INTRODUCTION.- By using the definitions of o-regular and completely
o-regular functions from a topological space S to a finite directed
Graph G (see Background we go on (see [3],[4] and [5])with the stu-
dy of normalization theorems for regular homotopy. To this purpose,
given a partition P of S, we introduce the definitions of quasi-
constant and weakly quasi-constant function with respect to P (see
Definitions 4 and 10). Then, by using also the first normalization
theorem (see [4], Theorem 12) we prove that any o-regular function
from a compact space S to G 1is completely o-homotopic and weakly
quasi-constant w.r.t. a suitable partition P. (The second normaliza-

tion theorem) (see Theorem 3).

The previous theorem can be refined when S 1is a compact triangu-
lable space, proving that any o-regular function from S to G 1is
completely o-homotopic to a function pre-cellular w.r.t. a suitable
decomposition () C of S. (The third normalization theorem) (see

Theorem 6).

Moreover we prove that between two pre-cellular functions which are
o-homotopic, there exists also a homotopy which is pre-cellular w.r.t.
a suitable decomposition of SxI. (The third normalization theorem for

homotopies) (see Theorem 8).

Then all the previous results are generalized td the case between
pairs of topological spaces and of graphs (see § 5,6) and to the case

between (n+1)-tuples (see § 7).

At least we apply the results to the case of n-dimensional groups
of regular homotopy and we obtain that in any class of regular homotopy
group there exists a loop which is a pre-cellular function w.r.t. a
suitable triangulation (subdivision into cubes) of In. With references
to this, we remark that the subdivisions into cubes are useful to give

a combinatorial interpretation of homotopy groups by blocks of vertices:

(#) For simplicity, we consider the finite decompositions C of S
by (open) CW-complexes which satisfy the condition that for all

e, 0 is a subcomplex of C.



(see [10])

The previous results will be used in a next paper to prove that
regular homotopy groups are isomorphic to the classical homotopy
groups ot the polyhedron lKGr of the simplicial complex KG associated

with G, whose simplexes are given by the totally headed subsets

of G.



0) Background.

Let X be a non-empty subset of a finite directed graph G. A vertex of
X is called a head of X in G if it is a predecessor of all the other
vertices of X. We denote by HG(X) the set of the heads of X in G. X 1is
called headed if H(X) # ¢ and totally headed if all the non-empty subsets
of X are headed.

Given a function f: S —> G, where S 1is a topological space, we denote by
ca_pital letter V the set of all the f-counterimages of ve G, and, if we
want to emphasize the function f, we write yl = f-I (v).

We call iZmage-envelope of a point ze § by f, and we denote by (f(x)> ,
the set of vertices, such that the closure of their f-counterimages includ
the point i.e.. v e(f(x)}d:bxei_/f .

A function f: S—G is called o-regular, if, for all different v,we0,
such that » is not a predecessor of w,it is VNW = #. We proved that f is
o-regular iff:

1) {(f(x)> is headed, Vxe S;
i1) fl(z)e H(f(xz)>), VxeS. (See [5], Proposition 2).

So it is natural to define a more restrictive class of functions by sayi
that a function f: S—>G is completely o-regular (or simply ec.o-regular) 1if
t') ¢«f(x)> is totally headed, V¥xe S;
i1') flx)e H(Lf(x)>), VxeS.

Afterwards we also consider functions satisfying only condition <', whic
we call completely quast regular functions. In [5] we proved that a
completely quasi regular function can be replaced by a c.o-regular one by
constructing the o-patterns of the function (where an o-pattern of a
function f: $-»G is a function g: S-»G such that g(z)e H(<f(x)>), Vze S).
In the case of pairs of topological spaces S5,S' and of pairs of graphs G,¢
in [5] in order to introduce the o-patterns, we gave the definition of
balanced function i.e .of a function f: S§,5'—~G,G' such that (fl(x')>=
=(f'"(x')>, Vx'e S'. With reference to this we remember that if the

subspace S' is open in S, all the functions are balanced.

I) Enlargability of sets in a untiform space.

DEFINITION 1. - Let (S,W) be a uniform space, where the filter W <is
the uniformity of S. Given a vicinity WeW , we put W(x) = {yé S/ (x,y)
€ w}, vzes, and W(x) = U w(z), ¥Xes.

xe X

" REMARK. - If (S,d) is a metric space the subsets W& = ((n.a)e sx5 /



p,q)<E}, €20, constitute a basis of the uniformity induced by the
tric d.

DEFINITION 2. - Let (S,W) be a untform space and W a vicinity of W.

ten n subsets X of S are called W-enlargable 7f W(Xz)n.

X ) = Z.

PTRRRS ¢

REMARK. If XI""’Xn are W-enlargable, then all the m-tuples (m >n),
>tained by adding any n-m subsets of S, are still W-enlargable .

DEFINITION 3. - Let (8,d) be a metric space and Xl""’Xn subsets of
We call enlargability of the n-tuple XyseonsX s and we denote by
nl(Xl,...,Xn) the non-negative real number r such that:

WE(XJ)H...n WE(X ) {l‘ﬁ, velr
" -#ﬁ: FE > r.

REMARK 1. - If ¥ N...n %X # #, we put enl(X ,...,X ) = 0, while if
me at least among the Xi is empty, we put enZ(XZ,...,Xn) = diameter

»f S.

REMARK 2. - Let XI""’XM be a m-tuple of subsets of S5, obtained by
adding to the m-tuple XI""’Xn any m—-n subsets of 'S, then enZ(XI,...,
Xn) < enZ(XI,...,Xm).

REMARK 3. - Let X, # 7, X, #Z #. It results enl(X;,X,)<d(X,, X,) <
BenZ(X X ). In fact if we put d(X X ) =7, for all & there ex1st xe X
and ye.X2 Such that d(xz,y)< 7 +E. Hence it is WQ+£(X )N Wﬂ+£(X2) 7z 4,
i.e. enZ(Xz,X2)<'7+£ = d(XI,X2) + £&£. Since £ is arbltrary, it follows
enl(XI,Xg)éti(Xz,Xz).

Moreover let » = enl(X,,X.). For all £>0 it is W' (X )N WP+£(X 4 # ﬂ
Then there exist ze:Wr+£(Xi)n Wp+%k ), x, € Xl and xgé.Xg such that
d(x ,Xg)\ d(m , T ) d(ml,z)+d(x2,z)< 2r + 28 = 2enZ(X1,X2) + 2&. Since
£ 1is arbitrary, 1t follows d(XI’Xz)\ 2enZ(X1,X2). We remark that it may
be d(Xl,X2)< ZQnZ(XI,XBJ. In fact if § = {xl,xg} is the discrete metric

space, where d(z ,x,) = 1, it is enl({xl},{xz}) = 1.

PROPOSITION 1. - Let S be a compact space and the filter W the uniform

of 8§, 7t results X_,N...n ?n

ity of S (*). If, for n subsets X 1

1,...,X

* . .
(*) We remark that in a compact space there exists only one uniformity

compatible with the topology (see [21 , Cap. ?H n®



= @, then there exists a vicinity WeW such that X

1""’Xn are W=

enlargable.

Proof. - We suppose all the sets Xi are non-empty, otherwise the
proposition is trivial. Since § is compact, V7 = 1,...,n, the family
{W(?£H, ¥WelW ,constitute a basis of the neighbourhoods filter of Ei
(see [2], Cap. 2, &4, n° 3); moreover, since S is normal, the
neighbourhoods filter of ?i is closed. Consequently,{W(?l)fﬂ...fWW(En)}
VWeW is the basis of a closed filter & . Now, if 3 is the null filter,
there exists We’d such that W(?l)fﬁ...fﬁw(§n} =g = W(Xl)fi...flw(Xn),
i.e. XI""’Xn are W-enlargable. Otherwise, since S is compact, there
exists a point x adherent to ", and since ¥ is a closed filter, z ¢
W(X,)n...n W(Tn), VWe W . Then it is xE,W(?i), VWeW , 7 = I,...,7.

As the sets W(fi) constitute a basis of the neighbourhoods filter of
Ei’ it follows me:?i, 2 = 1,00u,n, i.e. xEZ?IfW...JW En' Contradiction

COROLLARY 2. - Let S be a compact metriec space and XI""’Xn subsets
of S such that EjIT...fiin = 4, then it is enZ(XI,...,Xn)> 0. O

2) The second normalization theorem.

DEFINITION 4. - Let A be a non-empty set, G a finite graph and P =
= {Xj}’ Je€J, a partition of A. A fu@ction f: A=>G 18 called quasi
constant with respect to P (w.r.t.P) or P-constant Zf the restrictions
of £ to each X, are constant functions. Moreover , 1f A 18 a topo-
logical space f f:A—=>G ©is called weakly gquasi-constant w.r.t. P or
weakly P-costant <f the restrictions of f to the interior of every

Xj are constant.

REMARK. - If P’ = {Xi} . ke K, is a partition of A finer than P,
i.e. if all the Xie.P are the union of elements Xée P', then the

function f is obviously quasi-contant also w.r.t. P’.

DEFINITION 5. - Let (S5,W) be a uniform space and W a vicinity of W.
A subset X of S ig called small of order W or a W-subset <f XxXcW.
Moreover a family X = {Xj}, J€d, is called small of order W or a
W-family <f ijXjQW, Vi€ dJ.

REMARK 1. - If W is closed and {Xj},je;% is a W-family, {fj}, JeE J,

is a W-family .
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REMARK 2. - If S is metric, small of order W¢ is the same as saying
that the diameter of X is < € and, respectively, the mesh of the family
X is < €.

THEOREM 3. - (The second normalization theorem). Let S be ¢ compact
space, the filter W the uniformity of S, G afinite dirvected graph and
f: 8>G a completely o-regular function from S to G. Then there exists
a vieinity Wel) such that, for all the W-partitioms P = {XJ.}, JE J,
there exists a function h: S—>G which is completely o-regular, weakly
P-constant and completely o-homotopic to f.

Proof. — Consider all the mn-tuples Aysveesd, n » 2, non-headed in @.
1n e 2N Zn = @. B}(r Proposition 1,
for every n-tuple ays- “,C;E’ there jaxists a vicinity v'%z1°° "’an) € W
such that AJ_""’An are v'%72° =9y

=N V(al""’an) and consider a simmetric viecinity We W such that

Since f is c¢. o-regular, it follows 4
-enlargable. Then we put Vv =

WewWw &« V. Now, if P = {Xj}, jedJ, is a W-partition, we can define a
relation g: S-»G, by putting, as constant value, for every XJ.e: P, any
vertex of H({f(XJ.)}). We prove that g satisfies the following condi-
tions:
i) g 18 a funtion. We have only to state that, for all Xj’ the set
{f(Xj)} = {al,...,an} is headed. Suppose it is non-headed, and let
TyseresT € Xj be, such that f'(:nl) = Agsenes f'(mn) = a,. Since ij Xj
c W 1t follows (mr,xs)e W, ro8 = 1,...,n, and also x € W(;cl)ﬂ vee N
W(a:n) c V(Al)ﬂ...ﬂ V(An)' Contradiction.
i1) g is completely quasi-regular, i.e .Vzxe S the image-envelope
<glx)y> is totally-headed. Suppose there exists xe€ S and a n-tuple
@,,--.,a,€ (g(x)> non-headed. Then it results xezgn...nA_i and so
W(:c)f)Ai ##, Vi = 1,...,n. Hence in W(z) there are n points Ty,
T such that mie:Ag, Vi = 1,...,n. But, from the definition of g,
there exist n elements Xie P and n points Y, such that g(:r:?:):ai:f'(yi),
¥2 = 1,...,n wWhere T Y€ X?:. Since P is a W-partition, we have
(a:i,yi)e‘. W. Therefore by (a:,xi)e. W, (xi’yi)€ Wand We W SV, Vizl,...,
n, it results xe,V(yI)n...n V(yn) C V(Ai,)n“‘n V(An)' Contradiction.
i7%7) The function F: Sx I-—>G, given by:
flx) Ve e S, Vte[o,%

Flae,t) = {g(m) Ve e S, Vté[—é-,lj
is completely quasi-regular. This is true Vxe S, ¥Vt # 39 since f and g
are completely quasi-regular functions. We have to prove this also ¥x
€ S, t = L i.e. that Flx,t)y) = <flx)>Ug(x)> is totally headed.

2.’
Suppose xz € S and let a <>a, € {flx)U<g(x)> be a n-tuple non-headed.

I



We can order the a. in such a way that aI,...,apE: < flx)>» and ap+1,...,
a € <(f(x)> - <{g(x)>. Therefore it is xe.Aff7 flﬁg, and so
W(x)rlA Z4Z, v© = 1,...,p. Hence there are in W(z) p points xl,...,?P

such that a: €Af Vi = 1

PRI

.sp. Then it is zxze W(xl)KW...f)W(mp)

V(A§JFW...r]V(A§). Moreover it is xe,zg+lf7...rlzg, and by <7) it

follows x€.V(Af )f)...ﬂ V(Af) Hence we obtain the contradiction
zeviadin.. an(Af)

Now if we Con81der any o-pattern % of g, we obtain the sought functio
In fact we have:
') h: S—=G is completely o-regular (see [5], Proposition 7).
i1') h 18 weakly p-constant by the definition of o-pattern of a quasi-
constant function.
1117') h s completely o-homotopic to f. Since the homotopy F is
completely quasi-regular by iii), there exists an o-pattern E of F
(which is completely o-regular by [5], Proposition 7). Moreover we can
choose E such that E(x,0) = f(z), E(xz,1) = h(x), ¥z €3S, since f and h
are completely o-regular i.e. f(x)€ H(<Sf(x)>) = H(<F(x,0)>) and
h(x)€ H(¢<g(z)>) = H(KF(x,1)>), ¥Vxe€S. Then h is completely o-homotopic
to f by E.

REMARK 1. If W is a closed set, we can give the function g, by
choosing as constant image of Xje P any vertex of H({f(?j)}).

REMARK 2. - If S is a compact metric space, we can determine a real
positive number » and choose partitions P with mesh {r. In fact, we
have just to calculate enZ(AI,...,An), Yn-tuple Agse-esa non-headed;

so the real number r is given by % inf(enZ(AI,...,An)).

REMARK 3. - If ¢ is an undirected graph, the function g can be
choosen quasi-constant. Moreover if S$ is a compact metric space, by
Remark to Definition 2, we have just to consider the couples of non-
adjacent vertices ay,ag and then to find the distances d(Ah’Ak) rather
than the enlargabilities enZ(Ah,A ). Consequently, if we put r'
inf(d(ﬂh,ék)) and r = ltnf(enZ(A SA )) since by Remark 3 to Definition

3 it follows r'g 4r, we can choose a covering P = {X }, Jj€ J, with
!

mesh < g— . So we obtain again Property 7 of [8]

3) The third normalization theorem.

By comparing the second normalization theorem for directed and
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wndirected graphs, we remark an asymmetry since for the former we are able to construct
a q.constant function, while for the latter we obtain only a weakly g.constant finction
Nevertheless, by choosing a particular compact space S, also for directed graphs we
obtain results similar to those for undirected graphs. For this purpose we consider the
compact triangulable spaces and its finite decompositions ¢ by (oven) ChW-complexes (see
[13], Cap. VII) which satisfy the condition:

— . = -~ (¥
(1) vgel, & is a subcomplex of €, 1.e. ¥Y%el, TNE #ﬂf =P € G. )

DEFINITION 6. - Let C be a finite cellular complex and D a subset of cells of C. We
denote by |C| a realization of C and by ID] the subspace of C constituted by the points
of the cells of D.

REMARK., - Nevertheless, if there is no ambiguity, we denote by ¢ both a cell and the
subspace |¢]. So, for example, we write & rather than [&].

DEFINITION 7. - Let D be a non—empty subset of cells of a finite complex C. We call
star of a point z € [DI w.r.t. D, and write stD(x), the set of the cells of D whose
closure in |C|, and therefore in |D|, ineludes wx. Moreover we call star of a subset
xc|p| w.r.t. D, and write si:D(X), the set of the cells of D, whose closure has a non-
empty intersection with X. Similarly we can define the star sty(@) of a cell of D
and the star stD(D’) of a subset D' of D. Then, ©if D = C, simply we write st(x), st(X)
eve, Yather than stc(a:), stC(X),..., .

REMARK 1. - The stars are open sets in ID[ . In fact their complements are closed in
|D], since if for a cell 2z it is ec|D|, also it follows Zc|Dj. Then, if D = ¢, the
complements of the stars are subconplexes of (.

REMARK 2. - If z is any point of a cell & €D, then st (x) = st ). In fact in [D)
it results % € * &> CT

-

DEFINITION 8. = Let D be a subset of cells of a finite cellular complex €. A cell
zeD 18 satd to be maximal in D Zf it 78 T = stD(a').

REMARK, ~ A cell is maximal in D 1ff 1t 1s an open set in |D| Consequently the cells
maximal in a star are the cells maximal in ¢ which are incluled in the star.

DEFINITION 9. - Let D be a subset of cells of a finite complex C,
x a point of |D| and X a subset of |D]. We denote by stg(a:) (resp.

k) We add (1), since we consider cellular subdivisions (triangulations and subdi-

visions into cibes) of this kind. Nevertheless we can obtain the same results also



stg(X)) the set of the maximal cells of D, whose closure includes =z
(resp. has non-empty intersection with X). If D = C simply we write
st"(z) and et" (X), rather than st?(m) and st?(X).

REMARK. - Let x be any point of a cell 8§ € D, then obviously it
results stg(m) = stgfe).

DEFINITION 10. - Let C be a finite cellular complex and G a finite
graph. A function f: |Cl=G is called quasi-constant w.r.t. ¢ or C-con
stant 7f f is quasi-constant w.r.t. the partition determined by the
cellular decomposition of |C|. Then, if D is a non—-empty subset of
cells of C, the function f:|Cl=G is called properly quasi-constant in
D w.r.t. C or properly C-constant <m D, Zf, for all the cells & non-
maximal in D, there exists a cell T €D (different from & ), such that:
1) the restrictions of f to & and to = are identical.
i1) & C %,

At least if D = C the function f:|Cl=G i{e called properly quasi-constant

w.r.t. ¢ or properly C-constant.

REMARK. - A function f: |C|—G (properly) C-constant is also (properly)

quasi-constant w.r.t. a cellular decomposition (' finer than C.

PROPOSITION 4. - Let C be a finite cellular complex, D a subset of
cells of C, G a finite graph and f:|C|>G a C-constant function. Then
it results (f(z)> = fist(zx)), VxelC|.

Moreover, the function f is properly C-constant in D <1ff it is
flet,(8)) = f(st’g(s‘)), Ve e D.

At least, ©if D = C, the previous relation is equivalent to (flx)) =
f(stm(x)), vxe [C].

Proof. — i) Let v be any vertex of G and & any cell of C, then it
follows:
vVE <f(x))4::px€.'§'f¢*———b }G/ ree and f(&) = v & E]G’/S’E st(x) and f(§')
= vgpve flst(z)).
ii) If it is f(stpkf)) = f(stgﬁf), Ve¢e€ D, the function f is properly
C-constant in D, since, V€€ D, from f(¢)e f(stgﬂ?)) we obtain there
exists in D a maximal cell = such that €€ T and f(¢) = f(?®). The con-
verse follows from the definition of properly quasi-constant function.
iii) By Remark 2 to Definition 7, by Remark to Definition 9 and by i),

the condition <f(z)y = f(st'(z)), vzelcl, is equivalent to f(st(e)) =
flst"(6)), ¥eeC. D



In order to employ briefer notations, we give the following:

DEFINITION 11. - Let C be a finite cellular complex and G a fin<ite
directed graph. A completely o-regular function f:)C|—>G, which is
properly C-constant is called a function pre-cellular w.r.t. C or a

C-pre-cellular function.

PROPOSITION 5. - Let C be a finite cellular complex and G a finite
directed graph. Then every C-pre-cellular function f:|Cl—G is
characterized,up to complete o-homotopy, by the restriction of f to the

set of the maximal cells of C.

Proof. -Let g:lCI—?G be a (C-pre-cellular function which takes the
same values as f on all the maximal cells of C¢. By Proposition 4 it
results ¢f(z)> = flst™(z)) = g(stm(x)) = <g(z)y, Vzxelc|. Since ¢ is
c. o-regular, it is g(x)€ H(Kg(x)>) = H(< f(x)>), i.e. g is an o-pattern
of f and then g is c.o-homotopic to f. (See [5], Proposition 7). O

THEOREM 6. - (The third normalization theorem). Let S be a compact
triangulable space, G a finite directed graph and f: S-»G a completely
o—regﬁlar funetion. Then, for every finite cellular decomposition C
of S with suitable mesh, there exists a C-pre-cellular function h: S->»

G which is completely o—-homotopic to f.

Proof. -Let C be a cellular decomposition of S with mesh < r, where
r = %inf(enl(}ll,.. LA DD, Vag,. ..
Remark 2 to Theorem 3). Then we construct the function g by choosing,
Vggie_c, a vertex in H({f(?&)}) rather than in H({ffgk)}) (see Remark
1 to Theorem 3). Hence, ¥x ¢ |C|, it is H(g(stm(m)))g; H(<g(x)>). Given,
indeed, a vertex at.H(g(stm(x))) and a cell T ¢ st (x) such that g(?)
= a, i.e. ae:H({f(?)}), we prove that a is a predecessor of all the

sa, non-headed n-tuple of G (see

vertices of ¢g(x)>. In fact if be <g(x)>and a is not a predecessor of
b, b is the image of a non-maximal cell §, while, by definition of g,
we have b€ H({'f(é")}). Since @c & , and also @ Cc¥ , it is bhe f(¥).
Hence a is not a head of f(?). Contradiction.
By remarking that, Vx€& , it is g(stm(x)) = g(stm(eﬁ), we can define
the o-pattern % in the following way:

h(e’) = a vertex of H(g(st"(€))), Vee c.
The function A is properly C-constant since;, if ¥ 1s a maximal cell,
from g(st" (%)) = {g(?ﬂ} it resulss h(¥) = g(?¥). Hence, by definition,
we have h(c') € g(stm(e)) = h(st™(®)), VeeC. I



REMARK. - If G is an undirected graph, it is not necessary to
contruct also the o-pattern to obtain a properly quasi-constant functior

In this case the condition is reduced to k(¢’) = a vertex of g(stm(g))-

4) The third normalization theorem for homotopies.

Let e,f: S—»G be two functions pre-cellular w.r.t. two finite decom-
positions ¢ and X of S and F: SxI-—»G a complete o-homotopy between
e and f. Then, for every sufficently fine finite cellular decomposition
" of SxI, by Theorem 6, the function F can be replaced by a ['-pre-
cellular function Q: SXI—G. In order that tha function 2 may also be
a homotopy between e and f, the restrictions of 2 to Sx{O}and Sx{l}
must coincide with e and f. Hence it is necessary that % characterizes
on Sx{0l and Sx{1} two decompositions C and ¥ finer than C and X, since
e and f are properly quasi-constant (see Remark to Definition 10).
Nevertheless, as, for example, the value of the function 2 on Sx{O}
depends from the value assumed by the function F on the maximal cells
of the star st(@), in general the restriction h/lglis different from
e. Consequently, at first, we must replace the homotopy F by a homo-

topy M given by:

elx) Vx € S, YVt e [0,_;_]

Mlx,t) =4 F(x,3t-1) Vx e S, Vte [%J%]
2

flx) Ve e S, Fte [—5,11

Then we have to costruct suitable cellular decompositions of the three
cylinders Sx[b,%], Sx[i,ﬁ} and sx[%,z}.

PROPOSITION 7. - Let S be a compact triangulable space, C a fintte
cellular decomposition of S, G a finite graph and e: S—>G a properly
C-constant function. If we consider the decomposition L :{{Q},]O,I[,
{1[} of I and the product decomposition I = ¢XL of the cylinder SxI,
then the function F: SxI-—»G, given by F(x,t) = e(z), Vx €S, Vte€I, is
properly M —constant

Proof. - We have only to remark that a cell ? is maximal in M iff

T :'QXJO,I[, where 7' is a maximal cell in ¢. Then it results P(?¥) =
ze(?'). O

. . . F F . . .
. - h e,
REMARK Since the restrictions /SX£Q}and /Sx[1}001n01de with e

they are obviously (C~constant.



So we obtain:

THEOREM 8. -(The third normalization theorem for homotopies). Let S
be a compact triangulable space, G a finite direected graph, C,D two
finite decompositions of S and e,f: S—=G two functions pre-cellular
w.r.t. C and D respectively, which are completely o-homotopic. Then,
from any finite cellular decomposttion r; of Sx[é g] of suitable mesh
which induces on the bases Sx{é} and SX{E} decompositions Eland D
finer than C and D, we obtain a finite cellular decomposition [ of

SxI and a homotopy between f and g which is a F—pre—cellular Ffunetion.

Proof. — Let F: SXI -G be a complete o-homotopy between e and f. We
define the complete o-homotopy M: SxI~»G between e and f as in the

introduction of this paragraph. Then, if we consider the restriction
1 2
of M to Sx[; 3

], we can determine the real number r, upper bound of
the mesh. Now if PZ is a finite cellular decomposition, satisfying

the conditions of the theorem and with mesh < r», we can consider the
cellular decomposition m=Tuluv P of the cyllnder SXI, such that:

1 2
i) F’ is the product decomposition C)(L of Sx[b 1, where LI {ﬁﬂ,

0.4 131 2 2
11) F is the product decomposition DxLS of Sx[g,ﬂ » Where L3 ﬁg},
i)
Then we define the function g SxI—»G, given by:
M(6), vee -1,
A(GU _ . 2
a vertex of H({ﬂﬂe)}), vee

2. A A
Afterwards, by Theorem 6, we construct the o-pattern A2 of g, by

I

10

choosing as element of H(g(st" (")), the value g6 = Mﬂy) ifee [M- F.

A -
By construction 2 is a_ P—pre—cellular function. Hence % is the

sought homotopy since h/Sx{d}: e and /Sx{ﬁ}: f. O

REMARK. - The finite cellular decomposition " induces on the bases
C s ~ ~
Sx {0} and Sx {1} the decompositions C and D.

5) The second normalization theorem between pairs .

Given a set 4, a non-empty subset A' of 4, a finite graph G and a

subgraph G'of G, we can generalize Definition 4, by considering function

f: A,A">G,G' which are quasi-constant w.r.t. a partition P = {ng,
jed, of A. In this case it follows that the image of every Xj’ such

that X,MA' # 7, necessary is a vertex of G'. Moreover, if 4 is a topo
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logical space and 4' a subspace of 4, we can also generalize the

definition of weakly P-constant. So we have:

PROPOSITION 9. - Let S5 be a compact space, the filter W the uniform-
ity of S, 8' a closed subspace of 8, Uaclosed neighbourhood of S', G
a finite directed graph, G' a subgraph of G and f:S,U—~>G,G' a complete
Ly o—regulaf Ffunetion. If we choose in U a closed neighbourhood K of
S', we can determine a vicinity WeW such that, for all the W-parti-
tiong P = {Xj}, JE€ J, there exists a function h: S,E-?G,G', which s
completely o-regular, weakly P-constant and completely o-homotopic

to f: S,8'>G,G".

Proof. - At first there exists a closed neighbourhood XK of S§',
included in U, since S is normal. Then, by following the proof of
Theorem 3, we determine a vicinity Ve W such that V(A?)fl...ﬂ V(Aﬁ) =
= 4, Vn-tuple Ayseensa, non-headed of G. Moreover, if w' is the’
trace filter of W on UxU, we obtain, as before, a vicinity Z'e W
such that Z’(A'f’)fluJWZ’(A’ij = 4, ¥m-tuple ai,...,a% non-headed of
G'. Since Z'e W', necessarily it is Z' = V1f1(UXU), where V. e W .
Then we choose a symmetric vicinity WeW such that WeWe VNV, and
W(K)CU. Now, given a W-partition P = {Xj}, jedJ, of S, we define a
relation g: S,f—?G,G’, by putting, for every Xj’ j€ J, the constant
value:

a vertex of HG({f(Xj)}) if Xjr1K = ﬁ,
g(Xj) H{a vertex of HG,({J"’(XJ.)}) if XjnK 7z 4.
We verify that g satisfies the following conditions:
1) g 18 a funetion. In fact it results:

a) VXj / Xjr\K = Z, the set {f(fj)} is headed in G. For proving this
we go on as in i) of the proof of Theorem 3.

b) ¥ x5 / X.n K # 7, the set {f'(XJ.)} is headed in G'. At fipsf we
prove that XJ.Q:__U. Let zeXJ.nK, Vye_XJ. it is (z,y)€ ij ngw, :|_.e;.
X.CW(z)CS W(K)CU. Then, if we go on as in i) of Theorem 3, we obtailn
t%at {f'(X.)} is headed in G'. Moreover, we remark that the vertex
g(x), chosen in HG,({f'(Xj)}), is also an element of HG({f(Xj}), since
f(Xj) = f’(Xj).

From a) and b) it follows that there exists g(z), for every ze€ 5; hence
g is a function.

77) and i1i71) The function g:S,E—aG,G’ and the homotopy F:SxI,fo—a-G,G

between f and g given by:

flx) Vre S, Vte [03%[
Flx,t) = 1
gl(x) VxeS, VtE [5,1]



12

are completely quasi-regular functions.
a) g: §=G and F: SxI-»G are c. quasi-regular functions. We obtain this
result as in ii) and iii) of Theorem 3.
b) The restrictions g': K—>G' and F': KxI->G' are c. quasi-regular. At
first.we observe that, by the definition of g, it is g(kK)Jc G' and then
F(KxI)c G'. Secondly we go on as in ii) and iii) of Theorem 3, by
choosing, Vx'e f, the neighbourhood W(m’)rlf, rather than W(x'), and
by using the vicinity Z' rather than V. Then, for example, if we suppose
that the m-tuple a’,...,aée.(g’(m’)) is non-headed, we obtain the contra
diction x'e Z’(A'?jﬁ .ufﬁz’(A'gr).
From a) and b) it follows ii) and iii).

Now if we consider any o-pattern % of g, we obtain the sought function.
In fact we have:
t') h: S,f—aG,G' 18 completely o-regular (see [5], Proposition 15).
2t') h 18 weakly P-constant by the definition of o-pattern of a quasi-
constant function.
227') h is completely o-homotopiec to f: 5,5'—=G,G'. Since the homotopy
F: S,f—+G,G' is c.quasi-regular by iii) and R is open, there exists an
o-pattern E (which is c.o-regular by [5], Proposition 15) of F. We can
choose E such that E(x,0) = f(x) and E(xz,1) = h(x), Vxe S, for f and g
are c.o-regular i.e.:
1) f(x)e:HG(<f(m)>) = HG(<F(x,O)>) and h(x)e HG(<g(x)>) = HG((F(m,1)>),

V¥V xe S.

5) f’(x)e:HG,(<f'(m)>)o: HG,(<F'(x,O)>) and A'(x) € HG,(<g(m)>) =

= He (CF'(x,1)), Vrxek.
ience the o-pattern hA(x) = E(x,1) is c.o-homotopic to f by E.[]

REMARK. - If 5 is a compact metric space, we can determine a positive
real number » and choose partitions P with mesh < ». In fact, we put
EI = inf(enZ(Af;...,Ai)), ¥n—tuple Aysevesa, non-headed of ¢ and €2 =
r ; r
inf(enl(Aifj... A’ﬁ )), Vm-tuple a;,...,a; non-headed of G' and we

>hoose €, such that Weg(K)CZU. Then the real number r is given by

€ &
,nf(—lé,—z, E;) .

THEOREM 10. -(The second normalization theorem between pairs). Let S
he a compact space, the filter W the uniformity of S, S§' a closed sub-
space  of S, G qfinite directed graph, G' a subgraph of G and f:5,5'—
7,G' a completely o-regular function. Then we can determine a closed
1eighbourhood K of S' and a vieinity WeW such that, for all the W-
rartitions P = {Xj}, jed, there exists a funetion h: S,f-?G,G', which

ta completaluy n—vrecular. wenaklu P—=ammetant and comnlotoly A-boamatranda
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to f.

Proof. - By Proposition 28 of [5] and Theorem 16 of [HJ there exists
a closed neighbourhood U of $' and an extension k: S,U->G,G' which is
c.o-regular and such that k:5,8'->G,G' is c.o-homotopic to f. Then we

obtain the result by using Proposition 9 for the function k: S,U-vG,G'.

REMARK. - If ¢ is an undirected graph, the function g can be choosen
quasi-constant. Moreover if S is a compact metric space, we have only
to consider the couples of vertices rather than the n-tuples and to

determine EJ = inf(d(Aﬁ;A?), ¥ couple a;s aj of non-adjacent vertices

, ! ! .
of @G, 52 = inf(d(Ai,Ai )J), ¥ couple a,,a, of non-adjacent vertices of
G'. Then, if we put r' = inf(€& ,62), as in Remark 3 to Theorem 3, we

!
can choose a covering P = {Xj}, JE J, with mesh < %— (see [8], Corol-
lary 8).

6) The third normalization theorem between pairs.

Now we consider pairs of spaces given by a finite cellular complex
¢ and by a subcomplex C' of C; it follows that ]C'l is a closed sub-
space of |C]. Since we use completely o-regular functions f:[C ,101
—>» G,G' balanced by the open set |st(0')| (see [5], Definitions 6 and

12), we put:

DEFINITION 12. - Let C be a finite complex, C' a subcomplex of C,
G a finite graph and G' a subgraph of G.A function f:IC|,lC'1—*G,G'
is called pre-cellular w.r.t. C,C" or C,C'-pre-cellular 7f:
) f:lch|st(Cc') —~>G,G" is completely o-regular.
17) f:|Cl-—=>G is properly C-constant.
i1i%) f:|C|—»G is properly C-constant in C'.

THROREM 11. - (The third normalization theorem between pairs). Let S
be a compact triangulable space, S' a closed triangulable subspace of
S, G a finite dirvected graph, G' a subgraph of G and f:S,5'->G,G' a
completely o-regular function. Then for every finite cellular decompo-—
sition C,C' of the pair S,S8', with suitable mesh, there exists a func-
tion h: S,8'-5G,G' which is C,C'-pre-cellular and completely o-homo-=

topie to f.

Proof. - By proceeding as in the proof of Theorem 10, at first we
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consider an extension k: S,U—>G,G', where U is a closed neighbourhood

of §'. Then, by Remark to Proposition 9, we determine a positive real

. £ £ .
number r = 1nf(~§§) zﬁp €3), where Ez = 1nf(e?Z(A?,...1As)), ¥n-tuple
Arseeesd, non-headed of G, 82 = inf(enZ(Aik ,...,A’z )), ¥m-tuple af,
...,aé non-headed of G', 53 is such that W€3(S')<:IL Since we can

use fst(C')] as an open neighbourhood of §', now it is not necessary
to construct, as in Proposition 9, a closed neighbourhood XK of 5',
included in U, and to consider the interior K.

Then, if ¢,C' is a finite decomposition of S5,S8' with mesh < r, it
results |[s£(C')] g W (S'), since all the cells have diameter < r.
Afterwards, we construct the c.quasi-regular function g:’C],lst(C’)LJ?
G,G' by putting, Ve'e ¢, (see Proposition 9 and Remark 1 to Theorem 3):

a vertex of H,({k@)}) ifdeC-st(C')
g®) = -
a vertex of H,,({k(@)]}) if &est(C’).

To construct a c.o-regular o-pattern %, we must separate the cells of
C w.r.t. st(C') as before .Moreover, to obtain % properly quasi-constant,
we must separate the cells of ¢ w.r.t. ¢’ in the following way:
1) cells ¥ maximal in C

a) cells included in C=C' :{2) cells ¢ non-maximal in C

1) cells ¥ maximal in C
b) cells ineluded in €7':12) cells ¢ maximal in ¢' and non-maximal in C

3) cells &' non-maximal in C’.
Now (see Theorem 6), by induction, we construct the o-pattern %, by
putting at the first step:
1) h(¥) = g(¥)

117) h(6) = a vertex of Hr,fgfstmfﬁ"))) where {

M=¢ if & e C-st(C')
G if & ¢ st(C')

iii) h(%) = a vertex of Hy,(g(st"(Ti)).

If we define, as before, the images of the cells maximal in C’', at the
second and last step, we put:

hi(e') = a vertex of HG,(h(st’g,(s"})).

Hence h: |C|, |st(c')|—>G,G' is the sought function.O

REMARK. - If ¢ is an undirected graph, it is not necessary to construct
the extension of the function f:lC], Cq-maG,G’. In fact, if we determine
the upper bound g— of the mesh as in Remark to Theorem 10, and,conse-

quently, if we consider the cellular decomposition (,C', we can obtain
the strongly regular function g: S,]st(S’){~>G,G', by putting, ¥geC:
a vertex of f(&) ife e C-st(C')
g(s) _{a vertex of f(&)ne' ifge st(C').

Moreover, in the construction of the o-pattern %Z, we have only to sepa-
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rate the cells w.r.t. ¢ and C"'.
Theorem 8 can be generalized by:

THEOREM 12. - (The third normalization theorem for homotopies of
functions between pairs). Let S be a compact triangulable space, S' a
closed triangulable subspace of S, G a finite directed graph, G' a
subgraph of G, C,C' and D,D' two finite cellular decompositions of S,5'
and e, f: 5,5'-»G,G' two functions pre-cellular w.r.t. C,C' and D,D'
respectively, which are completely o-homotopic. Then, from any finite
cellular decomposition r1 F’ of the pair SX 1 2] S'X [2,3] of

3°3 378

suttable mesh, which znduces on the pairs of bases S X and S'x {%}
decompositions C ¢ and D, D' finer than C,C' and D, D’ we obtain a
finite cellular decomposition I',[" of the pair SxI, S'XI and a homo-

topy between e and f which is a r:P'-pre-ceZZuZar function.

Proof. - Since Ist(C'){ and ]st(D’)I are rispectively balancers (see
{SJ, Definition 12) of e and f in S', the open set U = ]st(C')]ﬂ b?(D’)‘
is a common balancer of e and-f. Now let F: SXI, S'xI-—>G,G'" be a |,
complete o-homotopy between e¢ and f and, by Proposition 30 of [5] we
can construct a closed neighbourhood V of S'xI and a c. o-regular
function é\ SxTI, V~>G G', which is a homotopy between e and f. Then,
the c.o-homotopy k can be replaced by the c.o-homotopy M given by:

el(z) Vxes, Vte [O,—é—]

1 2

M(z,t) = Flx,3t-1) Vx e S, Vte [g,g]
Flx) Voe S, Vte [% 1]

. 12 .
and, by considering the restriction of M to SX [5’3]’ we determine the

real number r, upper bound of the mesh (see the proof of Theorem 11).
Moreover, if r‘, rg is a cellular decomposition, whichsatisfies the
conditions of the theorem and with mesh <« r, we can construct the
cellular decomposition ['= P U F LJP M= thlr;L)rg of the pair
of cylinders SxI, S'XI, where [ﬁ f“ 2,‘F; are the product decomposi-

- 1l D 8)
tions, respectively, of C><LI, 0" x Ll D><L3, D'x L3 (see Theorem .

Then we define the function 5: SxI, S'xI-»G,G' by putting:
M), vee ['-T,

. L
g) = { a vertex of HG({Mﬁ?J}) ifee r}—strb(fg)
a vertex of H,, ({M(@E)}) if&€ st Fg(i”g').

. A ;
Hence, by Theorem 11, we construct the o~pattern A of g, by choosing,
. A .
if ge F—lﬁ, as value of h(e’), the value 57@0 = M@’). In this way
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h coincides with M on S X 0,-5 and S x '5’1 . O

REMARK. - If G is an undirected graph, it is not necessary to con-

Fay
struct the extension k of the function F. (See Remark to Theorem 11).

7) Case of n subspaces and n subgraphs.

The previous results can be easily generalized to the case between
(n+1)-tuples (see [3], §>8b and [5], %ll).

Let § be a compact topological space, G a finite directed graph,

Sl""’sn closed subspaces of ‘S and GI""’Gn subgraphs of G, such

that Sj is a subspace of Si and Gj a subgraph of Gi’ Vi, g = 1,...,n,
J>%. In this case we have to consider functions f: S,SI,...,Sn._>
G’GI""’Gn between (n+1)-tuples and their restrictions fz: quﬁGz,

. fn: Sn—>Gn.

7a) Given a c.o-regular function f: S,SI,...,Sn—ﬁG,G s3es+5,G 5, where 5
is compact and SI""’Sn are closed subspaces, by [{], § 11.6, we can
construct n closed neighbourhoods Ui of Si’ 2= 1,...,n and a c.o-reg-

ular extension k: S,U

I,...,Un—aG,Gl,...,Gn such that k= S,Sl,...,Sn—er
G’GI""’Gn is c.o-homotopic to f. Now, for all the pairs Ui’si’
i = 1,...,n, we determine a closed neighbourhood Ki of Sﬁ’ included

in [77:. Then, if the filter %W is the uniformity of S, by following the

proof of Proposition 9, we can obtain:

£) a vicinity Ve W such that V(A?)fﬁ...f)V(Ai) #(ﬂ: Fr-tuple Aysenns

a, non-headed of G;

1) ¥i = 1,...,n a vicinity Z, of the trace-filter %& of W on U XU,
such that Zi(Aﬁi)fT...F\Zi(Agi): 4, vs-tuple PERETLE non-headed of
Gi’ and, consequently, we obtain a vicinity VielJ"/ Zi = Vif}(Uix Ui)'
At least, we choose a symmetric vicinity W, such that Wch:VrTVIH...
NV, and W(K)cU;, ©= 1y...,m.

Given, now, a W—partitionf’:?{Xj}, jeJ, of the space 5, we define a
relation g: S,f},...,fnnerG,Gl,...,Gn by putting, VXj, j€ J, the
constant value:

a vertex of HG({f(Xj)}) %f XerKI =g

a vertex of HGI({fI(Xj)}) if Xj/\KI # # and XjfﬁKZ-:;T

a vertex of HGH({fn(Xj)}) if Xjf\Kn Z 7.
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Similarly to Proposition 9, we verify that g is c. quasi-regular and

that every o-pattern kA of g is c.o-homotopic to f. Hence we can give:

THEOREM 13. - (The second normalization theorem between mn-tuples).

Let S’SI""’Sn be a (n+l)-tuple of topological spaces, where S is

compact and S s+-+58, are closed subspaces of 3, G,Gys--.,G  a (n+1)-

tuple of finite directed graphs and f: 5,8 28, —>G,G6 esG a

e s
completely o-regular function. Then, i1f tie filter Lfisjthe uniformity
of S, we can determine n closed neighbourhoods Ki of Si’ 1=1,...,n and
a vicinity We W such that, for all the 'W—pa?titions P-= {Xj; Jjed,
1""’Gn which is complete
ly o-regular, weakly P-constant and completely o-homotopic to f. 3

. . [+] [-]
there exists a function h: S, KI""’ Kn_epG,G

REMARK 1. - If S is a compact metric space, we can determine a posi-

tive real number r and consider partitions with mesh < r.

REMARK 2. - If G is an undirected graph, the function g ean be choosen
P-constant. Moreover, since it is not necessary to replace f with an
extension k, we have only to consider a symmetric vicinity W / WeW <
VﬂVIﬂ... ﬂVn.

7b) Now let C’CI"'
finite cellular complex ¢ and of n subcomplexes CI""’CH' A function

fs Kﬂ,|01|,...,|0n|ue.G,GI,...,Gn is called pre-cellular w.r.t. C,C 5.,
Cﬁ‘ if:

i) f:lcl,lst(cl)l,...,lst(cn)l—+ GyG,s...,G 1is c.o-rvegular;

ii) f:|¢|—>6 is properly C-constant;

-»C_ be a (n+1)-tuple of spaces which consists of a

1<) f:!C]—%G is properly (-constant in ¢, (in 02,...,Cn).
Now, if f: S,Sl,...,Sn-ﬁ>G,G1,...,Gn is a c.o-regular function, where

§ is a compact triangulable space, S "’Sn closed triangulable sub-

1°°
spaces of S, we can consider c.o-regular extension k: S,Ui,..,,Un-%?

G’GI""’Gn and determine the positive real number r = inf(-f—}fg,...,

3 , k k
52’71’72""’7n) where £ = znf(enZ(AI,...,Ar

headed of G, &, = inf(enZ(A§i,...,A§

)), ¥r-tuple a,,...,a, non-

2)), V s;-tuple al,...,asi non-
headed of ¢., and q. are such that WQi(S.)C: U., 2=1,...7.
T T 7 1

Given then a finite cellular decomposition C’CI"°"Cn of S’Sl""’sn
with mesh <« r, we consider the following partition of C: DO = C—st(Cj),
b, = st(Cl)—st(CZ),..., b, = st(Cn) and we construct the c.quasi-regular

function g:lcl,|st¢01)[,...,[st(c”)|_>G,GT,...,Gw, by putting, ¥D_,
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Ve e D, g(6’) = a vertex of Hg_({kﬁ?)}), where G, = G. We separate
the cells of ¢, besides using the subsets D;» also in the following
way:
i) cells included in c-c, {'l) cells %’maximal.in c

2) cells & non-maximal in C
»1) cells % maximal in C

ii) cells included in C_-C

17Co 2) cells r maximal in 01 and non-maximal

in C
3) cells 6; non-maximal in 01.

1) cells % maximal in ¢

2) cellszalnaximal in ¢ and non-maximal in C
n+l) cells included in Cn e et e

n+l) cells T, maximal in Cn

n+2) cells &, non-maximal in Cn'
At least, we can construct, by induction, the o-pattern % in n+l steps

by putting:

I

h(e) g ()
in the first atep:{4(6) = a vertex of Hn(g(stmﬂy)))
h(%i) = a vertex of Hr(g(stm(%i)))

h(6}) = a vertex of Hp(h(stg (6})))
in the second step: ml
h(?ﬁ) = a vertex of Hr(h(stcl(bb)))
_ m
in the third step: h(sb) = a vertex of HF(h(stcz(sé)))
h(?é) = a vertex of Hp(h(stngT%)))

-------
.

in the (n+l) step: h(ﬁ;) = a vertex of Hp(h(stﬁ (6;))),
; ¥X e C, we put P:Gi if Aepi. &

Hence we obtain:

where

THEOREM 14%. - (The third normalization theorem between (n+l)-tuples).
Let S’Sl""’sn be a (n+1)-tuple of topological spaces, where S s a
compact triangulable space, SI""’Sn are closed triangulable subspaces,
G’GI""’Gn a (n+l)-tuple of finite directed graphs and f: S,Sz,...,Sn
—> G’GI""’Gn a completely o-regular funetion., Then, for every finite
cellular decomposition C,CI,...,Gn of S’SI""’Sn witth suitable mesh,
there exists a function h: S,SI,...,SH->G,G1,...,Gn pre-cellular w.r.

t. C,C ..,Cn and completely o—homotopic to f. [

1°°

By a procedure similar to that one used in the proofs of Theorems 8
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and 12, we also obtain:

THEOREM 15. - (The third normalization theorem for homotopies of
functions between (n+l)-tuples). Let S’SI""’Sn be a (n+1)-tuple of
topological spaces, where S i a compact triangulable space, SI""’
5 are closed triangulable subspaces, G,G45+-.5G a (ntl)-tuple of
finite directed graphs, C’Cl’°"’cn and D’DI”"’Dn two finite
cellular decompositions of S’Sl""’Sn and e, f: S38 saensl ~>GG 500ty
Gn two funections pre-cellular w.r.t. C’CI""’Cn and D’Dl""’Dn
respectively, which are o-homotopic. Then, from any finite cellular
decomposition of the (n+l)-tuple SX[ } s X[ } Sﬁx[%sgj, of
suttable mesh, which induces on the bases decomposztzons finer than
CsCy5-005C and DyD,sev.sD , we obtain a finite cellular decomposition
T‘,FE,-..,Fn of the (n+1)-tuple SxI,SIXI,...,San, and a homotopy

between e and f, which is a pre-cellular function w.r.t. F,[ﬂ,...,r;.[j

8) Case of homotopy groups.

Since the n-cube I" is a triangulable compact manifold, we can apply
the results of the previous paragraﬂw to the case of absolute and
relative n-dimensional groups of regular homotopy. So we can choose,
as representative of any homotopy class, a loop which is pre-cellular
w.r.t. a suitable cellular decomposition of ™. Now, the cellular
decompositions of 7™ which are relevant for applications, are the
triangulations and the subdivisions into cubes (the latter are deter-
minated by a partition into k parts of equal size of every edge of ™.
To construct the absolute groups Q (G,v) we con51der o-regular loops
i.e. o-regular functions f: I" I >G v where i is the boundary of 1"
and v a vertex of G, whereas, in the case of relative groups Qn(G,G',v)
we use the o-regular relative loops, i.e. o-regular functions
f£: 1" fn g %_yG,G',U where Jﬁ-z is the union of the (n-1)-faces of I,
different from the face x = 0. Since the subspaces fﬂ, Jn_I are an
union of faces of In, they are closed subspaces, which can be triangu-
lated and subdivided into cubes. So, by applying the third normali-

zation theorem (see Theorems 11 and 14), directly we obtain:

THEOREM 16. - On the previaus assumptions, in every o—homotopy class
of the group Qn(G,v) (resp. Qn(G,G',v)) there exists a loop which is

pre—cellular w.r.t. a suitable triangulation (subdivision into cubes)

of bl
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Proof. - Let « be an o-homotopy class and fed a loop. By {uj, The -

orem 15 and its generalization, we can replace f by a c.o-regular
function g€ & . Moreover, by Theorems 11 and 14, we can replace g by
a function he A which satisfies the sought conditions, since there
always exist triangulations and subdivisions into cubes with mesh < »,

where r is a predeterminate real number. [J

REMARK. - If ¢ is a finite undirected graph, we obtain Property 13
of [8] again. Nevertheless, we remark that the meaning of properly
quasi-constant function of Definition 10 is weaker than that one given
there. 1In fact, now, the constant value of a cell & is equal to the
value of a maximal cell % € st (&), whileas, before, the value of ¢

must also correspond to that one of a cell of properly upper dimension.

To obtain the third normalization theorem for homotopies, we recall
that the cellular decompositioné Pl and r; are product decompositions.
Consequently, we have:

i) To obtain a triangulation of I 1, first we must triangulate every
prism of the product. To this aim, we remark that it can be done by
retaining the same triangulations T and 7 on the respective bases.

n+1

ii) Whileas, to obtain a subdivision of "X I into k cubes (where

k is a multiple of 3), we muat complete the subdivision of "% [%,g]

into %kn+1

epipeda of the product cellular decompositions Fl and r}.

cubes, by giving a subdivision into cubes of the parallel-

Then we have:

THEOREM 17. - On the previous assumptions, let f,g be two o-homo-
topic loops which are pre-cellular w.r.t. the triangulations T and T'
(subdivisions into cubes @ and Q') of 1. Then, between f and g there
exists a homotopy which is pre-cellular w.r.t. a suitable triangulation
(subdivision into cubes), which induces on " x {0} and Inx‘{I} triangu

lations (subdivisions into cubes) finer than T and T' (than @ and Q').O0

REMARK 1. - If G is a undirected graph we obtain Property. 14 of [8]
again. Moreover now we can avoid the extension k of the c.o-regular
function, by choosing as image of a cell &, whose closure intersects

the basis S)({O}(Sx {1}), the value of any maximal cell of & N(S x &$
(Fn(sx{1})).

REMARK 2. - The subdivision into cubes is useful to obtain the regu-

lar homotopy groups by blocks of vertices of G. (SeeEMﬂ ).
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