Osservazione.

Con le topologie ε e π si verifica facilmente che le proprietà formali algebriche del prodotto tensoriale (p.10) valgono anche in senso topologico; in particolare gli isomorfi smi sono isometrie nel caso di spazi normati.

2. TEOREMI DI GRAFICO CHIUSO.

§1. Teoria classica.

E' ben nota l'importanza che tanto nell'analisi funzionale astratta quanto nelle applicazioni rivestono teoremi di grafico chiuso e teoremi di omomorfismo. I primi risultati in questa direzione sono i classici teoremi di Banach del grafico chiuso e dell'applicazione aperta tra spazi di Fréchet ([1]); la nascita della teoria delle distribuzioni ha motivato la ricerca di generalizzazioni agli spazi (LF), classe in cui rientrano gli spazi $\mathcal{D}(\Omega)$. Dieudonné e Schwartz [6] hanno provato il seguente teorema di cui presentiamo la dimostrazione originale:

Teorema 2.1.

Siano E,F spazi (LF) stretti: T : E → F lineare continuo e surgettivo è aperto.

Dimostrazione.

Siano $E = ind E_n, F = ind F_n$.

Proveremo che, se U è un intorno dello zero in E, allora T(U) è intorno dello zero in F; sarà sufficiente provare che $T(U)\cap F_n$ è intorno dello zero in F_n (per ogni n). Posto

$$G_{mn} = E_m \cap T^{-1}(F_n),$$

per la surgettività di T risulta

$$F_n = UT(G_{mn});$$

poiché T è continuo, G_{mn} è chiuso per ogni m,n, e quindi dal teorema di Baire segue che $\forall n$ uno dei sottospazi $T(G_{mn})$ - sia $T(G_{m_0})$ - è di seconda categoria; il teorema di omomorfismo di Banach, applicato a $T_{G_{m_0}} : G_{m_0} : G_{m_0$

Con tecniche analoghe si può provare anche un teorema di grafico chiuso tra spazi (LF) stretti (cf. [6] e anche [13] e [9]).

§2. Spazi di Ptak.

La dimostrazione di Banach e quella di Dieudonné e Schwartz sfruttano (come anche abbiamo visto nel caso della seconda) in modo essenziale il concetto di categoria e il teorema di Baire. In quest'ordine di idee si è pervenuti ad ampie

generalizzazioni grazie all'introduzione degli spazi webbed dovuta a De Wilde (cf.[4], [42]). In un'altra direzione, Ptak (cf. [21],[22]) ha avuto il merito di riconoscere i legami tra teoremi di grafico chiuso e la teoria generale della dualità. Il punto di partenza della teoria di Ptak è la segue \underline{n} te semplice

Osservazione 2.2.

Siano E,F slc, T : E → F un operatore e sia

$$T*: F* \rightarrow E*$$

l'aggiunto algebrico di T.

Allora il sottospazio D = $(T^*)^{-1}(E')^{\cap}F'$ è $\sigma(F',F)$ -denso in F' se e solo se T è chiuso.

Dimostrazione.

Proviamo che

$$G(T) = G(T)^{00} \iff D \in denso.$$

Si ha

$$G(T)^{O} = \{(x',y')\in E' \times F' : \langle x,x'\rangle + \langle Tx,y'\rangle = 0 \ \forall x\} =$$

$$= \{(-T*y',y')\in E' \times F' : y!\in D\},$$

da cui:

$$(x,y) \in G(T)^{00} \iff \langle Tx,y' \rangle - \langle y,y' \rangle = 0 \quad \forall y' \in D$$

$$\iff Tx - y \in D^{0},$$

perciò $G(T) = G(T)^{00} \iff D^{0} = 0 . \square$

Se D è anche $\sigma(F',F)$ -chiuso, allora T è debolmente continuo; infatti in tal caso D=F', e quindi T*(F') c E', che è equivale alla debole continuità di T.

La possibilità di ottenere teoremi di grafico chiuso partendo da queste considerazioni è dunque legata all'individuazione di classi di spazi per cui D risulti debolmente chiuso e contemporaneamente T risulti, oltre che debolmente continuo, anche continuo.

Un potente strumento per studiare la chiusura debole di sottospazi (e più in generale di insiemi convessi) del duale topologico di uno slc è il classico

Teorema 2.3 (Krein-Smulian).

Uno spazio localmente convesso metrizzabile E è completo se e solo se vale la seguente proprietà:

(KS) un sottoinsieme convesso G di E' è $\sigma(E',E)$ -chiuso se e solo se $G \cap U^O$ è $\sigma(E',E)$ -chiuso per ogni intorno U in E.

Tenendo conto di questo teorema e dell'obbiettivo indicato Ptak dà la seguente

Definizione 2.4.

(i) Uno spazio E è B -completo se (KS) è vera per ogni sottospazio G $\sigma(E',E)$ -denso in E'.

(ii) E è B-completo se ogni quoziente separato di E è B_r -completo, o equivalentemente se (KS) è vera per ogni sotto-spazio G c E'.

Gli spazi B-completi (risp. B_r -completi) si chiamano anche spazi di Ptak (risp. infra-Ptak).

Esempi.

- 1. Il teorema di Krein-Smulian mostra che ogni spazio di Fréchet è B-completo.
- 2. \mathbb{K}^I è B-completo per ogni insieme di indici I; per I non numerabile si ottiene così un esempio di spazio B-completo non metrizzabile. Inoltre ogni spazio debolmente completo, poiché è isomorfo a un \mathbb{K}^I , è B-completo.
- 3. Il duale di uno spazio di Fréchet è B-completo per la topologia di Mackey; in particolare il duale forte di uno spazio di Fréchet riflessivo è B-completo.
 - 4. Ogni quoziente di uno spazio B-completo è B-completo.

Per altri esempi di spazi B_r -completi e B-completi cf. [17], [33],[34].

Proposizione 2.5.

- (i) Ogni spazio B_r-completo è completo.
- (ii) Ogni sottospazio di uno spazio B-completo o B_r -completo ha la stessa proprietà.

Dimostrazione.

(i) Ricordiamo una caratterizzazione degli slc completi dovuta a Grothendieck: E è completo se e solo se ogni iperpiano F c E' tale che $F \cap U^O$ è debolmente chiuso per ogni intorno U in E è debolmente chiuso.

Sia allora F un iperpiano di E' con $F \cap U^0$ chiuso per ogni intorno U; F non può essere debolmente denso in E' perché E è B_r -completo, e quindi è debolmente chiuso.

(ii) Proviamo l'asserto per gli spazi B_r -completi; nel caso dei B-completi si procede in modo analogo.

Sia F sottospazio chiuso di E (B_r -completo); allora F' è debolmente isomorfo a E'/F°, e sia $Q:E'\to F'$ la suriezione. Se G è sottospazio debolmente denso in F' e tale che $G\cap V^O$ è debolmente chiuso $\forall V$ intorno in F, dal teorema di Hahn-Banach segue che $Q^{-1}(G)$ è debolmente denso in E'.

Ma per U intorno in E risulta:

$$U^{O} \cap Q^{-1}(G) = Q^{-1}(Q(U^{O}) \cap G) = Q^{-1}((U \cap F)^{O} \cap G),$$

e quindi, essendo UNF intorno in F, dalla continuità di Q segue che U 0 \cap Q $^{-1}$ (G) è debolmente chiuso in E'. Pertanto Q $^{-1}$ (G) = E' perché E è B $_{r}$ -completo e quindi G=F'.

Osserviamo che esistono spazi B_r -completi che non sono B-completi [41].

§3. Spazi botte.

Ricordiamo che, dato un slc E, si dice botte un sottoinsieme

di E assolutamente convesso, assorbente e chiuso. Le botti in uno slc sono legate agli insiemi debolmente limitati del duale, come mostra la seguente

Proposizione 2.6.

Sia E un slc e G un sottoinsieme di E'; G è debolmente limitato \iff G° è una botte di E.

Dimostrazione.

G° è assolutamente convesso e chiuso (perché polare di un insieme); proveremo che è assorbente se e solo se G è debolmente limitato.

G debolmente limitato \iff sup $|\langle x, x' \rangle| \langle \infty \rangle$ $\forall x \in E$ $x' \in G$

$$\iff \forall x \in E \quad \exists \rho > 0 : \sup |\langle x, x' \rangle | \leq \rho \iff x' \in G$$

Definizione 2.7.

Uno slc E si dice spazio botte (barreled, tonnelé) se ogni botte è intorno dell'origine.

Alla luce della Proposizione 2.6 una immediata caratterizzazione degli spazi botte è la seguente:

$$E[\mathcal{E}]$$
 è spazio botte $\iff \mathcal{E} = \beta(E,E')$

Esempi.

1. Ogni spazio di seconda categoria è uno spazio botte.

Sia infatti U una botte in E; allora $E = \overset{\circ}{U}$ n U, e quindi n=1 esiste n_0 tale che $\overset{\circ}{n_0}U \neq \emptyset$ ne segue che $\overset{\circ}{U}\neq\emptyset$ e, poiché $0 \in \overset{\circ}{U}$, U è intorno.

In particolare ovviamente ogni spazio di Fréchet è spazio botte.

2. Ogni limite induttivo stretto E di spazi botte è uno spazio botte.

Per vederlo sia (E_n) una successione di definizione per E, e sia U una botte in E; allora ogni $U_n=U\cap E_n$ è botte, e quindi intorno dell'origine, in E_n . Dalla definizione della topologia di E segue la tesi.

In particolare gli spazi (LF) stretti sono spazi botte, e quindi non tutti gli spazi botte sono spazi di 2ª-categoria.

- 3. Ogni quoziente F=E/G di uno spazio botte E è uno spazio botte. Infatti, se U è botte in $F,p^{-1}(U)$ è botte in E, dove p è l'applicazione quoziente di E su F; allora $p^{-1}(U)$ è intorno in E e quindi $U=pp^{-1}(U)$ è intorno in F perché p è aperta.
- 4. Il prodotto topologico di spazi botte è ancora uno spazio botte.

Se E= $\frac{\Pi}{\alpha}E_{\alpha}$, e E_{α} ha la topologia forte v_{α} anche E ha la topologia forte (cf. p.8) e quindi è spazio botte.

5. Limiti proiettivi e sottospazi di spazi botte non è detto che siano spazi botte; è vero però che sottospazi di codimensione numerabile restano spazi botte. (cf. [38] e cf. anche [5] nel caso finito).

In generale, non è vero neppure che il duale forte di uno spazio botte è spazio botte.

Una proprietà degli spazi botte utile per la nostra discussione è espressa dalla seguente

Proposizione 2.8.

Siano E uno spazio botte ed F unoslc; ogni operatore T: E→F debolmente continuo è continuo.

Dimostrazione.

Sia V un intorno assolutamente convesso e chiuso in F; $T^{-1}(V)$ è assolutamente convesso e assorbente perché lo è V, ed è debolmente chiuso per la debole continuità di T; ma allora è anche chiuso in E ed è quindi una botte. \square

Osserviamo che questo risultato si deduce subito dalla discussione sulla dualità di operatori fatta nella prima parte.

§4. I teoremi del grafico chiuso e dell'applicazione aperta nella teoria di Ptak.

Siamo ora pronti a provare i teoremi del grafico chiuso e dell'applicazione aperta nella formulazione di Ptak.

Premettiamo per comodità il seguente semplice

Lemma 2.9. Siano E,F slc e T : E → F debolmente continuo:

$$[T(A)]^0 = (T')^{-1}(A^0)$$
 per ogni A c E.

Dimostrazione.

$$y' \in [T(A)]^0 \iff |\langle Tx, y' \rangle| \leq 1$$
 $\forall x \in A$ $\iff |\langle x, T'y' \rangle| \leq 1$ $\forall x \in A$ $\iff T'y' \in A^0$.

Teorema 2.10 del grafico chiuso

Siano E uno spazio botte ed F B_r -completo. Ogni operatore chiuso T : $E \rightarrow F$ è continuo.

Dimostrazione.

Sia T*: F* \rightarrow E* l'aggiunto algebrico di T; T* è $\sigma(F^*,F)$ - $\sigma(E^*,E)$ continuo. Poiché ogni sottospazio di F è B_r -completo (cf. Proposizione 2.5), non si perde di generalità supponendo che T(E) sia denso in F . In tal caso $T_o = T^*|_{F}$: F' \rightarrow E* è 1-1.

Il sottospazio

$$D = F' \cap (T^*)^{-1}(E'),$$

per l'osservazione 2.2 è $\sigma(F',F)$ -denso in F'. Se proviamo che D=F', T risulterà debolmente continuo e quindi continuo per la Proposizione 2.8. Poiché F è B_r -completo, è sufficiente provare che DNV° è $\sigma(F',F)$ -chiuso per ogni intorno V in F.

Sia allora V un intorno (assolutamente convesso e chiuso) in F, e sia W = $T^{-1}(V)$; \bar{W} è botte in E, e quindi intorno perché E è spazio botte. Per il Teorema di Alaoglu-Bourbaki W° = \bar{W} ° è $\sigma(E',E)$ -compatto e quindi $\sigma(E^*,E)$ -compatto. Per acquisire la tesi basta allora provare che

$$D \cap V^{\circ} = T_{o}^{-1}(W^{\circ}).$$

Ma

$$T_{o}(D \cap V^{o}) = T*(D \cap V^{o}) \cap E' =$$

$$= T*(V^{o}) \cap E' = T^{-1}(V) \cdot \cap E' =$$

$$= W \cdot \cap E' = W^{o}$$

(dove · indica il polare in E*) per il lemma 2.9. ☐

Dal teorema del grafico chiuso si deduce agevolmente il Teorema 2.11 dell'applicazione aperta.

Siano E B-completo ed F spazio botte.

Ogni operatore $T: E \rightarrow F$ continuo e surgettivo è un omomo<u>r</u> fismo.

Dimostrazione.

L'operatore

$$T_0 : E/T^{-1}(0) \to F$$

canonicamente associato a T è bigettivo e continuo. Allora T_0^{-1} è chiuso ed è continuo per il teorema precedente; ne segue che T_0 è aperto e quindi anche T.

Corollario 2.12.

Ogni operatore bigettivo e continuo, $T:E\to F$, con E B_r -completo ed F spazio botte, è isomorfismo.

Osserviamo che il teorema 2.1 di Dieudonné e Schwartz non è contenuto nel teorema 2.11 perché gli spazi (LF) (anche stretti) non sono in generale B_r -completi, come si vedrà nel seguito. Con successivi raffinamenti A. e W.Robertson hanno ritrovato il risultato di Dieudonné e Schwartz in questo ordine di idee estendendo la teoria di Ptak (cf.[23],[24],[11], [30],[31] e anche [12]).

Osserviamo che le classi di spazi qui introdotte sono, in certo senso, massimali rispetto alle proprietà di grafico chiuso e di omomorfismo.

Si possono provare infatti le seguenti proposizioni, per le cui dimostrazioni rimandiamo ai trattati di Jarchow e Kothe (cf. anche [15]):

- (i) Uno slc E è B-completo sse ogni operatore continuo e surgettivo da E in F, con F spazio botte, è aperto.
- (ii) Uno slc $E \stackrel{.}{e} B_r$ -completo sse ogni operatore continuo e bigettivo da E in F, con F spazio botte, $\stackrel{.}{e}$ aperto.
- (iii) Uno spazio E è botte sse ogni operatore chiuso da E in uno spazio di Banach è continuo.

§5. Due teoremi di interpolazione.

Dimostriamo ora due classici teoremi d'interpolazione che saranno utili nel seguito e che possono essere dedotti dal teorema del rango chiuso e dal teorema di Krein-Smulian.

Teorema 2.13 (interpolazione di Borel).

Sia (a,b) c R e c un punto di (a,b). Data una successione (a_n) di numeri reali, esiste $feC^{\infty}(a,b)$ tale che $f^{(n)}(c)=a_n$ $\forall n \in \mathbb{N}$.

Dimostrazione.

Sia

$$T : C^{\infty}(a,b) \rightarrow \omega$$

così definito:

$$Tg = (g^{(n)}(c)),$$

T è lineare e continuo; proveremo che è surgettivo. A tal fine è sufficiente provare che T' è 1-1 e che T' ha rango debolmente chiuso. Siano $(e_0, e_1, \ldots, e_n, \ldots)$ i vettori canonici di $\varphi = \omega'$. Risulta per ogni $g \in C^{\infty}(a,b)$:

$$\langle g,T'e_{n} \rangle = \langle Tg,e_{n} \rangle = g^{(n)}(c)$$

e quindi $T'e_n = (-1)^n \delta_C^{(n)}$ (derivata n-esima della distribuzione di Dirac in c).

Ricordiamo che una base di intorni di $C^{\infty}(a,b)$ è data da $U_n = \{geC^{\infty}: \sup_{J_n} |g^{(k)}(x)| \le 1/n, k \le n\}$ dove (J_n) è una successione

d'intervalli compatti invadenti (a,b). Per provare che T' ϕ è debolmente chiuso in C $^{\infty}$ (a,b)' è sufficiente mostrare, per il teorema di Krein-Smulian che T' $\phi \cap U_n^0$ è debolmente chiuso $\forall n$.

Poiché

$$T'\phi = span \{\delta^{(n)}_c\},$$

si vede facilmente che:

$$T'\phi \cap U_n^0 \subset E_n = span \{\delta_c^{(k)}, k=0,1,\ldots,n\} \subset T'\phi$$
.

Siccome dim E_n =n, E_n è debolmente chiuso in C^∞ (a,b)' e $T'\phi \cap U_n^0$ è chiuso in E_n si ha la tesi. \square

Teorema 2.14.

Sia (z_n) una successione in C senza punti di accumulazione al finito, e sia (a_n) una successione di numeri complessi.

Esiste una funzione intera tale che

$$f(z_n) = a_n$$
 per ogni neN.

Dimostrazione.

Procedendo come nel teorema precedente sia:

T :
$$H(C) \rightarrow \omega$$

Tg = (g(z_n)), geH(C).

Risulta

$$T'e_n = \delta_{z_n}$$

e quindi $T': \varphi \cdot H'(C) = 1-1$.

Come prima si vede che T' ϕ è debolmente chiuso in H'(C) e quindi che T è surgettivo. \square

3. RAPPRESENTAZIONI DI SPAZI DI FUNZIONI CONTINUE.

§1. Alcuni risultati classici.

Un vecchio problema lasciato aperto da Banach nel suo celebre trattato era il seguente:

E' vero che C([0,1]x[0,1]) è isomorfo a C([0,1])?

E' da notare che Banach sapeva che non potevano essere isometrici perché aveva provato, nel caso C(H) e C(K) separabili (o equivalentemente H e K metrizzabili) il seguente teorema dovuto a M.H.Stone nella sua formulazione generale:

Teorema 3.1. (Banach-Stone)

Siano H e K spazi compatti; C(H) è isometrico a C(K) se e solo se H è omeomorfo a K.

La risposta a questo problema (affermativa) si è avuta oltre trent'anni dopo la sua formulazione, ed è contenuta nel famoso

Teorema 3.2 (Milutin).

Se K è un compatto metrico non numerabile, allora C(K) è isomorfo a C([0,1]).

Segnaliamo che esiste una classificazione isomorfa di