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CHAPTER III. SOME REGULARITY CONDITIONS IN FINITE PLANAR SPACES.

1. INTRODUCTION.

The generalized projective spaces of dimension > 2 (endowed with all their
planes) may be defined as the non-trivial planar spaces S satisfying the follo-
wing condition :

() for every pair of planes m and ' intersecting in a line and for every point
Xx € T U ' such that there is a line through x intersecting n and n' in two dis-
tinct points, every line through x intersecting nm intersects n'.

Indeed, let L and L' be two lines intersecting in some point x and let A and A'
be two lines not passing through x and intersecting each of the l1ines L and L'.
Suppose that A and A' are disjoint. Since S is a non-trivial planar space, there
1s a point y outside <L,L'>. The planes n = <y,L> and o = <y,A> intersect in a
line. The line L' intersects the planes 1 and o in two distinct points and
contains a third point x' € L' n A'. Therefore, by condition (%), every line
passing through x' and intersecting I intersects a. In particular, the line A'
which intersects L < 1 intersects a. Hence A', which is contained in <L,L'>,
intersects A= a N <L,L'>,a contradiction.Hence Pasch's axiom is satisfied.

In particular, the 3-dimensional generalized projective spaces are the
non-trivial planar spaces satisfying
(I) for every pair of planes I and n' intersecting in a line, every line inter-
secting I intersects Ii'.

Indeed, any non-trivial planar space S satisfying condition (I) satisfies also
condition (%), and so is a generalized projective space; moreover, since S is
necessarily the smallest linear subspace containing two planes intersecting in
a line, S is 3-dimensional.

Note that the condition obtained from (I) by deleting the words "inter-
secting in a line", though apparently stronger than (I) is equivalent to (I).

Two problems arise now in a natural way : is it possible to classify the
non-trivial planar spaces which satisfy the condition obtained from (I) by
replacing "intersecting in a line" by "intersecting in a point" (resp. by
"having an empty intersection") ? This is the subject of the following two

theorems, concerning finite planar spaces.
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points would allow us to rule out the rather uninteresting cases (c¢) and (d),
and to shorten the proof a little bit.

Proof of the theorem

The proof is divided into a series of lemmas. The planar space PG(4,1)
obviously satisfies the hypotheses and we shall always assume in what follows
that S # PG(4,1)

Lemma 9.1. If each of the two planes N' and 1" intersects a third plane N in
exactly one point, then I N NI' =n nn"” =1n' nn".

Proof. Suppose first that n nn' = {x'} and 1 n 1" = {x"} where the points x'

and x" are distinct. By condition (Il), every line of n' passing through x'
intersects 1" in a point, and so n' n " is a line L. Condition (II), applied

to the pair of planes {n,n'} (resp. {n,n"}), shows that any line of n" (resp.

m') intersecting L passes through x" (resp. x'), which implies that ' = L u {x"}
and " = L y {x"}. If there is a point x ¢ 1 U L, the line <x,x"> must intersect
n' = Lu {x'}, a contradiction. Therefore S = 1 U L.

Let y be a point of L and let A be a 1line of n passing through x" and
distinct from <x',x">. Since n n n" = {x"}, the lines A and L are not coplanar
and the plane o« = <y,A> intersects n' in the point y only. By condition (II),
any line of 1 intersecting A (hence o) must intersect n', and so must contain
x'; it follows that 1 = A U {x'}. Similarly, mn = B u {x"} for any line B of 1
passing through x' and distinct from <x',x">. Therefore 1 contains only three
points x, x' and x". If L has at least three points y, y' and y", then the line
{x',y"} intersects the plane {x", x', y'} but not the plane {x", x, y}, and
condition (II) is not satisfied. Therefore L has size 2 and S = PG(4,1) contra-
dicting the initial assumption.

This proves that x' = x". By condition (II), any line of n' intersecting
n' n n" must intersect n, which implies that n' n " = {x'}.

A maximal set of planes having the property that any two of them inter-
sect in the point x only will be called a direction of planes with top X. It
follows from Lemma 9.1. that any plane n belongs to at most one direction,

denoted by dir 1m. The top of dir m will also be called the top of nm and a top
in S.

Corollary 9.1. If dir Nl contains at least three planes with top X, then all
the lines passing through X and belonging to a plane of dir 1 have the same

size.
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Proof. If I, N' and " are three distinct planes of dir n and if L (resp. L')
is a line of  (resp. ') passing through x, Lemtma 9.1. implies that the plane
<L,L'> intersects n" in a line L". By condition (II), any line intersecting L"
and L (resp. L" and L') in two distinct points must intersect L' (resp. L),
and so L and L' have the same size. The corollary follows easily.

Lemma 9.2. For any point X of S, the residue Sx of X 18 one of the following
(1) a projective plane (possibly degenerate)

(11) a punctured projective plane

(ii1) an affine plane with one point at infinitu

(iv) an affine plane.

Proef. Two planes of S intersect in x (and in x only) iff the corresponding
lines of Sx are disjoint. Therefore Lermma 9.1. implies that if L and L' are
two disjoint lines in Sx’ any line of Sx intersecting L in one point must also
intersect L' in one point. In other words, the linear space Sx is a semi-affine
plane. Since S is assumed to be finite, Sx is finite and we know by (16 ) that
S_ 1s either an affine plane, or an affine plane with one point at infinity,

X
or a punctured projective plane, or a (possibly degenerate) projective plane.

The finiteness assumption is essential here : indeed, Dembowski has cons-
tructed infinite semi-affine planes which are not of the four types described
above [30] .

Note that Sx is always an affino-projective plane, except if Sx is a degenerate
projective plane. Note also that Sx is a (possibly degenerate) projective plane
iff x is.not a top in S.

Corollary 9.2. If Sx 18 an affino-projective plane of order k, then X has
degree K in every plane with top X.

Proof. It suffices to observe that a plane with top x corresponds to a line
of Sx having at least one disjoint line in Sx‘ that is a line of size k in Sx'

Lemma 8.3. If S contains a point X such that Sx 18 a degenerate projective

plane, then S 78 of type (cC).

Proof. The hypothesis implies that S is the union of a plane 1 and of a line
A intersecting 1 in x. Let z be a point on A, distinct from x. Since S =11 U A,
every line passing through z intersects . Therefore the plane 1 is isomorphic
to SZ and, by Lerma 9.2 , nm is a semi-affine plane.

Suppose that there are two points z and z', distinct from x, on the line
A. The plane T contains two intersecting lines L and L' not passing through X
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(except if 1 is a degenerate projective plane in which all lines through x
have size 2, but in this case S is a 3-dimensional generalized projective
space and condition (II') is not satisfied). If n contains either a point

y ¢ LUL" U {x} or a line L" intersecting L' but not L, then the planes
<L,z> and <L',z"'> intersect in the point L n L' only, and either the 1ine
<y,Z2'> or the line L" intersects <L',z'> but not <L,z>, in contradiction
with (II). Therefore the semi-affine plane n has no such point y and no

such line L", and so 1 is necessarily a degenerate projective plane with 4
points, in which x is of degree 2. Denote by B the line of size 3 in 1 and
by x' the point of degree 3 in n. Then S = <A,B> U {x'} and Sx. 1S isomorphic
to <A,B>. It follows that <A,B> is an affine plane of order 2 with the point
x at infinity, and so S is of type (c).

Therefore we may assume that A is a line {x,z} of size 2. Then S =1 U {2z}
and all lines through z have size 2. If 11 is a (possibly degenerate) projec-
tive plane, then S is a 3-dimensional generalized projective space and condi-
tion (II') 1s not satisfied. Therefore the semi-affine plane 1 is either a
punctured projective plane, or an affine plane with one point at infinity,
or an affine plane, and the Lemma is proved.

From now on, we shall always assume that there is no point x € S such
that Sx 1s a degenerate projective plane.

Lemma 9.4. If S contains a point X such that Sx 18 an affine plane of order k
with ene point at infinity, then S 1is obtained from PG(3,k) by deleting an

affino-prejective plane which is neither projective nor punctured projzaetive.

Proof. Denote by L the line of S corresponding to the point at infinity of
Sx,
and not containing Lm, S is the union of L and of all planes of dir ji. There-

by y any point of L distinct from x, and by 1 any plane passing through x

fore any line through y intersects at least one (hence every) plane of dir 1,
and so we define an isomorphism between Sy and T by mapping any line passing
through y onto its point of intersection with . Therefore I is a semi-affine
plane (distinct from a degenerate projective plane). By Corollary 9.2 , x has
degree k in M, and so either N has order k-1 or 1 is an affine plane of order
k with the point x at infinity.

If T is a projective plane of order k-1, then all lines of S distinct
from L_ and passing through x have size k. Let T_ be a plane of S containing
L and let H: denote the linear space induced on I_ - (L_ - (x}) by the linear
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structure of N_. Since Nl intersects every plane of dir I in a line through x
and since every line of _ not passing through x intersects each of the k
planes of dir 1 in a point, all the lines of the linear space n: have size k.
The degree of x in n: is k & |dir n|, and so H: is a projective plane. On the
other hand, the lines of N_ passing through y induce pairwise disjoint lines
in H:, a contradiction.

If the semi-affine plane N has order k-1 and is not a projective plane,
then n contains a line L of size k-1 not passing through x. Let n, = <L,y>
where y # x is a point of L_. The intersections of m with the planes of dir 1
form a partition 4y of m; - {(y} into k lines of size k-1 = [L|. On the other
hand, the lines of my passing through y define a partition by of M - {y}
into k-1 lines of size k. Let L' ¢ 8y V.4, be a line of Iy - By condition (II),
L' intersects each of the lines of A,, which is impossible since L' ¢ 4,.

Therefore every plane n containing x but not L_ is an affine plane of
order k with the point x at infinity. Since any line of S distinct from L _
is either contained in some plane of dir 1 or intersects every plane of dir I
in a point, the lines of S distinct from L_ have size k+1 or k according as
they intersect L_ or not. Moreover, the planes of S containing x have exactly
k2 points outside L_ and the planes not containing x intersect the planes of
dir T in k pairwise disjoint lines of size k. Therefore, in the planar space
of k3 points induced on S-L_, all lines have k points and all planes have kS
points. In other words, S-L_ is a planar space of k3 points in which all
planes are affine planes of order k. If k=2, S-L_ is the unique Steiner system
5(3,4,8), that is the affine space AG(3,2). If k=3, S-L_ is the unique Hall
triple system of 27 points [36], that is the affine space AG(3,3). If k > 4,
then by (I5) , S-L_ is the affine space AG(3,k).

It follows that S is obtained from an affine space AG(3,k) by adding a
line at infinity L_ to a direction of parallel planes. Using the classical
process of completion by points at infinity we conclude easily that S 1is
obtained by deleting from PG(3,k) an affino-projective plane (which is neither
projective nor punctured projective since L_ contains at least 2 points).

Corollary 9.4. (i) If S contains a point X such that Sx 18 an affine plane
with one point at infinity, then for any top y in S, Sy 18 also an affine
plane with one point at infinity.

(11) If S contains a point x such that Sx 18 an affine plane,
then X 18 the only top in S.
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Proof. (i) is an immediate consequence of Lemma 9.4. In order to prove (ii),
suppose on the contrary that there is a top y # x in S. By (i), S, is not an

y
affine plane with one point at infinity, and so, by Lemma 9.2., S is either

an affine plane or a punctured projective plane. In both cases, tﬁe line <x,y
is contained in a plane n with top y. On the other hand, there is in Sx a line
disjoint from the line m, of Sx corresponding to I, and so nn is a plane with

top x. Therefore I has two distinct tops x and y, in contradiction with Lemma

9.1.

Lemma 9.5. If S contains a point X such that Sx 18 a punctured projective plan
of order k or an affine plane of order K, then every plane N with top X is an
affine plane of order k with the point X at infinity.

Proof. Let ' # I be a plane of dir I and let y # x be a point of nI'. By condi-
tion.- (II), all the lines passing through y and disjoint from m are included in
I'. Therefore if we map each line of S passing through y and intersecting Il
onto its point of intersection with II, we define an isomorphism between I and
the linear space induced by Sy on Sy - (n} - Ly) where n; is the Tine of Sy
corresppnding to the plane ' and Ly is the point of Sy corresponding to the
line L = <X,y>. Thanks to Corollary 9.4., we know that Sy is either a projec-
tive plane or a punctured projective plane. If |dir | > 2, then all lines of
n passing through x have the same size by Corollary 9.1. If |dir | = 2, thensx
must be an affine plane of order 2 and Corollary 9.4. implies that Sy is a pro-
jective plane. Therefore, in any case, n is an affine plane with the point x

at infinity and, by Corollary 9.2., the order of 1 is k.

Lemma 8.6. If S contains a point X such that Sx i8 an affine plane of order Kk,
then S i8 obtained. from PG(3,k) by deleting a punctured projective plane of
order K.

Proof. By Lemma 9.5. and condition (II), the lines of S have k+1 or k points
according as they contain x or not, and the planes of S have kz+1 or k2 points
according as they contain x or not. Therefore S - {x} is a planar space of k3
points in which all lines have k points and all planes have k2 points. By the
same arguments as in the proof of Lemma 9.4., we conclude that S - {x} is an
affine space AG(3,k) and that S is obtained from the projective space PG(3,k)
by deleting a punctured projective plane of order k.
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affine planes of order 3 or planes of 13 points consisting of three concurrent
lines of size 5 (all the other lines having size 3). We denote by Sﬁ the linear
space obtained from SH by replacing every line of size 5 by 10 lines of size 2.
Let Fg be the affine plane induced on Sﬁ by a plane intersecting Sh in 9 points
and let x be a point of Sﬁ - F9 which is on at least one line of size 3 inter-
secting Fg. The smallest linear subspace of Sﬁ cnntaining_F9 and x has exactly
18 points and is a Fischer space, denoted by F18' 518 is the planar space
induced by PG(3,4) on the set of points of Fig-

In order to define 536’ let H' be a Hermitian quadric in PG(3,4) having
exactly one singular point s (for instance, the quadric of equation
0). The planar space induced on H' by PG(3,4) has Tines of size
3 or 5, and its planes are either affine planes of order 3 not passing through
s or planes of 13 points consisting of 3 lines of size 5 concurrent in s (all
the other lines having size 3). 536 is the planar space induced by PG(3,4) on
H' - {s} and F36 is obtained from 336 by replacing every line of size 4 by 6
lines of size 2.

Xy + Xy + 2z

We still need a notation for five small spaces satisfying (III) and (III').
The space K; is obtained from PG(2,2) by taking as points the points of PG(2,2),
as lines the pairs of points and as planes the lines of PG(2,2) and their com-
plements. The planar space of 6 points in which all lines have size 2 and which
contains 0, 1, 2 or 3 planes of 4 points (all the other planes having 3 points)
will be denoted by KE, Ké, KE and Kg . It is easy to check that these spaces

are uniquely determined by the above properties.

Statement of the theorem.

We shall first prove two fundamental lemmas. In what follows, S denotes
always a finite planar space satisfying (III) and (III').

Lemma 10.1. For any plane NI of S and for any point X € S — 1, there is at
most one plane passing through X and disjoint from I.

Proof. Suppose on. the contrary that x is on two distinct planes n' and 1"
disjoint from m. Let L be a line passing through x, contained in n' but not

in 1". Since L intersects n", condition (III) implies that L must intersect 1,
a contradiction.

A maximal set of pairwise disjoint planes will be called a direction of
planes, provided there are at least two planes in it. By Lemma 10.1, a plane I
either intersects any other plane or is in exactly one direction, denoted by

dir 1.
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We can now state our main result :

T

Theorem 10 [25] If S is a finite planar space such that
(III) for any two disjoint planes N and N', every line intersecting NI intersects
I
and (I11') there are at least two disjoint planes
then one of the following occurs :
(a) S 78 obtained from PG(3,k) by deleting a line,
(b) S s obtained from PG(3,k) by deleting an affino-projective (but not affine)
plane of order Kk,
(c) S = Sy »
(d) S =354 >
(e) S 2s a space S? of 7 points lying on 3 concurrent lines of size 3, all the
other lines having size 2, in which the planes either have only 3 points or

are unions of two lines of size 3,

7,0 1 2 3
(f) S . K?l KGI Ksj Kﬁ or K6 9

(g) S has only one direction of planes and S-S* contains at least four non-

coplanar points.

We do not know whether there is a finite planar space of type (g).

The proof will be divided into three main parts : we shall first handle
some small exceptional spaces (types (e) and (f)), then we shall classify the
spaces having at least two directions of planes (types (b) and (c)) and finally
we shall examine the spaces having exactly one direction of planes (types (a),

(d) and (g)).

=

3.1. Small exceptional spaces

Lemma 10.3. If S contains two disjoint planes 1 and 1 such that S = 1 U n',
then S 18 the unton of any two disjoint planes (in parttcular, every direction

has exactly two planes).

Proof. Suppose on the contrary that I and H{ are two disjoint pTanes'uf S

such that there is a point x € My U Hi. We may assume without loss of generality
that x € n. Then for any point y € My N n', the line <x,y> has size 2, and so
<X,y> is disjoint from ﬂi, in contradiction with (III).

Proposition 10.1. If S contains twe disjoint planes T and N' such that S =1 U I’

then Sis the affine space AG(3,2), KJ, K2, K}, KE or K3 .
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1.3) Suppose finally that M NI, is a point t and that ni n né is a point
2. Then Ty s ni, s Hé are degenerate projective planes and T, N né = X,
ni N, = Y are lines. Suppose that X has at least three points x,x',x"
and let y,y' be two points of Y. If there is a transversal plane
m = {X,y,2z} not containing t, then the planes <x',y',t> and <x",y',t> must
intersect m by Lemma 10.3, and so {x',y',z,t} and {x",y',z,t} are
distinct planes, a contradiction since they have three non-collinear
points in common. Therefore, any transversal plane contains t and
<X, YsZ>= <X,Z,t> = <X,Z,y'>, a contradiction. This shows that X (and
similarly Y) has size 2. Hence S has exactly 6 points and all lines
have size 2. Since the union of two disjoint planes contains at least
6 points, S will automatically be the union of any two disjoint planes.
It isa trivial exercise to check that there are exactly 4 non-isomorphic
planar spaces of 6 points in which all lines have size 2 and which
satisfy conditions (III) and (III') (they have respectively 0, 1, 2 or

3 planes of 4 points).

2) In order to complete the proof, it remains to show that the case where S
has only one pair of disjoint planes I and ' such that S =1 U II' leads to
a contradiction.

Suppose first that m and ' are two projective planes (possibly degenerate).
[f there is a plane intersecting T in a line A and ' in a line A', let a € II-A
and a' € n'-A'. The planes <A,a'> = AU {a'} and <A',a> = A" U {a} are disjoint,
a contradiction. Hence there is no plane intersecting both Il and " in a Tine.
Let L (resp. L') be a line of T (resp. N') and let x € n-L, x' € n1'-L". The
planes <L,x'> = L U {x'} and <L',x> = L' U {x} are disjoint, a contradiction.

Therefore we may assume that T contains two disjoint lines A and B. If
there is a plane o containing A and intersecting ' in only one point x', then
every plane 8 # II containing B must intersect o, and so must contain x', a
contradiction because two such planes B] and 82 would have three non-collinear

points in common. Therefore the planes S ERRRE L # I containing A intersect -
- £

containing B intersect ' in lines B,, ..., B' partitioning M'. Since 7 and o'
] m

in lines A3, ..., Aﬁ partitioning MT'. Similarly, the planes Bys vees

are the only two disjoint planes of S, any line A% intersectseach line B!, and

J"!
so there is no line in ' which is coplanar with A and also coplanar with B.
For the same reason, there is no line in I which is coplanar with Ai and alsc

coplanar with Aé, a contradiction since A is coplanar with A% and with ﬁé*
From now on, we shall assume that S is not the union of two disjoint planes.
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Proposition 10.2. If there is a plane N € dir I, intersecting I
point X, themn S = 57.

wn only one

]

Proof. Let Hi £ I be any other plane of dir Iy - By .Lemma 10.2, 51 is contained
in M U Hi (which implies that dir Ty = {lys ni}), and so 1 is a degenerate
projective plane. Let y be a point outside My U ni (hence outside 1). By condi-
tion (II1), the line <x,y> intersects ni in a point x' ¢ L' =1 n ni, and, by
Lemma 10.2, the plane <L',y> intersects I in a 1ine L not containing 'x. Thus
the plane ' = <x',L> is disjoint from 1 and is isomorphic to n by Corollary
10.2.1. If there is a line L" disjoint from n U n', then Lemma 10.2 implies
that the planes through L" which are not disjoint from i intersect g in disjoint
lines, which is impossible since I is a degenerate projective plane. Therefore
all lines passing through y intersect n or n', and so, by (IIl), intersect &
and 1'.

If L contains at least three points u, v, w, let u’ = L' n <u,y>,

vi =L N <v,y>, w =L" N <w,y>. The planes a = <x,u,w'> and o' = <x',u’',v>
are two disjoint planes of 3 points and the line <v,v'> intersects o' but not
a, SO that condition (III) is not satisfied. Therefore the lines L and L' have
size 2 and y is on exactly 3 lines.

If the line <x,y> contains a fourth point x", then the planes <L',x"s> and
<L',x> = 11 have a line in common and are both disjoint from n' = <L,x'>, con-
-tradicting Lemma 10.1. The same argument shows that the 3 lines passing through
y have size 3, and so S = 57.

From now on, we shall assume that S # 57 so that, by Proposition 10.2,
any plane not belonging to a direction dir I intersects all planes of dir

in a line.

3.2. Suppose that there are at least two directions of p1anes dir iR and dir 108

By Lemma 10.2 and Corollary 10.2.2, the set of lines n] N H%, where
H] € dir Iy and H% € dir M,y is a partition of s* and will be denoted by

:s(r[1 n Hz)

Lemma 10.4. If a plane N intersects a line of tﬁ(H1 n HZ) in a single point,
then NIl intersects every line of cS(l'I-I N HZ) in a single point and ™ =nnst
18 an affine plane of order k = |dir I;| = |dir 0,].

Proof. The intersections of the planes of dir M, (resp. dir 0,) with 1° define
a partition $ (resp. 52) of 1> into lines of S. Note that 8 # S otherwise
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1> would not intersect a line of ﬁ(n1 N 1,) in a single point. If L* s any
line of ™ not in 89 (resp. not in 62), condition (III) implies that L* inter-
sects every line of 8y (resp. 62). There is a line of 61 which is not in 80
since this line must intersect every line of 8o 8 and §, have no line in
common. Therefore, if Li is any line of ¥ (i = 1,2) and if L* is any line

of I not in §4 U &,, we have

x
Lyl = J85] = [L7] = [8;] = L,

and so all lines of n> have the same size

k = [6;] = [dir my| = |85] = [dir 1,

Moreover,
X 2
7 = {6q] - Lyl =k
and so m* is an affine plane of order k.

Since every plane of dir T, is partitioned into k = |dir H2| lines of

6(H] n Hz)’ since M* intersects such a plane in a line of size k and since

™ contains no line of G(H] N I,) (because 8y N 6, = P), we conclude that n

intersects every line of 6(&1 n HZ) in a single point.

The planes of S (or S*) intersecting every line of §(m, N 1M,) will be
called transversal and those containing a line of 6(H1 n Hz) will be called
non—transversal. Note that any plane of S is either transversal or non-trans-
versa1. For any triple of non-coplanar lines L, L', L" € 6(H] N 1,), the
product |L|.|L'|.|L"| counts the total number of transversal planes in S.

It follows that all lines of_ﬁ(n] N Hz) have the same size 2. Since I (resp.
I,) 1s partitioned into k lines of size ¢ by its intersections with the planes
of dir n, (resp. dir m,), we have

Tyl = |T,| = ke (1)
X : 2
and S| = |dir my| . [my| = k"2

Lemma 10.5. S = Si 18 a linear subspace of S, and any transversal plane T of S

has at most k-1 points outside s*.

Proof. By condition (III), any line intersecting a plane of dir I intersects
every plane of dir . It follows that, for any point x € n-m*, the set of

all Tines passing through x and intersecting ™ determines a partition of i
into lines, i.e. a parallel class in the affineplane n*. Therefore, if x and
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y are any two points of S-S*, the line <x,y> must be disjoint from sX. This

proves that s-s* is a linear subspace of S. Since there are k+1 parallel

classes in N> and since at least two (induced by dir.n1 and dir Hg) are also

classes of pairwise disjoint lines in I, there are at most k-1 points in -1
Note that the planes of S are not necessarily the smallest linear sub-

spaces containing three non-collinear points. On the contrary, if x, y, z

are non-collinear points in 5-S*, it follows from Lemma 10.2 that the plane

<X,¥,Z> 0f S intersects s* in a plane of sX,

Proposition 10.3. If %=k, then S is obtained from a 3-dimensional projective
space PG(3,k) by deleting an affino-projective (but not affine) plane of order
K.

Proof. If 2=k, then s* is a planar space of k3 points in which all Tines have
k points and all planes have k2 points, hence s* is the 3-dimensional affine
space AG(3,k). Indeed, by (I 5 ) if k = 2, S* is the unique Steiner system
S(3,4,8), that is the affine space AG(3,2); if k = 3, S* is the unique Hall
triple system of 27 points, that is the affine space AG(3,3); if k > 4, S

is the affine space AG(3,k).

On the other hand, if the linear subspace S - s* contains three non-
collinear points x, y, z, then the planes containing <x,y> and those containing
<x,z> 1nduce two distinct partitions of the affine space s* into classes of
parallel planes, but these partitions have the plane <x,y,z> n s* in common,
a contradiction. Therefore S - S* is either empty, or a point, or a line of
size at most k-1, and the lemma is proved.

From now on, we shall assume g # k, so that any transversal plane 1 inter-
sects all the other planes of S (otherwise I would belong to a direction dir T
of planes of S with |dir m| = 2 and, by appTyfng'tn dir 1 and dir Iy the argu-
ments used in the proof of Lemma 10.4, we would get ¢ = k).

Lemma 10.6. For every transversal plane N, the number of planes of S whose
intersection with N ts disjoint from s* is a comstant c independent from T,

and
(2-1)[2% + 2 +1 = (K& + k) - k%(2-k)]

O
]

h

.=1)[b"' + v'(2+1-k) - ¢ r'l
( xen-n> %

where y' (resp. b') denotes the number of points (resp. the number of lines)

of the linear subspace n-n* and r; denotes the degree of x in -nx.
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Proof. Since every non-transversal plane intersects mr in a line, any plane

of S whose intersection with m is disjoint from s* is necessarily a trans-
versal plane. The total ntmber of transversal planes distinct from 1 is £3-1.
The number of transversal planes intersecting 1> in one line (resp. one point)
is (k2+k)(£-1) (resp. kz(z-l)(z-k)), since any line (resp. any point) of ™ is
in exactly 2-1 (resp. £2-1) transversal planes distinct from n. Hence the number
of planes of S intersecting II outside s* s equal to

¢ = (a-N[(2% + 2+ 1) - (K% +K) - K2(2-K)]

which is clearly independent of the choice of the transversal plane I.

Let L be a line of n-n* (if there is one). Since the planes containing L
intersect I8 in pairwise disjoint lines, the number of planes intersecting I
in L is 2-1. Therefore the number of planes intersecting n in a line outside
m* is equal to (2-1)b'.

Now let x be a point of -1 (if there is one). Any plane of S disjoint
* intersects 18 in a line disjoint from I N 18 and, for any line A of My
disjoint from I N My, the plane <A,x> is disjoint from n* (otherwise it would
intersect I in a line intersecting T N My, a contradiction). Hence the number
of planes through x which are disjoint from m* §s equal to the number of lines
of H1 which are disjoint from I N My that is (2-1)(2+1-k). Therefore the
number of planes whose intersection with T is the point x is equal to
(i-i)(£+1-k-r;). [t follows that

from |

¢ = (2-1)(b"' + v'(%+1-k) - I " r;)
XEI =
Corollary 10.6. If some transversal plane I contains at least one line of

S - S*, then every transversal plane of S contains at least one line of S = s*.

Proof. Let x, y € n-n*, We have seen that the number of planes of S passing
through x (resp. y) and disjoint from M* is equal to (2-1)(2+1-k), and that
the number of planes of S intersecting R in the line <x,y> 1s ¢-1. Therefore

c > 2(2=1)(e+1-k) = (2-1) > (2+1)(2+1-k)

since 2 > k. The existence of a transversal plane of S contained in s* or
having a single point outside s* would imply ¢ = 0 or ¢ = (&+1)(2+1-k), a

contradiction.
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Lemma 10.7. Any non—-transversal plane H? of S belongs to a unique partition
dir H: af‘Si into non-transversal planes. The set of all planes of S whose
intersections with S* ave the planes of dir H? will be called the pseudo-

direction dir> I,

Praaf‘ Let 1* be a transversal plane of s*. If H € dir s the lemma is obvious.
If n ¢ dir My, I 3 is partitioned by its 1ntersect1ons with the planes of

dir nl 1ntn K 11nes belonging to G(H] n nz) Since all these 11nes intersect

H*, N m* is a line of N*. On the other hand, every line of ™ is in a

un1que plane containing a line of G(n N Hz), that 1is in a unique non-trans-
versal plane. Therefore H belongs to a partition of s* into k pairwise dis-
joint non-transversal p1anes each of which contains one of the k parallels

to n? n 1" in the affine plane n*. Such a partition is clearly unique.
Propostition 10.1. If % # k, then S = S! = 536 :

Proof. Suppose on the contrary that S - s* is non-empty. A point x € S - s*

cannot belong to two non-transversal planes s and 1. whose pseudo-directions

J
are distinct, because n, n o, is a line of a(nl n Hz) included in S*

On the other hand, any }1ne %hrough X intersecting s* is contained in a unique
non-transversal plane. Therefore x belongs to the planes of exactly one pseudo-
direction dir* s . We shali say that x and dir® M, are assoctated. Obviously,
all the points of S - s* associated with a g1ven pseudu -direction are collinear.

Suppose first that all points of S - s* are associated with the same pseudo-
direction dir™ I« Then the points of S - s* are collinear (this includes the
case where |S - S*l = 1), and so there is a transversal plane I having exactly
one point outside s*. Hence, by Lemma 10.6, ¢ = (2-1)(2+1-k). Since k # 2+1
(because ¢ # 0), there is a line A of I disjoint from 1 N . The number of
transversal planes through A is |H1]fk = ¢ and the number of transversal planes
through A intersecting m in a line is k-1. Therefore, since any two transversal
planes have a non-empty intersection, the number of transversal planes through
A intersecting I in exactly one point is L£-(k-1). By counting in two ways the

number of pairs (y,a) where y is a point of I and o = <y,A> we get

2

k= + 1 =k + (k=-1)k + ¢ = k + 1

which implies ¢ = k, a contradiction.

This proves that S - s* contains two points associated with distinct
pseudo-directions. If all the points of a line L. of S - S* are associated
with a pseudo-direction dir* I, let x be a pu1nt of S - S associated with
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another pseudo-direction dir® m.. Then Li is the intersection of the plane

5 J

<Xsls> with each plane of dir I, - Since the planes of dir® s induce a
partition of 5’, the_plane {x.Li} must be disjoint from s* , a contradiction.
Therefore any pseudo-direction of planes is associated with at most one point
outside S*. Since there are k+] pseudo-directions and since dirfn] and dir M,
are not associated with any point of S - S*, we have |S - 5’| < k=1. Since

S - S* contains at least one line (all of whose points are associated with
distinct pseudo-directions), there is a transversal plane having at least one
line outside S*. Therefore, by Corollary 10.6, every transversal plane has at
least one line outside S*. It follows that the number n of pairs (m,L), where
n is a transversal plane and L a line of n-n>, is not less than the number £3
of transversal planes and is equal to ¢ times the number of lines in S - s%,

that is
23 < n g g(k=1)(k=2)/2 (3)

On the other hand, the degree 2+1 of a point in M, cannot be less than the
size k of some of the lines of s and so 22 > (k-1)2, contradicting (3).

We have proved that S = sX. Therefore ¢ = 0 and, using Lemma 10.6, we get

¢ = (K2 -1+ (k-1) KT =K = 3)/2
Obviously, k = 2 is excluded and, for k > 3
(k=-2)% < k% = 2k - 3 < (k-1)°
shows that k2 - 2k = 3 is not a perfect square. Therefore k = 3 and ¢ = 4.
Thus every transversal plane is an affine plane of order 3 and every
non-transversal plane consists of 3 pairwise disjoint lines of size 4, all
the other lines having size 3. If we replace each line of size 4 by 6 lines
of size 2, we get a linear space F of 36 points consisting of lines of sizes
2 and 3 and in which the smallest linear subspaces containing three non-collinear
points are degenerate projective fﬂanes of 3 points, punctured projective
planes of order 2 or affine planes of order 3, and so F is a Fischer space
of 36 points. Let dir My = My, ni, n?} and Ief FE be a linear subspace of
6 points of F contained in the plane My of S. If x € My, X is joined to every
point of F6 by a line of size 3, and ‘the smallest lineaf subspace of F contain-
ing x and I-"5 has obviously at least 6 points in each of the planes Ty ni and nﬁ.
Buekenhout [10] has proved that a Fischer space having at least 18 points and
generated by a plane o isomorphic to F6 and by a point joined by a line of
size 3 to at least one point of o is necessarily either FIS or F36' Since x
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is joined to every point of FS by a 1ine of size 3, a situation which does

not occur in F]B’ F is isomorphic to F3G' There is a unique way to construct

9 mutually disjoint lines of size 4 from the lines of size 2 of F36 and to
provide this new linear space with planes isomorphic to those of S. The planar
space 536 constructed in this way from F36 has the required properties.

3.3. Suppose that S contains only one direction A of planes

The planes of A will be called A-planes, the lines contained in a A-plane
will be called a-lines, and the 1ines intersecting all aA-planes will be called
transversal lines (by condition (III), a line intersecting a A-plane must
intersect all aA-planes).

Lemma 10.8. Every A-line L contained in a A-plane N belongs to at least one
partition of N into lines which are coplanar with the same line of a A-plane
nm' # m.

Proof. Let n' # I be a A-plane and let L' be a line of n' coplanar with L. The
set of intersections of II with the planes passing through L' (and distinct
from ') is clearly a partition of I into lines, and L belongs to this parti-
tion.

Since we have assumed that S is not the union of two disjoint planes, all
a-planes are isomorphic by Corollary 10.2.1. Let v' denote the number of points
of any A-plane.

Lemma 10.9. If S = S%, then

(1) all transversal lines have stze & = |A| > 3
(11) any two coplanar A=lines contained in two distinet A-planes have the same
stze

(111) the number P, of planes containing a A-line L is 1+ v'/|L|.

X s partitioned by the a-planes. Moreover, |4| > 3 because S is

Proof. S = S
not the union of two disjoint planes. This proves (1).

(11) is a consequence of (i) and of Lemma 10.2.

Let T be a 4-plane not containing L. The planes not belonging to 4 and containing

L intersect I in lines of size |L| by (ii). This proves (iii).

Lemma 10.10. If S = Si, then any two disjoint A-lines contained in the same

A-plane N have the same size.
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Proof. Suppose on the contrary that n contains two disjoint lines A of size

a and B of size b with a > b. Let o« be a plane intersecting nm in A. Any line

C of o« distinct from A and coplanar with B is disjoint from A, hence C is a
a-1ine and, by Lemma 10.9, C has size a (because C is coplanar with A) and C
has size b (because C is coplanar with B), a contradiction. Therefore A is the
only line of « coplanar with B, and so any plane containing B and distinct
from I intersects a 1n exactly one point. This, together with Lemma 10.9,
implies that

-1=v'/b=a(2-1) (4)

n

Pg

By Lemmas 10.8 and 10.9, 1 contains at least one line B' disjoint from B
and having size b. Let 8 # 1 be a plane containing B and let n be the number
of lines of B which are distinct from B and coplanar with B' (such a line
being necessarily a a-line, 0 ¢ n g 2-1). Moreover, since a plane containing
B' must intersect g in a 1line or in a point, we have

pge = 1 =v'/b=n+b(2-1-n) (5)
(4) and (5) yield
a(2-1) + n(b-1) = b(2-1) where n > 0 ,

contradicting the assumption a > b.

Propesition 10.5. If S = S* contains two A-lines of different sizes, then S = 518'

Letb
Proof.Ya > b be two sizes of A-lines and let 11 be a aA-plane. Since all aA-planes

are isomorphic, N contains a line of size a and a line of size b. By Lemmas
10.8 and 10.9, there is a partition of m into lines of size a and a partition
of M into lines of size b. Since a > b, any line L of 1 which does not belong
to any of these two partitions is necessarily disjoint from at least one line
of size b in the second partition, and so L has size b by Lemma 10.10. Moreover,
by Lemma 10.10 again, in the plane 1, every line of size b must intersect every
line of size a. Therefore I contains exactly v' = ab points, and every point of
I is on exactly one aA-line of size a, on exactly a a-lines of size b and has
degree r' = a+l in 1. It follows that the a-lines of size a partition S and are
pairwise coplanar.

Let A be a Tine of size a in . By Lemma 10.9, the number Pa of planes
containing A 1S given by

Pp = 1 +v'/a = 1+b
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Let L be a transversal line disjoint from A. Each of the 2 points of L is on
a unique A-line of size a and the union of these 2 lines is a plane ).

Since A is the only direction of planes in S, every plane containing A inter-
sects the plane )X and this intersection is necessarily a A-line of size a.
Thus every plane containing A intersects the line L, and so

pa =1+ v'/a=14b =3¢ (6)

Let x be a point of n and let o (resp. g) be a plane containing x and
intersecting m in a line A (resp. B) of size a (resp. b). We shall count the
number n(x,a) (resp. n(x,8)) of planes intersecting o (resp. g) in the point
x only. Let n' # 1 be a A-plane and let A' =11' na, B' = 1" N 8. Since any
plane intersecting « in the point x only intersects ' in a line disjoint
from A' and since all lines of n' which are disjoint from A' have size a
and are coplanar with A, we have

n(x,a) = 0 (7)

On the other hand, the number of planes (distinct from 1) containing B is
v'/b = a, the number of planes intersecting g in a transversal line passing
through x is |B'|(r'~1) = ba, and the total number planes (distinct from I)

2

passing through x is equal to the number a"+b of lines in n'. Therefore

n(x,8) = a° +b - ba - a (8)

Since any plane of S belongs to a4 or is o (resp. g) or intersects o (resp.
B8) in a A-line or intersects o (resp. g8) in a transversal line or intersects
a (resp. g) in a single point, the total number p of planes of S is given
respectively by

p=lal + 1+ |a](v'/a-1) + az(r'-]) + |ain(X,a)

= |al + 1 + |al(v'/b-1) + bz(F"I) + |8|n(x,8)

from which it follows, by (7) and (8), that

L(b-1) + as = e(a-1) + bza + bz(a2 +b - ab - a)

Using (6), we get, after simplification by a-b # 0 and a-1 # 0 ,
b2 = a+]| (9)

Let B" be a 1line of nn' disjoint from B'. The number of planes containing B" 1is
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1 +v'/b=1+4a =m + b(2-m) (10)

where 1 < m g 2 denotes the number of lines of g which are coplanar with B"
By (6), (9) and (10), we get

m(b-1) = b

and som=b =2, a=2¢ =3 and |S] = 18.

Therefore every transversal line has size 3, every aA-plane is the union of
two disjoint lines of size 3 and the planes not belonging to A are punctured
projective planes of order 2 or affine planes of order 3 according as their
A-1ines have size 2 or 3. This implies that the linear space S is a Fischer
space of 18 points. Moreover, it is easy to check that the smallest linear
subspace of S containing a punctured projective plane 51 of order 2 and a
point Xx ¢ I joined to a point of 1 by a 1ine of size 3 is S itself. Buekenhout
[ 10] has proved that a Fischer space of 18 points having this property is
necessarily isomorphic to FIE‘ Moreover, there is a unique way to provide
FIS with pldnes isomorphic to those of S. The planar space 518 constructed
in this way from F]B has the required properties.

Proposttion 10.6. If S = s* and i1f all A-lines have the same stze a, then S is
obtained from PG(3,a) by deleting a line.

Proof. Any a-plane 1 is a Steiner system S(2,a,v'). Thus, if we denote by b'
the number of lines of n and by r' the degree of any point in 11, we have

v = r'(a-1) + ] (11)
and

b' = v'r'/a (12)

Let o« be a plane not belonging to A and let x € o. Counting in the same way
as in Lemma 10.14 the number n(x,a) of planes of S intersecting « in the
point x only, we have

n(x,a) = b' - a(r'-1) - v'/a (13)
and so the total number p of planes of S is
p =¥ 1+ g(vi/a-1) + az(r'-l) + awn(x,a) (14)

On the other hand, every plane not belonging to A intersects m in a line and
every line of I is contained in exactly v'/a planes not belonging to a, soO
that

p=2+b'v'/a (15)
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Let A" be a line of I disjoint from A = I N a. The number of planes containing
A' is given by

1 +v'/a=n+ a(e-n) (16)

where 1 < n g 2 is the number of lines of o which are coplanar with A'.
Using (11), (16) becomes

2

r' = (22" -a-~-1)/(a-1) - na (17)

which implies a-1|2-2 > 0
and so a-1 € 2-2,

On the other hand, the degree a+l of a point in a cannot be less than the size
2 of a transversal line, and so

a+l > g

These two inequalities imply that

g = a+l (18)
and (17) becomes
r' = a% - (n-2)a+] (19)

From (13), (14), (15), (11), (12) and (18), we deduce, after some straight-
forward computation,

(r'=1)(r'-a-1)(r' - a% - a) = 0

and so

r' =1, a+l or az

+d

r' =1 is clearly impossible and r' a2+a contradicts (19). Therefore

r' = a+l and the aA-planes are affine planes of order a. The planes not
belonging to A have exactly ga = a(a+1) points and are punctured projective
planes of order a. It is now a simple matter to deduce that S is obtained

from PG(3,a) by deleting one line.

|

Proposttion 10.7. If S # Si, then S - S* contains at least four nor.-coplanar

points.

Proof. Suppose on the contrary that S - s* is contained in a plane «.

Consider first the case where |aA| = 2. Let 1 and ' be the two a-planes.
Since any plane which is not in A intersects both 1 and 1' in a line, A=1n «

and A' = 11' N a are two A-lines. The planes (distinct from 1) containing A
determine a partition of ' into lines. If this partition contains two lines

A" and A"' distinct from A', then A U A" and A U A™ are two planes of S because
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every point of S - s* is in the plane o. Let x € n-A. The plane <x,A"'> must
intersect the plane A U A", but this is impossible since A and A"' are coplanar.
Therefore ' = A' U B', where B' is a 1ine of nn' disjoint from A' and A U B' is
a plane of S. Similarly n = A U B, where B is a 1line of 1 disjoint from A and
A' U B is a plane of S. The planes A U B' and A" U B are disjoint, contradicting
the assumption that m and ' are the only disjoint planes in S.

Suppose now that [a| = ¢ > 3. Let X13 Xo be any two points of a aA-plane 1.
If n' and " are two a-planes distinct from 1 and if x% is a point of 1", the
1ines passing through x? and intersecting I determine, by Corollary 10.2.1, an
isomorphism @y from 1 onto nn'. Let xi =131(x1) and let xg be the point of inter-
section of the line kxz,xi> with the plane n". The lines passing through xg and
intersecting n' determine an isomorphism Oy from ' onto n. Since ®y o O is an
automorphism of 1 mapping X1 0N X, all points of 1 have the same degree r'.

let A=1n a and let 8 be a plane containing A, distinct from nn and a.
Lemma 10.2 implies that any two coplanar a-lines contained in two distinct

A-planes have the same size. Therefore, for any point X € or = o N S and for
any point y € g,
n(x,a) = b' - a(r'-1) - v'/a = n(y,s) (20)

where a = |A| and v' (resp. b') is the number of points (resp. of lines) in a
a-plane. Counting in two ways the number p of planes in S, we get

p = 241 + g(v'/a-1) + a%(r'-1) + |g|n(y,s)

= 2+l + g(v'/a-1) + az(r'-l) +]+u’E n(Xx,a) + = n(z,a) +_ L (p, =1)
- x * ‘"L
Z€Ea~a Lca-o
where PL denotes the number of planes containing the line L. Using (20) and
the fact that |o*| = |8] = ra, this implies
) n(z,a) + L x (pL—I) = 0

ZE:c:-c:* lco-a

%, we conclude that

Since n(z,a) > 0 and P -1 > 1 for every line L < a-a
n(z,a) = 0 for every point z € a-a* and that there is no line contained in

a-a>. On the other hand, by Lemma 10.8, there is a 1ine B of 11 disjoint from
A. If z € u-a*, the plane <B,z> is disjoint from A, thus also from o> . There-
fore, either <B,z> intersects o in the point z only and n(z,a) # 0, or <B,z>

intersects o« in a line contained in n'u#. In both cases, we have a contradiction.
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