1. Motivations. In the year 1927 Dirac [ﬂ] settled the foundations of Quantum

Fields Theory by quantizing the classical Electro-Magnetic Field. Success
and Failure of Quantum Electrodynamics were both immediate. The success was
due to the fact that the theory leads to numerical results in agreement

with experements. This was obtained by using unjustified approximations and
immediately later it was descovered that "better" approximations lead to
meaningless" infinite quantities". Since the theory was made of computations
on "mathematical objects" that were not rigorously defined this fact might
not be too much surpresing; these "mathematicalobjects"” were treated in the
computations as derivable functions defined on IR4 and operator valued;

the computations used derivation, multiplication, values at points and inte
gration of these objects. Twventy years later procedures of extracting fini
te results from these "infinite quantities" were descrived and gave numerical

results in perfect agreement with experidments.

After the success of Schwartz's Distribution Theory it was discovered in
the fifties that the simplest mathematical object of the Teory, the free
fields operators, were not functions but (vector valued) distributions. Since
the classical computations begin with products of free fields, therefore
products of distributions, it is generally agreed that the lack of a general
product of distributions is at the origin of the mathematical difficulties
of Quantum Fields Theory. This motivation for the study of multiplication of
distributions is quite classical but since all our methods and ideas stem

from an examination of the computations of Physics, we need to emphasize on it.

2. The problem of multiplication of distributions. In seems quite indispensable

to demand that a general product of Distributions should be associative, distri
butive relatively to addition, that the function 1 should be unit element,

that the usual formula (uv)' = u'v + uv' for the derivation of a product
should hold. It seems also indispensable to demand that the new product

should generalize the classical product of functions.
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The first computational requirements are indispensible since they are expli-

citely used as rules of computations in Quantum Fields Theory. The second

coherence requirement is also indispensable from the viewpoint of compatibility

with the classical computations.

Howewer it is a famous result of L.Schwartz [1], in 1954, that all these

requirements imply the impossibility of such a product.

Since our aim was to give a mathematical sense to the computations of Physics
we beljeved that the solution might stem from them. Anticipating on the
sequel of this paper, this lead us to a general multiplication of distributions
which has all the computational properties. Then from Schwartz's impossibility
result we know that this new multiplication does not generalize - say exactly
- the multiplication of continuous functions. But we shall check a posteriori
that this new multiplication will generalize all classical products, but in
a sense slightly weaker than the one leading to Schwartz's impossibility result.
We shall also accertain that this weaker sense is quite good enough in practice.

So that the requirement of coherence will also be satisfied.

3. Successive ideas leading to multiplication of distributions.

a. The idea to use C or holomorphic functions over (2).

If @ denotes any open set 1in R" (for some n e N), a natural idea is that, if

T1 and T2 are distributions on Q@ , their product might be the bilinear form

on D(Q) defined by

(1) 6+ <Tys6> <T,,0>

when ¢ ranges over D(Q). If E@(Q)) denotes the space of all complex valued

Q0

C functions over D(Q) (see Colombeau [1]) we notice that the elements ¢ of

£GX0)) admit by means of the formula

d _ . I¢
 2)(e) = -0t (e) - =

L 1

(2) (
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(that will be more strongly motivated later) a natural concept of partial
derivatives in the variable x e Q, which generalizes exatly derivation in the
sense of distributions. Using also the pointwise product in £(@(Q)) some
(small) pieces of computations of Physics make sense, and this fact attracted
our attention on a possible use of C” or holomorphic functions over O(Q).
But this quite sinple interpretation of multiplication of distributions is

not .convenient to explain the computations of Physics. From a purely abstract
viewpoint it is also not convenient: it does not even generalize the usual mul-

tiplication of C functions: if f1,f e £(Q) and if ¢ e D(Q) one has in

2
general

(3) f f1(x) o(x)dx. ffz(x)¢(x)dx # ff1(x) fz(x)¢(x)dx :

b. The idea to consider a quotient. Therefore if we do not abandon the above idea

to use multilinear (more generally holomorphic or C functions on@(Q)it is clear tha
some crucial fact is missing (for instance the two members of (3) should be
identified). At this point let us notice that since D(N) is contained and

everywhere dense in €'(Q) and since €'(Q) is a Silva space it follows (Colom-

beau [1] 0.6.9 and 1.1.6) that the restriction map

r

£(¢'(2)) > €(9(2))
®

"o (9)

is injective, so that we may consider that ¥(g'(Q)) 1is contained in €©@(Q))
via this map. The elements of L(¢'(Q), C) =¢"(Q) = €(2) are the usual o
functions on § and an element f of L(¥€'(Q), €) is identified with the

function on
(4) X +-§f,ﬁx> = f(x)

if X ranges in Q and if 6x denotes the Dirac measure at the point x. By
analogy with the preceding idea to define a multiplication of distributions we

might consider the product of two elements f1 and f2 of L(§'(Q).,C) as the

bilinear function
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(5) T > <f,,T> <F,,T>

1° 2’

when T ranges in %£'(Q). From (4) the product (5) coincides.with the usual
product f1.f2 (in £(R)) if we restrict T to range only in the set

{er}er c ¢'(R). This leads to considering in €(£'(Q)) the equivalence rela

tion
(6) o, v 0, <=>¢,(8 ) = ¢,(6 ) ¥x e Q.
Now if we denote by A the map

2(¢'(Q)) — €(@)
(7) ¢ Ad 1 x = @a(cs.x) = (A d)(x)

(note that A® e €(Q) since it is easy to check that the map x > 8 is 1in
€(Q, ¢'(2)), the equivalence relation (6) is exactly

(6') d N b, &—=>Ap, =AY

Now Tlet us consider the diagram:

E(2'(R))

~X
U

L('(@),l) ——— € (Q)
natural
identification

£(£'(0))
Ker A

The two algebras and 2(Q) are isomorphic.

We remind from this that although ¢(¢'(Q)) has, concerning multiplication,
defects quite similar to those of the larges space €&(Q)), these defects are
repaired by a suitable quotient that makes the quotient algebra isomorphic to

the classical algebra ¢€(Q) (we may also check that the map A changes the

5 ) 30§
53 (Ad) =LA . ).

derivation (6) into the usual derivation in £(Q), i.e.

The natural idea that stems from these considerations is that,lperhaps, the

ideal KerA of E(Z'(Q)) might be extended as an ideal of £(D(Q)) and that,
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perhaps, the quotient algebra thus obtained might have good properties concerning

multiplication and derivation.

4. General multiplication of distributions.

a. Some properties of ¢ functions over £1'(Q) and 9 (Q).

0
First we recall that if @ e €E&(Q)) (or £(€'(2)) the element v @ defi -
o
ned by (2) is in € @(Q)) (respectively €é(€'(R)), and that we may define in this
k. +...+k
o 1 n
way D¢ for any partial derivation operator D = 'h vl It is immediate to
1 n
8 ,..0
X X
1 n

check that the usual formula for derivation of a product holds. One also may

prove (Colombeau [2]).

Proposition 1. If ¢ e €(€'(R)), then A ( ai ®) = ai (Ad), i.e. the
i i

new concept of derivation in &(€'(R)) corresponds via the map R, to the usual

derivation in  E&(Q).

This result strengthens the choice of)(2). New if @ e €2&(Q)) 6x is not

in general in the domain of & and we have to seek for a characterization of Ker R
which might be extended to “€(®(Q)).

Definition 1. if q = 1,2,.... we set

(8) oﬂq = {¢ eiDGRn) such that [¢(x)dx = 1 and
f(x)i¢(x)dx =0 if i = (11,...,in) e N"' s

such that 1 < |i| = 4.4 < gl

Obwiously (ﬂq+1 c J% and it is easy to check that for any q the set

is non void.

Now if ¢ e qu, e >0 and if x eR" we set, when X\ ranges in IRn,



(9) o (A) = — ¢

[t is immediate to check that ¢ o e;ﬂq if ¢ Etﬂq and that for fixed ¢
£ 9

and X, 6. > 6, 1in 2'@R") when € ~ 0. In Colombeau [2] we prove

Proposition 2. Let & e KercA be given.Then if ¢'euﬂq is given, for any

compact subset K of Q there are constants € > 0 and n > 0 such that
q+1
o (s )| < cle)
if 0<e<n and x e K.

The converse is obvious: letting € = 0, @(ﬁx) = 0 since ®E . +—6x in
€'(0). Note also that Do e KerA if o e KerA and if D is any partial deri-

vation.

b. Construction of ‘ﬁj@). We seek for an ideal of £@()) such that its inter-
section with &(€'(Q)) should be Kerf. Prop. 2 attracts our attention on the

growth of ‘Q@E x)| when e> 0. But an arbitrary element @ e€&(@(Q)) may be

such that |®(¢ x)I tends to +« very rapidly when € - 0 and therefore

its product with an element of KerdR may still have such a very rapid growth.

Therefore we are led to consider elements of € (D(Q)) that have a "moderate"

grouwth in -é when € = 0.

Definition 2. We say that & e £(@(Q)) is moderate if for every compact

subset K of @ and every partial derivation D there is an N e N such that

for all ¢ e dN there are constants ¢ >0 and n > 0 such that

1 N
(D2) (6 )] S el .
if xe K and 0 < e<n.

Equivalently one may obviouslywrite: for every K and D there are N1,N2 e N
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such that ¥ ¢ eJ1N1 4¢>0 and n >0 such that
[(D2)(¢_ )] < c(~-1—-—)NZ
e, X' = "' g
if xe K and 0 < e <n (we obtain N above by setting N = max(N1,N2)).

Clearly D® is moderate if & 1is moderate. It is obvious that the product

in 2@(Q))  of two moderate elements is still moderate. We denote bytgmﬁbﬁﬁ))

the subalgebra of ED(Q)) made of the moderate elements. Many elements of

E@(Q)) are moderate: any element of €(€'(Q)) is moderate since ¢€ x-}éx

when e > 0; it is proved in Colombeau [2] that

Proposition 3 Any distribution is moderate

Now we are going to define an ideal /N of 'EM@(Q)) such that NNE(E(Q)) =

= KerL. We might consider the ideal of TgmﬁiKQ)) spanned by KerA but the

following larger ideal 1is more convenient.

Definition 3. We set

N={%e tﬁM(f-:ZD(EE:)) such thatfor everycompact subset K of  and every

partial derivation D there is an N e N such that for all ¢ eRA_ with q > N

q
there are constants ¢ > 0 and n > 0 such that

(00) (o )| < c(e)?

if xe K and 0<e<n.

Equivalently one may write that there are N1 and N2 e N and same state-

ment as above but with q > N, and \(D@)(cpE x)[ E_C(e)q—Nz. This implies the

1

above statement by choosing N = max(N1,N2).

Other choices of &N are possible and even crucial for some applications;

however the general picture of the theory remains quite similar.
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Clearly N is an ideal of ‘EM@(Q)) and Db eN' if & e N. One checks
immediately using prop. 2 that KerlR=NNE(E'(R)).

Now we define our algebra ﬁ(Q) as the quotient

%M(:ED(Q))
4(0) = ——

Clearly any partial derivative of an element G of ‘%(Q) ig§ defined as the

class of the corresponding partial derivative of any representative of G.

Since from prop. 3 D'(R) is contained in EM®(Q))’ there is a canonical

map from @'(Q) into §(R), which to each distribution associates its class.

In Colombeau [2] we prove

Proposition 4. The canonical map from 9'(Q) dinto ﬁ(ﬂ) is injective (i.e.

NN D' (Q) = {0}), and therefore we may consider that &'(Q) is contained in
g(Q).

We may notice that prop. 4 becomes false if we replace in it ©'(R2) by the
space of all continuous multilinear forms on P(Q) of degree < 2 1indeed

if fi’fZ e €(Q) then the two following functions on D(Q)

d - ff1(x)¢(x)dx.f fz(x)¢(x)dx

and

o > ff1(X) f,(x)¢(x)dx

are identified in “3(52) with the classical product f1.f2 e £(2) (both are in
E(E'(R)) and their difference is in KerA).

c. Connection with classical products. From Schwartz's 1impossibility result we

already know that the new product in the algebra ‘%(Q) cannot coincide with the
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usual product of all continuous functions. This fact that looks rather strange
and unpleasant might be a great defect of the new product in % () since it

is quite clear~-at least from a purely mathematical viewpoint - that the new
multiplication in ‘5(92 has to be in agreement with the classical multiplication.
In order to compare the two multiplications, in this section we denote by ©0

the new product (in‘%(ﬂ)), and we set the following definition.

Definition 4. Let be given a G e'ﬁ(ﬂ) and let ¢ e‘gMcﬁ(Q)) be a repre-
sentative of G. If for every V¥ e®(Q) the compléx number [0 (¢E x)‘P(x)dx

3

has a 1imit when ¢ = 0, independent on ¢ ecﬂq for g large enough and if,
when VY ranges in D(Q), this 1imit defines a distribution on & , we say that the

generalized function G admits an associated distribution. If we denote by G

this associated distribution it is defined by the formula

v
<G, ¥ = 1im
e f¢(¢€=x)?(x)dx.

It is immediate to check that the above does not depend on the choice of
the representative & of G, and that IE is unique if it exists. One may also
check (Colombeau [2]) that if T e € () then it has an associated distribution
which is T 1itself. One may also check that the element (60)2 of ‘g(ﬂ) has
no associated distribution. It is obvious that the set of the elements of ¥ (Q)
which have an associated distribution forms a linear space, that we denote by

m - - -
%(52), in the situation

2 (2) c§() c4(a).

The 1inear map v 1is defined on f?(ﬂ), valued in g () and such that ~ov = A,
therefore it may be considered as a projection from *319) onto (). This
concept of associated distribution is particularly relevant due to the following

results proved in Colombeau [2].

Theorem 1. a) Let f and g be two continuous functions on . Then their

product f @ g in ‘S(Q) admits an associated distribution (i.e. f @ ¢ e-f(ﬂ))
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and this associated distribution is the classical product f.q.

b) Let ae £(Q) and let T e 9¥'(2) be given. Then their product
0@ T in (@) admits an associated distribution (i.e. o © T € §(Q)) which is the

classical product «-*T of Schwartz's Distribution Theory.

These results show thatin some weaker sense the new product is a genera-
lization of the classical products: the projection~ on 2'(Q) of the new product
is exacley the classical product. We shall ascertain in the applications that
in this case the two objects f®g and f-g give the same numerical results and
in the developpment of the Theory that the kind of result of th 3 holds in
many more general cases and reconcilies the new computations with the classical

computations.

Many authors have defined a product of distributions by regularization and
passage to the 1imit (Mikusinski [1] and other authors, see Colombeau [2]). Then,
when the product T,-T, of two distributions T, and T, exists, say in Mikusinski

1 2 1 ,
[1] 's sense, the element T, O T, of EE(Q) is in (2) and (T1® T2) = T,-T,.

1 2
See Colombeau [2] for details.

Q)M

Another kind of product of distributions has been defined by Hormander [1]
and Ambrose [1] using the Fourier transform. Then it follows from an easy modifi-
cation of a proof in Tysk [1] that the same result as above holds also in the
case of the Hormander-Ambrose product (this result was communicated to me by
J. Tysk).

d. Other non linear operations on elements of % (Q). One may define much more

than the multiplication in %(Q).

Definition 5 and Theorem 2. If p =1,2,..., if f e GMGRZP) (a classical

notation in Schwartz [2]) and if G eeesB € §(2) then an element of §(Q),

1

denoted by f(G ,Gp), is defined as the class of the function f(®1,...,®p)

yooes
(eﬁM( (Q))) if, for 1 < i < p, @1 e"fMCﬁ(Q)) is an arbitrary representative

— .
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of G..
i

As in the case of mulliplication the above generalizes exactly the corre-

- ] m - . » L3
sponding operation on C functions. For continuous functions, as a generali-

zation of th 1.a we have

Theorem 3. In the above conditions on f, if G,I,...Gp are continuous
functions on Q@ then the element f(G1,...,Gp) of ‘ﬁ(Q) defined above admits

an associated distribution which is the usual continuous function on Q
X +-f(G1(x),...,Gp(x)).

The proofs are in Colombeau [2].

5. The analysis of the new generalized functions.

a- Improved and related concepts. The elements of ¥§ (Q) may be considered as

generalized functions on Q. A more detailed study shows that this concept suffers
from some minor defects that may be easily repaired by rather minor modifications
in definitions. This is done in Colombeau [3] chap. 1 where also several related
concept, which are motivated by examples or by Physics, are introduced. It is of

a particular importance for the applications to know that what we have done in
section 4 is only a general pattern and that some modifications, for instance

in the definition of the ideal N, may be the key of special applications (for

instance "removal of divergences' in Physics).

b- The value of a generaized function at a point. For Physics we need to de-

fine the value at any:point x e Q of the generalized function on Q. For this

we define an algebra (€ , containing (€ , such that if x e Q@ and G 615(9)

then G(x) is in (€. In particular the gives a meaning to the value at any point

of any distribution. It is important to note that @ depends on the dimension

of the space R" of which © is an open set. This "strange" fact is not trouble-
some in the development of the theory and anyway it reflects the basic fact that,
in Physics, Renormalization Theory depends completely on the space-time dimension.

As an obvious example Go(x) =0 1if x # 0 whicle 60(0) e-C . For the value at
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a point of a generalized function see Colombeau |3] chap. 2.

c- Integration of generalized functions. For Physics we also need the integration

of generalized functions. If G e §(Q2) and if K is any compact subset of Q then

fG(x)dx is naturally defined as an element of €. As an immediate example one may

Eheck that if 0 is in the interior of K we have [ So(x)dx = 1 and that if 0 ¢ K

K
then [ ﬁo(x)dx = 0; if 0 1is on the boundary of K then 8, (x)dx is in C
K LK

(for instance in one dimension one may compute easily f ﬁo(x)dx). In some cases
0

for G we may define [ G(x)dx. A1l the computations on integration of generalized
RN

functions generalize exactly the integral formulas that were explained by Schwartz's
Distribution Theory. For the integration of generalized functions see Colombeau [3]

chap. 3.4

d - Holomorphic generalized functions. If @ is an open set in @ there are gene-

. 0
ralized functions G e*g(ﬂ) such that 3G =0 ( 9 = ; ( gx + ] 3y ) and

which are not classical holomorphic functions (therefore they are not distri
butions from the classical hypoellipticity of the @ operator in the space
D' (Q). They are called "generalized holomorphic functions" and, surpresingly
enough, they have many properties of the usual generalized functions. See

Colombeau-Galé [1].

e - Vector valued generalized functions. For Physics one needs generalized

functions valued in a bornological algebra. This is a rather straightforward

generalization of the scalar case and this is done in Colombeau [2,3].

f - Final coments. In short, this new concept of generalized function is at

the origin of a new mathematical analysis, rather similar in its general lines
to the classical analysis of ¢ and holomorphic functions, but considerably

more general.
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6 - Physical applications. These concepts provide a rigorous mathematical sense

to the classical computations of Physics that were our motivation. In the ma-
thematical explanation of these computations, these conceptsexplain heuristic
operations of "removal of divergences" as the appearance of rigorous computa-
tions on our generalized functions. However the mathematics involved are com

plicated by the fact that we have to deal with objects whose values are unboun-

ded operators on a Hilbert space and the paper Colombeau. Perrot [1] may only
be considered as a demonstration of the use of the new mathematical tool in

a rough and uncomplete mathematical clearing: for instance an explanation of
the approximation of scattering operators by renormalized perturbation series
is lacking, and the new mathematical formulation of the removal of divergences
in these series in only sketched; Further mathematical improvements would be
welcome or indispensable. In Colombeau-Perrot [1] we on]y.consider the ¢4
model in a 4-dimensional space time but it seems that this work might be more -
a immediately adapted to other fields. However particular difficulties,

such as infra-red divergences in Quantum Electrodynamics, were never considered.

7 - Contribution of J. Sebastiao e Silva. The basic mathematical tool of this

new theory of generalized functions is Differential Calculus and Holomorphy in
Tocally convex spaces. The author explains these theories in the book: Colom-
beau [1], and in this book he explains how he was lead to consider that the
best definitions of ¢ and holomorphic maps betweenlocally convex spaces are
the ones settled by J. Sebastiao e Silva already in 1956 (Sebastiao e Silva
[1,2,3]. So .the book Colombeau [1] might be considered as some continuation
of Sebastiao e Silva's work in this domain. This work of the author could not
also have been done without the strong impulse given by L.Nachbin (cf.[1],[2].,
[3],[4] and [5]) to Infinite Dimensional Holomorphy in the last fifteen years.



