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Proposition 7).

of o-pattern of a

We can order the a. in such a way that a , ... ,a €o < f(x» and a
p

+
1
"'"

1. 1 -f P _
a n € <f(x) - <g(x). Therefore it is x€.A n ... nA f , and so

w(x) n A{ :j;f, Yi = 1, ... ,p. Hence there ar; in w(x/ p points x
1

, ... ,x

such that x.€Af., Yi = l, ... ,p. Then it is xc W(x )n ... nW(x) ç P
1. 1. 1 P

V(A{)n ... nV(A
f

). Moreover it is XE.A g n ... nA g , and by ii) it
p p+1 n

follows xE. V(Af l)n ... n V(Af). Hence we obtain the contradiction
f p+ f n

xc V(A
1
)n .•• n V(A

n
).

Now if we consider any o-pattern h of g, we obtain the sought functiol

In fact we have:

i') h: S~G iscompZeteZy o-reguZar (see [5J,
ii') h is weakZy p-constant by the definition

constant function.

iii') h is compZeteZy o-homotopic to f. Since the homotopy F is

completely quasi-regular by iii), there exists an o-pattern E of F

Cwhich is completely o-regular by [5J, Proposi tion 7). Moreover we can

choose E such that E(x, O) = f(x), E(x, l) = h(x), Yx €o 5, since f and h

are completely o-regular i.e. f(x)E. H(f(x») = H(<F(x,O») and

h(x)E. H«g(x») = H«F(x,l»), Yx€.S. Then h is completely o-homotopic

to f by E. CI

REMARK l. If W is a closed set, we can give the function g, by

choosing as constant image of X
j

€ P any vertex of H({f(X j )}).

REMARK 2. - If S is a compact metric space, we can det·ermine a reaZ

positive number r and choose partitions P with mesh <r. In fact, we

have just to calculate enZ(A , ... ,A ), Vn-tuple al" .. ,a non-headed;
1 n . n

so the real number r is given by ~ inf(enZ(A1,·· .,An )).

REMARK 3. - If G is an undirected graph, the function g can be

choosen quasi-constant. Moreover if S is a compact metric space, by

Remark to Definition 2, we have just to consider the couples of non­

adjacent vertices ah,a
k

and then to find the distances d(Ah,A k ) rather

than the enlargabilities enZ(Ah,A
k

). Consequently, if we put r' =

inf(d(Ah,Ak)) and r = ~inf(enZ(Ah,Ak))' since by Remark 3 to Definition

3 it follows r'~ 4r, we can choose a covering P = ix .J, jC J, with
r' [J Jmesh <~ . So we obtain again Property 7 of 8.

3) The third normaZization theorem.
----------------------------------------------------------------------

By comparing the second normalization theorem for directed and
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undirected graphs, we remark an asyrrmetry since for the former we are able to constru:::t

a q.constant function, while for the latter we obtain only a weakly q.constant fulction

Nevertheless , by choosing a particular compact space S, also for directed graphs we

obtain results sirnilar to those for undirected graphs. For this puroose we consider the

compact triangulable spaces and its finite decompositions C by (oDen) CW-complexes (see

[13J, Cap. VII) which satisfy the condition:

(l) 'i/6E.C. eJ is a subcomplex of C. i.e. 'i/~6C.

DEFINITION 6. - Let C be a finite cellular complex and D a subset of cells of C. We

denote by Ici a realization of C and by IDI the subspace of C constituted by the points

of the cells of D.

REMAR!<. - Nevertheless, if there is no ambigui.ty, we denote by o' both a celI and the

subspace /crl. So, for example, we write C;; rather than 10'1.

DEFINITION 7. - Let D be a non-empty subset of cells of a finite complex C. We call

star of a point x~ IDI w.r.t. D. and write stD(x). the set of the cells of D whose

cZosure in Ici. and therefore in IDI. includes x. Moreover we call star af a subset

XClD\ w.r.t. D. and write stD(X). the set of the cells of' D. whose closure has a non­

empty intersection with X. Similarly we can def'ine th8 star stD(o') of a celI of D

and the star stD(D ' ) of a subset D' of D. Then. if D = e. simply we write st(x). st(X)

...• rather than ste(x). stC(X)•...••

REMARK 1. - Th8 stars are open sets in [DI. In fact their compleJl'ents are closed in

IDI, since if for a celI ~it is ?-c1Dj. also it folIaws ~cIDI. Then, if D = C, the

complements of the stars are subcomplexes of C.

REMAR!< 2. - If x is any point of a celI 6éD, then stD(x) - st
D

(6'). In fact in rDI

i t results x ~ ~ <l=t> (S"' c 7:.
•

DEFINITION 8. - Let D be a subset of cells of a finite cellular complex C. A cell

~eD is said to be maxi.rral in D ifit is ~= st
D

(?:).

REMAR!<. - A cell is maximal in D iff it is an open set in IDI. Consequently the celIs

nax.imal in a star are the celIs lII3.X:iJral in C which are incl trled in the star.

DEFINITION 9. ­

x a point of IDI

Let D be a subset of cells of a finite complex c,
and X a subset of ID). We denote by st;(x) (resp.

Vls~ons
• •

We add (l), since we consider cellular sulxlivisions (triangulations and sl1bdi­

into cWes) of this kind. Nevertheless we can obtain the sarre results also



7

st~(X)) the set of the maximal cells of D, whose closure includes x

(resp. has non-empty intersection with X). If D = C simply we write
m( ) m m mst x and st (X), rather than stC(x) and stC(X),

REMARK. - Let x be any point of a cell fS e; D, then obviously it
m m

results stD(x) - stD(fS).

DEFINITION lO. - Let C be a finite ce llular complex and G a finite

graph. A function f: lCI~G is called quasi-constant w.r.t. C or C-con

stant if f is quasi-constant w.r.t. the partition determined by the

cellular decomposition of Ici. Then, if D is a non-empty subset of

cells of C, the function f:lcl~G is called properly quasi-constant in

D w.r.t. C or properly C-constant in D, if, for all the cells ~. non­

maximal in D, there exists a cell 'l:' € D (different from 6'), such that:

i) the restrictions of f to sand to ~ are identical.

ii) €' C 1:'.

At least if D = C the function f: jcl-G is called properly quasi-constan1

w.r.t. C or properly C-constant.

REMARK. - A function f: Icl-.;>G (properly) C-constant is also (properly)

quasi-constant w.r.t. a cellular decomposition C' finer than C.

PROPOSITION 4. - Let C be a finite cellular complex, D a subset of

cells of C, G a finite graph and f: Icl-->G a C-constant function. Then

it results <f(x» = f(st(x)), Vxe:/ci.

Moreover, the function f is properly C~constant in D iff it is

f(stD(o)) = f(st~(fS')), V&CD.

At least, if D = C, the previous relation is equivalent to <f(x) ­

f(stm(x)), Vxe:lci.

Proof. - i) Let v be any vertex of G and ~ any celI of C, then it

follows:

ve <f(xI)4==4>xcVf 4=l> 315/ XE:~ and f(3') = v4=t> 3E1/6'Est(X) and f(5')

= v<F=Pve:f(st(x)).

ii) If it is f(st ((5')) = f(st m
(~), V6'€ D, the function f is properly

D D m
C-constant in D, since, VGe. D, from f(S')e: f(st

D
(5')) we obtain there

exists in D a maximal celI ~ such that SE. i7 and f(fi) = f('è'J. The con­

verse follows from the definition of properly quasi-constant function.

iii) By Remark 2 to Definition 7, by Remark to Definition 9 and by i),

the condition <f(x» = f(stm(x)), vxe/cl, is equivalent to f(st(6')) =

f(st
m

(6')), t'S'E. c. t:l
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In order to employ briefer notations, we give the following:

DEFINITION Il. - Let C be a finite cellular complex and G a finite

directed graph. A completely o-regular function f:)cl->G, which is

properly C-constant is called a function pre-cellular w.r.t. C or a

C-pre-cellular function.

PROPOSITION 5. - Let C be a finite cellular complex and G a finite

directed graph. Then every C-pre-ceUular function f: Icl-G is

characterized,up to complete o-homotopy, by the restriction of f to the

set of the maximal cells of C.

Proof. -Let g: ICI-G be a C-pre-cellular function which takes the
..

same values as f on alI the maximal cells of C. By Proposition 4 it

results <f(x» = f(stm(x)) = g(stm(x)) = <g(x), Vxe:/ci. Since g is

c. o-regular, it is g(x)e: H(g(x») = H«f(x)), i.e. g is an o-pattern

of f and then g is c. o-homotopic to f. (See [5] , Proposi tion 7). O

THEOREM 6. - (The third normalization theorem). Let S be a compact

triangulable space, G a finite directed graph and f: S~G a completely

o-regular function. Then, for every finite cellular decomposition C

of S with suitable mesh, there exists a C-pre-cellular function h: S~

G which is completely o-homotopic to f.

is a maximal celI,

Hence, by definition,

VS'E: C.

Proof. -Let C be a cellular decomposition of S with mesh < r, where

r = !..inf(enl(A1, •.. ,A )), Va1, ... ,a non-headed n-tuple of G (see
2 n n

Remark 2 to Theorem 3). Then we construct the function g by choosing,

V IO i E C, a vertex in Hr[f(~i)1) rather than in H( [f(G'iJ]) (see Remark

l to Theorem 3). Hence, Vx €-Icl, it is H(g(stm(x))) ç H(g(x»). Given,

indeed, a vertex a'E.H(g(stm(x))) and a celI?:'€- stm(x) such that g(?:')

= a, i,e. aE.H([f(?;-J}), we prove that a is a predecessor of alI the

vertices of (g (x), In fact if bE. <g (x) and a is not a predecessor of

b, bis the image of a non-maximal cell~, while, by definition of g,

we have bE. H([f(.:f)}) , Since .,.c~, and also G'c'f, it is b€ftf).

Hence a is not a head of f(~). Contradiction.

By remarking that, Vx€.Gi' , it is g(stm(x)) = g(stm(S')), we can define

the o-pattern h in the following way:
mh(O') = a vertex of H(g(st (0'))),

The function h is properly C-constant since, if ~

from g(st m('1:)) = fg(~)} it results h(?:,) = g(?:').
m mwe have h(G') e: g(st (S')) = h(st (6')), V~E. C. O



REMARK. - If G is an undirected graph, it is not necessary to

contruct also the o-pattern to obtain a properly quasi-constant functiol

In this case the condition is reduced to h(cr) = a vertex of g(stm(G)).

4) The third normalization theorem for homotopies.
----------------------------------------------------------------------------------------------------

Let e,f: S~G be two functions pre-cellular w.r.t. two finite decom­

positions C and K of Sand F: SxI~G a complete o-homotopy between

e and f. Then, for every sufficently fine finite cellular decomposition

r of SxI, by Theorem 6, the function F can be replaced by a r-pre-
A A

cellular function h: SxI~G. In order that the function h may also be
A

a homotopy between e and f, the restrictions of h to Sx {o} and SX {l}
A

must coincide with e and f. Hence it is necessary that h characterizes

on SX{O} and Sxf13 two decompositions C and K finer than C and K, since

e and fare properly quasi-constant (see Remark to Definition 10).
A

Nevertheless, as, for example, the value of the function h on Sx{O}

depends from the value assumed by the function F on the maximal cells
/'-

of the star st(C), in general the restriction h/lclis different from

e. Consequently, at first, we must replace the homotopy F by a homo­

topy M given by:

of the three

Vx E'. S,

F(x,3t-1) VXE:S,

e (x)

M (x, t)

vt E: [o,; ]
Vtt:[;,;]

f(x) lfx€-S, Vt€. [1,lJ
Then we have to costruct suitable cellular decompositions

cylinders Sx [o, ~J, SX [;,1J and S X[1,1]-
PROPOSITION 7. - Let S be a compact triangulable space, C a finite

cellular decomposition of S, G a finite graph and e: S-7G a properly

C-constant function. If we consider the decomposition L =[ [oJ, ]0, 1[,
{ln of I and the product decomposition r = CxL of the cyUnder SxI,

then the function F: SXI-'7G, given by F(x,t) = e(x), VxE'.S, Vt€-I, is

properly r -constant .

Proof. - We have only to remark that a cell ~ is maximal in r iff

'è' = e:-'X]OJ1[, where e:-' is a maximal cell in C. Then it results F(e:-) =
I

-e('è').D

REMARK. - Since the restrictions

they are obviously C-constant.


