= \emptyset , then there exists a vicinity $W \in W$ such that X_1, \ldots, X_n are W-enlargable.

Proof. - We suppose all the sets X_i are non-empty, otherwise the proposition is trivial. Since S is compact, $\forall i = 1, \ldots, n$, the family $\{W(\overline{X}_i)\}$, $\forall W \in \mathcal{W}$, constitute a basis of the neighbourhoods filter of \overline{X}_i (see [2], Cap. 2, §4, n° 3); moreover, since S is normal, the neighbourhoods filter of \overline{X}_i is closed. Consequently, $\{W(\overline{X}_1) \cap \ldots \cap W(\overline{X}_n)\}$ $\forall W \in \mathcal{W}$ is the basis of a closed filter \mathcal{T} . Now, if \mathcal{T} is the null filter, there exists $W \in \mathcal{T}$ such that $W(\overline{X}_1) \cap \ldots \cap W(\overline{X}_n) = \mathcal{I} = W(X_1) \cap \ldots \cap W(X_n)$, i.e. X_1, \ldots, X_n are W-enlargable. Otherwise, since S is compact, there exists a point x adherent to \mathcal{T} , and since \mathcal{T} is a closed filter, $x \in W(\overline{X}_1) \cap \ldots \cap W(\overline{X}_n)$, $\forall W \in \mathcal{W}$. Then it is $x \in W(\overline{X}_i)$, $\forall W \in \mathcal{W}$, $i = 1, \ldots, n$. As the sets $W(\overline{X}_i)$ constitute a basis of the neighbourhoods filter of \overline{X}_i , it follows $x \in \overline{X}_i$, $i = 1, \ldots, n$, i.e. $x \in \overline{X}_1 \cap \ldots \cap \overline{X}_n$. Contradiction

COROLLARY 2. - Let S be a compact metric space and X_1, \ldots, X_n subsets of S such that $\overline{X}_1 \cap \ldots \cap \overline{X}_n = \emptyset$, then it is $enl(X_1, \ldots, X_n) > 0$. \Box

2) The second normalization theorem.

DEFINITION 4. - Let A be a non-empty set, G a finite graph and $P = \{X_j\}$, $j \in J$, a partition of A. A function f: $A \rightarrow G$ is called quasi constant with respect to P (w.r.t.P) or P-constant if the restrictions of f to each X, are constant functions. Moreover, if A is a topological space, $f:A \rightarrow G$ is called weakly quasi-constant w.r.t. P or weakly P-costant if the restrictions of f to the interior of every X, are constant.

REMARK. - If $P' = \{X'_k\}$, $k \in K$, is a partition of A finer than P, i.e. if all the $X_i \in P$ are the union of elements $X'_k \in P'$, then the function f is obviously quasi-contant also w.r.t. P'.

DEFINITION 5. – Let
$$(S, \mathcal{W})$$
 be a uniform space and W a vicinity of \mathcal{W} .
A subset X of S is called small of order W or a W-subset if $X \times X \subseteq W$.
Moreover a family $\mathcal{X} = \{X_j\}$, $j \in J$, is called small of order W or a
W-family if $X_j \times X_j \subseteq W$, $\forall j \in J$.

REMARK 1. - If W is closed and
$$\{X_j\}, j \in J$$
, is a W-family, $\{\overline{X}_j\}, j \in J$, is a W-family.

4

REMARK 2. - If S is metric, small of order $W^{\mathcal{E}}$ is the same as saying that the diameter of X is $\langle \mathcal{E}$ and, respectively, the mesh of the family \mathfrak{X} is $\langle \mathcal{E}$.

THEOREM 3. - (The second normalization theorem). Let S be a compact space, the filter \mathcal{W} the uniformity of S, G a finite directed graph and f: $S \rightarrow G$ a completely o-regular function from S to G. Then there exists a vicinity $W \in \mathcal{W}$ such that, for all the W-partitions $P = \{X_j\}, j \in J,$ there exists a function h: $S \rightarrow G$ which is completely o-regular, weakly P-constant and completely o-homotopic to f.

Proof. - Consider all the *n*-tuples a_1, \ldots, a_n , $n \ge 2$, non-headed in G. Since f is c.o-regular, it follows $\overline{A}_1 \cap \dots \cap \overline{A}_n = \emptyset$. By Proposition 1, for every *n*-tuple a_1, \ldots, a_n , there exists a vicinity $V^{(a_1, \ldots, a_n)} \in W$ such that A_1, \ldots, A_n are $V^{(a_1, \ldots, a_n)}$ -enlargable. Then we put V = $= \bigcap V^{(a_1, \ldots, a_n)}$ and consider a simmetric vicinity $W \in W$ such that WOW $\subseteq V$. Now, if $P = \{X_j\}$, $j \in J$, is a W-partition, we can define a relation $g: S \rightarrow G$, by putting, as constant value, for every $X_j \in P$, any vertex of $H(\{f(X_j)\})$. We prove that g satisfies the following conditions: i) g is a function. We have only to state that, for all X_{j} , the set $\{f(X_{j})\} = \{a_{1}, \dots, a_{n}\}$ is headed. Suppose it is non-headed, and let $x_1, \ldots, x_n \in X_j$ be, such that $f(x_1) = a_1, \ldots, f(x_n) = a_n$. Since $X_j \times X_j$ \subseteq W it follows $(x_r, x_s) \in W$, $r, s = 1, \ldots, n$, and also $x_1 \in W(x_1) \cap \ldots \cap$ $W(x_n) \subseteq V(A_1) \cap \ldots \cap V(A_n)$. Contradiction. ii) g is completely quasi-regular, i.e . $\forall x \in S$ the image-envelope $\langle g(x) \rangle$ is totally-headed. Suppose there exists $x \in S$ and a *n*-tuple $a_1, \ldots, a_n \in \langle g(x) \rangle$ non-headed. Then it results $x \in \overline{A}_1^g \cap \ldots \cap \overline{A}_n^g$ and so $W(x) \cap A_{i}^{g} \neq \beta$, $\forall i = 1, ..., n$. Hence in W(x) there are n points $x_{1}, ..., y_{i}$ x_n such that $x_i \in A_i^g$, $\forall i = 1, ..., n$. But, from the definition of g_i there exist *n* elements $X_i \in P$ and *n* points y_i such that $g(x_i) = a_i = f(y_i)$, $\forall i = 1, ..., n$ where $x_i, y_i \in X_i$. Since P is a W-partition, we have $(x_i, y_i) \in W$. Therefore by $(x, x_i) \in W$, $(x_i, y_i) \in W$ and $W \circ W \subseteq V$, $\forall i=1, \ldots$, n, it results $x \in V(y_1) \cap \ldots \cap V(y_n) \subseteq V(A_1) \cap \ldots \cap V(A_n)$. Contradiction. iii) The function $F: S \times I \rightarrow G$, given by: $F(x,t) = \begin{cases} f(x) & \forall x \in S, \quad \forall t \in [0, \frac{1}{2}[\\g(x) & \forall x \in S, \quad \forall t \in [\frac{1}{2}, 1] \end{cases}$ is completely quasi-regular. This is true $\forall x \in S$, $\forall t \neq \frac{1}{2}$, since f and g are completely quasi-regular functions. We have to prove this also $\forall x$ ϵ S, $t = \frac{1}{2}$, i.e. that $\langle F(x,t) \rangle = \langle f(x) \rangle U \langle g(x) \rangle$ is totally headed. Suppose $x \in S$ and let $a_1, \ldots, a_n \in \langle f(x) \rangle \cup \langle g(x) \rangle$ be a *n*-tuple non-headed.

We can order the a_i in such a way that $a_1, \ldots, a_p \in \langle f(x) \rangle$ and $a_{p+1}, \ldots, a_n \in \langle f(x) \rangle - \langle g(x) \rangle$. Therefore it is $x \in \overline{A_1^f} \cap \ldots \cap \overline{A_p^f}$, and so $W(x) \cap A_i^f \neq \emptyset$, $\forall i = 1, \ldots, p$. Hence there are in W(x) p points x_1, \ldots, x_p such that $x_i \in A_i^f$, $\forall i = 1, \ldots, p$. Then it is $x \in W(x_1) \cap \ldots \cap W(x_p) \subseteq V(A_1^f) \cap \ldots \cap V(A_p^f)$. Moreover it is $x \in \overline{A_{p+1}^g} \cap \ldots \cap \overline{A_n^g}$, and by *ii*) it follows $x \in V(A_{p+1}^f) \cap \ldots \cap V(A_n^f)$. Hence we obtain the contradiction $x \in V(A_1^f) \cap \ldots \cap V(A_p^f)$.

Now if we consider any o-pattern h of g, we obtain the sought function In fact we have:

i') h: $S \rightarrow G$ is completely o-regular (see [5], Proposition 7). ii') h is weakly p-constant by the definition of o-pattern of a quasiconstant function.

iii') h is completely o-homotopic to f. Since the homotopy F is completely quasi-regular by iii), there exists an o-pattern E of F (which is completely o-regular by [5], Proposition 7). Moreover we can choose E such that E(x,0) = f(x), E(x,1) = h(x), $\forall x \in S$, since f and h are completely o-regular i.e. $f(x) \in H(\langle f(x) \rangle) = H(\langle F(x,0) \rangle)$ and $h(x) \in H(\langle g(x) \rangle) = H(\langle F(x,1) \rangle)$, $\forall x \in S$. Then h is completely o-homotopic to f by E. \square

REMARK 1. If W is a closed set, we can give the function g, by choosing as constant image of $X_j \in P$ any vertex of $H(\{f(\overline{X}_j)\})$.

REMARK 2. - If S is a compact metric space, we can determine a real positive number r and choose partitions P with mesh $\langle r$. In fact, we have just to calculate $enl(A_1, \dots, A_n)$, $\forall n$ -tuple a_1, \dots, a_n non-headed; so the real number r is given by $\frac{1}{2}$ inf $(enl(A_1, \dots, A_n))$.

REMARK 3. - If G is an undirected graph, the function g can be choosen quasi-constant. Moreover if S is a compact metric space, by Remark to Definition 2, we have just to consider the couples of nonadjacent vertices a_h, a_k and then to find the distances $d(A_h, A_k)$ rather than the enlargabilities $enl(A_h, A_k)$. Consequently, if we put r' = $inf(d(A_h, A_k))$ and $r = \frac{1}{2}inf(enl(A_h, A_k))$, since by Remark 3 to Definition 3 it follows $r' \leq 4r$, we can choose a covering $P = \{X_j\}$, $j \in J$, with mesh $\leq \frac{r'}{4}$. So we obtain again Property 7 of [8].

3) The third normalization theorem.

By comparing the second normalization theorem for directed and