enl(A_1, \dots, A_n)), \forall a_1, \dots, a_n \text{ non-headed } n-tuple \text{ of } G$ (see Remark 2 to Theorem 3). Then we construct the function g by choosing, $\forall \sigma_i \in C$, a vertex in $H(\{f(\overline{\sigma_i})\})$ rather than in $H(\{f(\sigma_i)\})$ (see Remark 1 to Theorem 3). Hence, $\forall x \in |C|$, it is $H(g(st^{m}(x))) \subseteq H(\langle g(x) \rangle)$. Given, indeed, a vertex are $H(g(st^m(x)))$ and a cell $\mathcal{C} \in st^m(x)$ such that $g(\mathcal{C})$ = a, i.e. $a \in H(\{f(\overline{z})\})$, we prove that a is a predecessor of all the vertices of $\langle g(x) \rangle$. In fact if $b \in \langle g(x) \rangle$ and a is not a predecessor of b, b is the image of a non-maximal cell \mathfrak{G} , while, by definition of g, we have $b \in H(\{f(\vec{e})\})$. Since $\vec{e} \in \vec{E}$, and also $\vec{e} \in \vec{E}$, it is $b \in f(\vec{e})$. Hence a is not a head of $f(\tilde{\epsilon})$. Contradiction. By remarking that, $\forall x \in \mathfrak{S}$, it is $g(st^m(x)) = g(st^m(\mathfrak{S}))$, we can define the o-pattern h in the following way: $h(G') = a \text{ vertex of } H(g(st^{m}(G'))), \forall G \in C.$ The function h is properly C-constant since, if ϵ is a maximal cell, from $g(st^m(r)) = \{g(r)\}$ it results h(r) = g(r). Hence, by definition, we have $h(\sigma) \in g(st^m(\sigma)) = h(st^m(\sigma))$, $\forall \sigma \in C$. \Box

REMARK. - If G is an undirected graph, it is not necessary to contruct also the o-pattern to obtain a properly quasi-constant function In this case the condition is reduced to $h(\sigma) = a$ vertex of $g(st^m(\sigma))$.

Let $e, f: S \rightarrow G$ be two functions pre-cellular w.r.t. two finite decompositions C and K of S and $F: S \times I \rightarrow G$ a complete o-homotopy between e and f. Then, for every sufficiently fine finite cellular decomposition Γ of $S \times I$, by Theorem 6, the function F can be replaced by a Γ -precellular function $\hat{h}: S \times I \rightarrow G$. In order that the function \hat{h} may also be a homotopy between e and f, the restrictions of \hat{h} to $S \times \{0\}$ and $S \times \{1\}$ must coincide with e and f. Hence it is necessary that \hat{h} characterizes on $S \times \{0\}$ and $S \times \{1\}$ two decompositions \tilde{C} and \tilde{K} finer than C and K, since e and f are properly quasi-constant (see Remark to Definition 10). Nevertheless, as, for example, the value of the function \hat{h} on $S \times \{0\}$ depends from the value assumed by the function F on the maximal cells of the star $st(\tilde{C})$, in general the restriction $\hat{h}/|\tilde{C}|$ is different from e. Consequently, at first, we must replace the homotopy F by a homotopy M given by:

$$M(x,t) = \begin{cases} e(x) & \forall x \in S, & \forall t \in \left[0, \frac{1}{3}\right] \\ F(x, 3t-1) & \forall x \in S, & \forall t \in \left[\frac{1}{3}, \frac{2}{3}\right] \\ f(x) & \forall x \in S, & \forall t \in \left[\frac{2}{3}, 1\right] \end{cases}$$

Then we have to costruct suitable cellular decompositions of the three cylinders $Sx\left[0,\frac{1}{3}\right]$, $Sx\left[\frac{1}{3},\frac{2}{3}\right]$ and $Sx\left[\frac{2}{3},1\right]$.

PROPOSITION 7. - Let S be a compact triangulable space, C a finite cellular decomposition of S, G a finite graph and e: $S \rightarrow G$ a properly C-constant function. If we consider the decomposition $L = \{\{0\},]0, 1[, \{1\}\}\}$ of I and the product decomposition $\Gamma = C \times L$ of the cylinder $S \times I$, then the function F: $S \times I \rightarrow G$, given by F(x,t) = e(x), $\forall x \in S$, $\forall t \in I$, is properly Γ -constant.

Proof. - We have only to remark that a cell \mathcal{C} is maximal in Γ' iff $\mathcal{C} = \mathcal{C} \times [0, 1[$, where \mathcal{C}' is a maximal cell in \mathcal{C} . Then it results $\mathbf{F}(\mathcal{C}) = e(\mathcal{C}')$. \Box

REMARK. - Since the restrictions $F'_{S \times \{0\}}$ and $F'_{S \times \{1\}}$ coincide with e, they are obviously *C*-constant.