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CHAPTER II. FINITE LINEAR SPACES WITH METRICAL REGULARITIES IN
THEIR INCIDENCE GRAPHS.

1. INTRODUCTION.

In a linear space, the classical axiom of Pasch may be reformulated as
follows
(%) for any two disjoint lines L and L', any point outside L U L' 8 on at
moet one line intersecting both L and L'.

Indeed, suppose that condition (&) is satisfied. Let A and A' be two distinct
lines intersecting in a point p and denote by L and L' two lines intersecting
A and A' such that neither L nor L' passes through p. If L and L' were disjoint,
we would have at least two lines through p intersecting L and L' : a contradic-
tion. Thus L and L® have a point in common and Pasch's axiom is satisfied. The
converse 1s obvious.

It follows that condition (%) characterizes the generalized projective
spaces. If "at most one"” is replaced by "exactly one" in (%), we get a charac-
terization of the generalized projective spaces of dimension ¢ 3.

Note that the finite affine planes of order n have a similar property :
for any two disjoint (hence parallel) lines L and L', any point outside L i L'
is on exactly n lines intersecting both L and L'.

These examples suggest the problem of classifying the linear spaces which

satisfy the following condition :

(D2) there 78 a non-negative integer d2 such that for any two disjoint lines L,
L' and any point x outside L U L', there are exactly d2 lines through X inter-
gecting the two lines L and L'.

In the finite case, the answer is given by the following result :

Theorem 2. (A. Beutelspacher and A. Delandtsheer [ 11])

IfS 18 a finite linear space satisfying condition (D2), then one of the
following occurs :

(i) S 18 a generalized projective space, and if the dimension of S is

at least 4, then any line of S has exactly two points,
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| (i1) S 7s an affine plane, an affine plane with one point at infinity,
or a punctured projective plane,

| (iii1) S Zs the Fano quasi-plane, obtained from PG(2,2) by "breaking"
one of its lines into three lines of size 2. 1

Conversely, each of these finite spaces satiefies (D2)

Note that condition (D2) can be viewed as a metrical condition on the
incidence graph-9 of S. Indeed, remember that in the incidence graph of a
linear space, any two points are at distance 2, two lines are at distance 2
or 4 according as they intersect or not, and a point and a line are at distance
1 or 3 according as they are incident or not. Therefore, condition (D2) may
be translated in the following way :
there is a non-negative integer d2 such that if u,v,w are any three vertices
01"5 with distances d(u,v) = d(u,w) = 3 and d(v,w) = 4, thenﬁ contains exactly
d, verticesksuch that d(u,t) = 1, d(v,t) = d(w,t) = 2.

This leads naturally to the more general question : what happens if we choose
other values for the distances in this condition ?

Among other things, we shall investigate the finite linear spaces satisfying
one of the three conditions (D2), (D1), (DO), which are pictured below, first
from a naive point of view, then in terms of the incidence graph.

- 25 -



II

(o)

The reason for the notations do’ d1 and d2 is clear : the letter d
reminds that the two lines L and L' are disjoint and the subscript reminds
that we count certain lines intersecting 0, 1 or 2 of the lines L and L'.

2. GRAPH THEORETICAL BACKGROUND.

Actually, the above conditions form a part of the definition of a
3-metrically regular graph. Indeed, a connected graph is called 3-metrically

regular if G is metrically regular and if for any triple (Xx,y,z) of vertices

such that d(x,y) = i, d(y,z) = j, d(z,x) = k, the number of vertices which

are at distance & from x, at distance m from y and at distance n from z

depends only on the distances i,j,k,2,m,n but not on the choice of triple
(X>¥,2)

l -
t

x 9
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These graphs have been studied quite a lot during the past few years.

For instance, Cameron, Goethals and Seidel [76] have proved that if G is a
connected 3-metrically regular graph of diameter 2, whose complement G is
also connected, then G is the pentagon, or G is of pseudo or negative Latin
square type, or G or G is a Smith graph (for more details, see [21]). On the
other hand, Meredith [45] has proved that if G is connected 3-metrically
reqgular graph of girth > 4, then G is a cycle (actually, the hypothesis of
Meredith is stronger : he assumes that for any two isometric triples of
vertices, there is an automorphism of G mapping the first onto the second;
but his proof 1s essentially combinatorial).

Such metrical conditions are satisfied by point-, line- or incidence
graphs of some classical geometries and have been used in certain characteri-
zation problems.

For instance, it follows immediately from theorems of Bose {5 ], Thas
and Payne [48] that the point-graph of a generalized quadrangle of order (s,t)
with s > 1 and t > 1 is 3-metrically regular if and only if t = 52 if and only
1f every triad has exactly s+1 centers (i.e. for any triple (x,y,z) of pair-
wise non-collinear points, there are exactly s+1 points which are collinear

with x,y and z). The point-graphs of generalized quadrangles with s 1 or

t = 1 are obviously 3-metrically reqular.

Metrical conditions have also been used to characterize some classical
generalized hexagons. Let us mention two examples. Thas [54] has proved that if
S is a finite generalized hexagon of order (s,t) with 2 ¢ t ¢ s, whose point-
graph satisfies the following condition :
for any triple of vertices (x,y,z) with d(x,y) = d(y,z) = 3, d(z,x) = 2 (resp.
d(z,x) = 3), there is at least one vertex v such that d(y,v) = 1, d(x,v)
d(z,v) = 2,
then t = s, s is a prime power, and S is isomorphic to the classical generalized
hexagon H(s) associated with Gz(s). Ronan {50] has characterized, among the
finite generalized hexagons satisfying the requlus eondition, those which are
3Dq(q) and their duals, by means of the number n which

(}

associated with Gz(q)d
counts, given any four vertices x,y,z,u with d(x,y) = d(y,z) = 6, d(x,z) =
d(u,y) = 4, d(u,x) = d(u,z) = 2, the number (if it is distinct from t+l) of
vertices v such that d(x,v) = d(z,v) = 4, d(y,v) = 2.
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3. TERMINOLOGY AND NOTATIONS FOR LINEAR SPACES.

Let S be a finite linear space and 4 its incidence graph. We shall say
that a triple (u,v,w) of vertices 0f~5 is of type (4,i,i>k) (where 4 denotes
either the puint-setcf"or the line-set £) if u€d, d(u,v) = i, d(v,w) = ]
and d(w,u) = k. For a given type (J,i,j,k) and a given triple of positive
integers (2,m,n), . the problem (J,i,j,k;z,m,n) consists in classifying the
finite non-trivial linear spaces which satisfy the following condition :
there 1s a constant ¢ such that for any triple (u,v,w) of vertices of type
tJ,i,j,k) inﬁ; the number of vertices t which are at distance 2 from u, m
from v and n from w is exactly c.

Obviously, certain choices of 4 ,i,j,k,%,m,n are absurd. An easy but rather
tedious enumeration leads to 102 problems (§,i,j,k;2,m,n) which have a sense
(i.e. such that there exists a linear space whose incidence graph contains at
least one 4-tuple (u,v,w,t) of the desired type). In the following sections,
we shall investigate the most interesting of these problems namely &f,3,4,3;
1,2,2), (£.3,4,3;1,2,4), (£,3,4,3;1,4,4), ($.1,2,1:3,4,4), (£,3,2,3;1,4,4),
(913,2,3;1,4,2) and also a problem which is trivially equivalent to (¥,3,2,3;
1,2,2).

Most of the remaining problems are easily solved and the answers are
often the Steiner systems S(2,k,v), the projective planes or some “very small”
linear spaces. However a few problems are still unsolved. For example, we have
no other characterization of the finite linear spaces satisfying condition
b?,3,4,1;3,4,4) than saying that they are the finite linear spaces in which
for any two disjoint lines L and L', the number of lines disjoint from L U L'
is a constant independent from L and L'. Note also that some of these problems
may seem rather artificial : this is due to the fact that the distances between
three vertices af~j are not always sufficient to describe completely the cor-
responding geometrical configuration in S (for instance, three lines which
are pairwise at distance 2 inﬁ may be concurrent or form a triangle in S : this
explains why the only solution of problem (£,2,2,2;1,1,1) 1s the most trivial
of all non-trivial linear spaces, namely the triangle 5(2,2,3)).

Before starting the proofs of the main results, we briefly define some
notations used in this chapter :
S will always denote a finite linear space of v points, with pointnaetép and
line-set L.
K is the set of line sizes in S
r. is the degree of the point x € S (also denoted by r if all points of 5 have

X
the same degree)
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r, = L r_ 15 the sum of the degrees of the points of L.
L xel X
Usually, the size of a 1line A,B,C, ... will be denoted by a,b,c, ... respectively.

A line G of S will be called projective if G intersects all the other lines
of S. The total number of projective lines in S will be denoted by =» and the
number of projective lines containing a point Xx by Oy (or p if this number
is independent of x).

A bisecant of two lines L and L' will be a line distinct from L and L'
and intersecting L U L' in exactly two points. A trisecant of three lines L,
L', L" will be a Tine distinct from L, L', L" and intersecting L U L' U L" in
exactly three points.

For any triple (x,L,L') where L and L' are two disjoint lines and x is a
point outside L U L', we denote by dztx,L,L') the number of lines through x
which intersect both L and L', by d](x,L,_') the number of lines through x
which intersect L but not L' and by do(x,-,L') the number of_]ines through x
which are disjoint from L and L'. Then, the conditions (D2), (D1) and (DO)
express that dz(x,L,L‘), d](x,L;L') and do(x,L,L') respectively are independent
of the triple (x,L,L").

For any triple (x,L,L') where L and L' are two intersecting lines and x

is a point outside L U L', we denote by iz(x,L,L‘) the number of bisecants of

L and L' through x, by i](x,L,L‘) the number of 1ines through x which intersect

L but not L' and by 1U(x,L,L') the number of lines through x which are disjoint

from L and L'. The conditions (12), (I1) and (I0) express that iz(x,L,L'),

11(x,L,L') and io(x,L,L') respectively are independent of the triple (x,L,L").
Note that in a Steiner system S(2,k,v), the three conditions (I0), (I1)

and (I2) are equivalent. Indeed, for any two intersecting lines L and L', the

degree of any point x outside L and L' is

r=k + i](x,L,L‘) + in(x,L,L')
=2k = 1,5(x,L,L7) + 7 (x,L,L7),

so that the constancy of one of the ij's implies the constancy of the other

two. This remark will be useful in the study of conditions (I0) and (I1). A
similar argument shows that the conditions (D0O), (D1) and (D2) are equivalent
in a Steiner system S(2,k,v).

4. LINEAR SPACES SATISFYING CONDITION (D2)

We now prove Theorem 2 stated on pages II 1-2.Throughout this proof, S
denotes a finite linear space satisfying condition (D2).
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The proof is divided into two main parts : we first investigate the case where
some additional regqularity conditions are satisfied, then we handle the case
in which S contains a projective line.

4.1. Some Additional Regularity Conditions.

Proposition 2.1. If d2 < 1, then S is a generalized projective space of dimen-
ston d. Moreover 2f d > 4, S = PG(d,1).

Proof. If d2 < 1, condition (%) (hence also Pasch's axiom) is satisfied, so
that S is a generalized projective space of dimension d.

Suppose that d > 4 and that there is a line L containing at least three
distinct points P1> Gys Gp- There exist two disjoint lines L] and L2 through
op and Y respectively. This implies d2 = |. On the other hand, since d = 4,
there is a line L' disjoint from L and there is a point p outside the 3-dimen-
sional subspace generated by L and L'. Clearly, there is no line through p
intersecting L and L'. Hence d2 = 0, a contradiction.

Thanks to Proposition 2.1, we may now assume that d2 > 2, and also that
there are two disjoint lines in S and that for any two disjoint lines there 1is
a point outside their union (otherwise S would be a generalized projective
space of dimension g 3).

First we consider the situation in which all lines of S have the same size.

Proposition 2.2. If all lines of S have size n, then S s an affine plarne

order n.
Proof. Denote by L and L' two disjoint lines of S. Counting in two ways the
number of flags (p,A) withp ¢ LUL" andL nA# P #L" nA, wve get
(v - 2n)d, = n°(n-2) ,
that 1s

(v-=n)d, = n(n

y ()
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On the other hand, all points of S have the same degree r, with

v-1 = r(n-1) ,
or
v-=n = (r-1)(n-1) . (2)

Equations (1) and (2) together imply that n-1 is a divisor of
n(n2 -2n + dz), and so n-1 divides dz—l. Using 2 < d2 ¢ n, we conclude that
d2 = n. Theréfore v = n2 and S is an affine plane of order n.

The following Lemma is crucial for our purpose :

Lemma 2.1. Any two lines L] and L2 disjoint from a given line L have the same

s1ze.

Proof. We count in two ways the number of trisecants of L, L, and L2.
If L] and L2 are disjoint, we get

|L]|d2 = [L2]d2 .

If L] and L2 have a point in common, we get
([L1| - 1)d2 = L2 - T)d2 .

In both cases |L]| = |L

2

Proposition 2.3. If S contains two disjoint lines of different sizes, then S

18 the Fano quasi—-plare.

Proof. Let X and Y be two disjoint lines of different sizes x and y, respecti-
vely. We suppose x < y. Thanks to Lemma 2.1, any line of S intersects X or Y.
Therefore, through any point p outside X and Y, there are d2 bisecants of X and
Y, y-d2 lines of size y disjoint from X and x-dz 1ines of size x disjoint from
Y. In particular, any point outside X and Y has degree x+y-d2. Since y > X 2 d2’
we have y > d2‘

Step 1. If all lines disjoint from X have a point q in common, then S is
the Fano quasi-plane.

Indeed, through any point not on X or Y there are exactly y-dz lines disjoint
from X; since all these lines pass through g € Y, it fo]luw; that y = d2+1. This
means conversely that any line through q which is incident with a point p # g
outside X, is disjoint from X. In other words, any line through q intersecting
X 1s a line of size 2. But for any line X' of size 2, there exists a line Y'
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disjoint from X' and a point p' outside X' and Y'. Therefore d2 < 2, hence
d2 =2, y=3, x=2.

Since there are at least two lines through q disjoint from X, any point
p # qQ outside X has degree x+y—d2 = 3. S0, every line has at most three points.
This implies v < 7. The assertion follows easily.

Now, let us assume that the lines disjoint from X have no point in common.
We shall get a contradiction in three steps.

Step 2. There is a positive integer z such that any line intersecting X
has size x or z with

z =1+ (v-x)/y (3)
and

y =z + (dm1)/(y-dy) - (4)

Indeed, since any line disjoint from X has size y, in our present situation,
any point outside X has degree x+y-d2. So, if we denote by dx the number of
lines disjoint from X, we have

dx = (“"KJ(Y‘dz)fy .

Let Z be a line intersecting X. If Z is not a line of size x, then - in view
of Lemma 2.1 - any line disjoint from X must intersect Z. Hence

(1Z] - 1)(y-d2) = dX’ or |Z| =1+ (v=-x)/y . (5)

Using Lemma 2.1 again, we see that any two lines disjoint from X -intersect.

Counting in two ways the number of flags (p,L), where L # Y is a line disjoint
from X and p&€ Y, we get by (5) :

yly - dz - 1) = dx -1 = (z-l)(y-dz) - 1.

Step 3. d2 =X .
Indeed, assume on the contrary d2 < x. Then any point outside X is on at least
one line disjoint from Y.
We claim that the lines disjoint from Y have no point in common. (Assume that

the lines disjoint from Y intersect in a point q. Since any point outside X

and Y is on exactly x-dz lines disjoint from Y, we have x = d2+1. This implies
that any line through q and a point of Y is a line of size 2. Also, any such
line X' is disjoint from at least one line disjoint from X. Using Lemma 2.1, we
get 2 = [X'| = |[X] = x, and so d, = x-1 = 1, a contradiction).

Like in step 2 we see that any line intersecting Y has size y or z' with

z' =1+ (v-y)/x (6)

- 32
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and
X =2' + (dz-l)/(x-dz) > z'.

The set K of line sizes of S is {x,y,z} = {Xx,y,2'} with z' < x < y. Therefore
z =z', which yields, together with (3) and (6),

(v=x)/y = (v-y)/x ,
or

(y=x)(v-y-x) = 0 .

Since x # y, we have v = x+y, contradicting the fact that S contains a point
belonging neither to X nor to Y.

Step 4. d2 F X .
Indeed, assume on the contrary d2 = X. This means that for any line L disjoint
from X and any point p outside X and L, any line through p intersecting X has
a point in common with L. In particular, any line Z intersecting X intersects
any line disjoint from X as well. So, Z has size z by the argument of step 2.
Therefore, the lines distinct from X have size z or y, according as they inter-
sect X or not. Since any line Z # X which intersects X has size z, we get

(v=x-y)x = (v-x-y)d, = x y (z-2) (7)
Moreover, for any point p on X,

(ry = 1)(z-1) = v=x (8)

Equations (7) and (8) together imply rp = y+1 .

On the other hand, the degree of any point q not on X is rq = ¥y since there is
no line disjoint from both X and Y and since d2 = X.

Next, we claim that there exist two disjoint lines intersecting X. (Assume
that there were a line, say Z, which intersects X and all lines intersectingX.
Counting the number of flags (p,L) withp g X UY,peZandLnX#Z0#LnY,
we would get

(2-2)(dy)-1) = (x-1)(y-1)
that is y = z-1 < z, contradicting (4)).

Denote by Z and Z' two disjoint lines intersecting X. Lemma 2.1 states that
any line L disjoint from Z U Z' has size z. By (4), z # y, so L intersects X
and therefore L meets Y. Counting in two ways the number of lines disjoint from
L UZ', we get

(x=2) (y+1-2z+x) = (y-2)(y-2z+x)
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hence

(y=x)(x+y=2z) = x=-2 ,
therefore

y-x|x-2 .
But (4) implies that

y=-x|x-1
SO
y = X+]

and (4) y%e]ds z = 2.

Since any line intersecting X has size 2, no line through a point p outside
X UY can intersect both X and Y, a contradiction.

By steps 1, 3 and 4, Proposition 2.3 is proved.

4.2. The case of projective lines.

In view of Propositions 2.2 and 2.3, we may suppose from now on that S
contains lines of different sizes, and that any two disjoint Tines have the
same size.

Lemma 2.2. There 1s at least one projective line in S.

Proof. We assume that for any line L of S there 1s a line disjoint from L.

Llet M be the maximal and m the minimal size of a line in S. Denote by
X, X' (resp. Y, Y') two disjoint lines of size M (resp. m). Some obvious
counting yields

ME(m-2) < (v-2M)d, (9)
and

(v-2m)d,, ¢ m“(M-2) .
Together

ME(m-2) + 2 d,(M-n) < m(M-2) ,
or

Mm(M-m) + 2d,(M-m) < 2(M-m€) = 2(Mem) (M-m).

Dividing bj M-m > 0 gives

Mmn + 2 d, ¢ 2(M+m) .

2
therefore
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0 ¢ (M-2)(m-2) = Mm - 2(M+m) + 4 < Mm - 2(M+m) + 2d2 g 0.

Hence m = d2 = 2, and all the above inequalities are in fact equalities. In
particular, equality holds in (9), so v = 2M, a contradiction.

With the following proposition, Theorem 2 is proved.

Proposition 2.4. S 1s a punctured projective plane or an affine plane with one

roint at tnfintty.

Proor. By Lemma 2.2, there exists a projective line G of size g. Let L and L'
denote two disjoint liness necessarily of the same size ¢. Counting in two ways
the number of flags (p,X) withp g L UL', p € G, where X # G is a line inter-
secting L and L', we get

(9-2)(dy=1) = (2-1)

This implies that all projective lines have the same size g and that all non-

. (10)

projective lines have the same size 1.

The proof of Proposition 2.4 will fgllow in a series of steps.

Step 1. There are at least two projective lines in S.
Indeed, assume that there is only one projective line G in S. Then any line
through a point q outside G is a 1ine of size 2 and any line different from
G through a point p on G is a line of size g as well. Therefore

rq(£~1) = v-1 = g—1+(rp-1)(i-]).

Hence g-1 i1s a divisor of g-1, and so g2-1 and g-2 are relatively prime. Now

(10) implies that (3-1)2 divides dE—T, a contradiction.

Step 2. If all projective lines pass through a common point o, then S
is an affine plane with one point o at infinity.
Indeed, since there is more than one projective line, any point p # o has
degree g. So, throggh any such point p there is the same number of projective
lines; 1in particular, the set of projective lines is precisely the set of Tines
through o. Hence

v-1 = rﬂ(g-l)
On the other hand, if p denotes a point different from o, we have
v=1 = g-1 + (r_-1)(2-1) = g-1 + (g-1)(2-1) = (g-1)2

Together 1t follows that o has degree 2.
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If L and L' are two disjoint lines, none of them passes through o. On
the other hand, any of the 2 lines through o is projective. Therefore d2 = Q.
By (10), this implies g = ¢+1, hence v = £2+1. Consider the incidence structure
S-{o},which consists of all points of S, except 0. We have just seen that S-{o}
is a linear space with 22 points, in which any line has exactly 2 points.
Therefore, S-iojis an affine plane. Then, obviously, S itself is an affine plane
with one point o0 at infinity.

Step 3. Suppose that for any point p of S there is a projective line not
through p. Then S is a punctured projective plane.
Indeed, in the present situation, any point of S has degree g. Let us denote
by m the total number of projective lines and by p the number of projective
lines through a point. Clearly, the following equations hold :

mg=Vo (17)

v-1 = p(g-1) + (g-p)(2-1) = g(2-1) + o(g-2) (12)

m=1 = g(p-1) (13)
Equations (11) and (13) imply

Vo = (9(p-1)+1)g (14)

Using (12), we get
(o(9-2) - (9-1))(p-g) = 0
If o=g; S would be a projective plane, hence
o = (9-1)/(g-2) (15)

Next, we claim that g = ¢+1. In order to prove this, denote by g and n

the unique non-negative integers with
g=qetn and O gn< g .

From (15) we deduce that g-g divides ¢-1. Therefore
Qe +n -2 | 2-1,

in particular
ge + n-g g 2-1 ,

which implies q=1. So, n divides 2-1. Denote by t the positive integer such

that nt = ¢-1.

From (10) we infer that g-2 2%

p4#n-2 = n(t+1)-1 divides (2-1)¢ = n°t°. But

1

n(t+1)-1 | (n(t+1)=-1)n(t-1) = n%t% - n® - n(t-1) ,

- 36 -
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therefore

n(t+1)-1 | n(n+t-1) ,
hence

n(t+1)-1 | n+t-1 ,
and son < 1. Since nt = 2-1 # 0, it follows that n = 1, i.e. g = g+]1.

Now (10) implies d, = 2, (15) yields p=2, and by (14) we have v = 2%+2. In
particular, it follows that the lines of size ¢ form a "complete parallel class"
of S. Introducing one new point which is incident precisely with the lines of
size ¢ of S, it is easy to see that this new linear space is a projective plane

of order 2. Thus S is a punctured projective plane.

5. LINEAR SPACES SATISFYING CONDITION (D1).

L

Ll

(D1) there s a non-negative integer dl such that for any ordered pair of
disjoint lines L, L' of S and any point x outside L U L', there are exactly

dy lines through x intersecting L but not L'.

The finite linear spaces satisfying (D1) are classified in [27]:

Theorem 3. If S ts a finite non-trivial linear space satisfying condition
(D1), then one of the following occurs :
(1) S 78 an affine plane, an affine plane with one point at infinity, a

punctured projective plane or a (possibly degenerate) projective plane,

(1) S e a 3-dimensional projective space PG(3,d,) ,
(111) S 78 a 3-dimensional generalized projective space P(3, k+),

I (1v) S 28 a degenerate projective space PG(d,1), d > 2 .

| Conversely, each of these finite spaces satisfies (D1).

I .

Comparing Theorems 2 and 3, we observe that condition (D1) is stronger than

condition (D2). - 37 -
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Let S denote a finite linear space satisfying (D1). The proof of Theorem 3
uses the following lemmas :

Lemma 3.1. If dy = 0, then S is & semi-affine plane.

Proof. Let L be a 1line and x a point outside L. If x is on two Tines L' and L"
both disjoint from L, then any point y # x on L" is on at least one line (namely
L") intersecting L' but not L, contradicting d] = 0. Therefore, for any line L
of S, any point outside L is on at most one line disjoint from L. In other words,
S 1s a semi-affine plane, and so, since S is finite, we know by (16) that S 1is

an affine plane, an affine plane with one point at infinity, a punctured pro-
jective plane or a (possibly degenerate) projective plane.

Lemma 3.2. If S is the union of two of tts lines and ©f d] > 1, then S is either

a degenerate projective plane or a generalized projective space P(3, k+1).

The proof is very easy and will be omitted.

Thanks to these lemmas, we may assume from now on that
(A) d] > | and for any two lines of S , there is at least one point outside

thetr union.
Lemma 3.3. Any two disjoint lines have the same size.

Proof. Let L and L' be two disjoint lines. The degree of every point x ¢ L U L'
is

ro = [L] +dy +d (x,L',L)

L] +dy +d (x,L,L"),

and so L| = |L"]

Lemma 3.4. If S contains non-projective lines of distinet sizes, then for
every potnt X of S and for every size L of a non—-projective line, there are

two disjoint limes of size L not containing X. Moreover, L > 3 d].

Since & is the size of a non-projective line, we conclude from Lemma 3.3
that S contains at least two disjoint lines of size ¢, and so there is a non-
projective Tine L of size 2 not containing x. Suppose that all lines disjoint
from L pass through x. Since L is non-projective, there is at least one line
L' disjoint from L. Thanks to the assumption (A), we know that there is at
least one point y ¢ L U L' and one line L" disjoint from L passing through y.

- 38 -



[I.16

L' and L" have size 2 by Lemma 3.3 and have the point X in common since we
have assumed that all lines disjoint from L intersect in x.

Let h # 2 be the size of a non-projective 1ine. We conclude again from Lemma
3.3 that S contains at least two disjoint Tlines H] and H2 of size h. If

X § Hy UH,, then it follows from the assumption d; > 1 that x is on at least
one line H, disjoint from H,, and by Lemma 3.3, H, has size h. Therefore there
is a line H of size h passing through x. If h = 2, Tet H' be a bisecant of L
and L' disjoint from H. By lemma 3.3, H' has size h = 2, and so H' is disjoint
from L". Hence, by Lemma 3.3 again, H' has size %, contradicting 2 # h. There-
fore h > 2 and H contains a point y ¢ L U L'. Since d] > 1, we conclude that y
is on at least one line disjoint from L and not containing x, contradicting the
assumption that all lines disjoint from L contain X.

Therefore there exist two disjoint lines L, L, of size £ not containing
X and two disjoint lines Hl’ H2 of size h not containing x. The point x is on
at least 2 d] lines disjoint from H1 or H2 and so, by Lemma 3.3, X is on at.
least 2 d1 lines of size h. Moreover, x is on exactly 2 - d1 bisecants of Ly
and L2, so that, by Lemma 3.3 again, x is on at most 2 - d1 lines of si1ze h.
Therefore 3 d1 < L.

Lemma 3.5. ALl non-projective lines have the same size.

Proof. Suppose that S contains non-projective lines of distinct sizes a and b,
with a > b.

[f S contains three pairwise disjoint lines A, A', A" of size a, and 1f B
is a line of size b, then, by Lemma 3.3, every 1ine of size a (in particular
every line disjoint from A) intersects B. Therefore, counting in two ways the
number of lines intersecting A' but disjoint from A and from A'n B, we get

(b-2)dy = I (r, -a-1) ,
x€A'-(A'NB)
where
ro=at d] + dD(x,A,A‘) > a + dy + ]
and so

(b-2)d; > (a-1)d,

and, since dl > 0,

b > a+l, contradicting the assumption a > b.
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Therefore S does not contain three pairwise disjoint lines of size a,
and so for any triple (x,A,A') where A,A' are two disjoint lines of size a
and x € A UA', do(x,A,A') = 0. By Lemma 3.4, we conclude that every point
x of S has degree

r=r =a+d . (1)

Let B and B' be two disjoint lines of size b and let A be a line of size a.
We know by Lemma 3.3 that every line of size b (in particular every line
disjoint from B) intersects A. Therefore, counting in two ways the number of
lines intersecting B' but disjoint from B and from B n A, we get

-2)d, = - b-1) ,
e xEE'-(B’nA) "X )

(a-Z}d] = (b-1)(a + di - b-1)

or equivalently

(a-b-1)(d, - b+1) = 0 .

:

Since by Lemma 3.4, b > 3 d} and since d1 > 1, we have d1 - b+1 # 0. There-
fore a = b+1. Let A' be a line disjoint from A. Counting in two ways the number
of lines intersecting A' but disjoint from A and A' n B, we get

(b-2)d; = (a-1)(r-a-1) ,

and so, using (1) and a = b+1, we conclude that b = 2 d], contradicting Lemma 3.4.

Proof of Theorem 3.

Let L, L' be two disjoint lines and let x be a point outside L U L'.
Counting the lines containing x and intersecting L, we get

L] = dy(xsLsL") + dy

from which it follows, by Lemma 3.5, that dz(x,L,L') is independent of the

triple (x,L,L"). In other words, condition (D2) is satisfied. Theorem 3 follows
now easily from Lemmas 3.1, 3.2 and Theorem 2.
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6. LINEAR SPACES SATISFYING CONDITION (DO).

L d

I
|t

(D0) there s a non-negative integer d0 such that for any two disjoint lines
L,L' of S and any point X outside L U L', there are exactly d0 Llines through

X disjoint from L U L'.

The finite linear spaces satisfying (DO) with clD > 0 are classified in

Theorem ¢ [24]. If S 18 a finite non-trivial linear space satisfying
condition (DQ) with d, > 0, then one of the following occurs :

(1) S 28 an affino-projective plane (but not an affine plane with
one point at infinity),

(11) S 78 an affine plane of order > 3 from which either one point or |
one line has been removed,

(1i11) S ©s a 3~dimensional projective space PG(3,q),

(iv) S Zs a generalized projective space P(2, k+1), P(3, k+k) or
PG(d,1) with d > 2

Conversely, each of these finite spaces satisfies (D0) with dn > 0.

. - R

We assume here that the parameter d0 is non-zero while in (D2) and (D1)
we have also considered the case where the parameter was zero. We have no
classification of the finite linear spaces which do not contain three pair-

wise disjoint lines.

Proof of Theorem 4.

Let S be a finite non-trivial linear space satisfying condition (DO)
with dD > 0. During the proof, we always assume that S is not the union of
two of its lines, because otherwise, as it is easily seen, S would be a dege-
nerate projective plane P(2, k+1) or a generalized projective space P(3, k+k)
consisting of two lines of the same size k.

We divide the proof into three cases, according as d, = 1, or do > 1 and

S contains a projective line, or cl0 > 1 and S contains no projective line.
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6.1. The case do = 1,

Proposition 4.1. I}’d0= 1, then one of the following occurs

- S 18 a generalized projective space of 6 points, either P(3, 3+3) or PG(5,1)
- S 78 an affino-projective plane (but not an affine plane with one point at
infinity)

- S 18 an affine plane from which either one point or one line has been removed.

Proof. If for any line L of S and any point p ¢ L, p is on at most one line
disjoint from L, then S is a finite semi-affine plane, and so, by (I16), S is

a projective plane, a punctured projective plane, an affine plane or an affine
plane with one point a infinity (the last case is easily ruled out).

Assume now that there are two intersecting lines L1 and LZ’ both disjoint
from a line L of S. Since d, = 1, the line Ly (resp. Lz) determines a partition
Aq (resp. 52) of the points of S-L into lines. On the other hand, any two lines
Li € 4 and Lé 3 azrmust intersect, otherwise a point of'Lé would be on at least
two lines disjoint from L U Li. Therefore all lines of A (resp. 52) have the
same size [L,| (resp. |L,|). Moreover any line L' ¢ 4, U a, distinct from L is
disjoint from at most one line of B (i = 1,2) : indeed if on the contrary L'
1s disjoint from two lines L% and Lg of b s then any point of L' inside S-L is
on at least two lines disjoint from L% U L?, contradicting cl0 = 1. Therefore
L] = Lyl or [Lq] = L] + 1.

1°) Consider first the case |L,| = n, |L2[ = n+l. In this case, S-L is a set
of n(n+1) points partitioned by 81 into n+l lines of n points and by b, into
n lines of n+1 points. Any line L' ¢ &y U by (L' # L) intersects at least n
lines of A and at most n lines of‘az, therefore L' contains exactly n points
of S-L and is disjoint from exactly one line Li € 4y- [f L' is disjoint from
L, then any point of L' is on at least two lines disjoint from L U Li, a con-
tradiction. Therefore any line L' ¢ 8y U 4, (L' # L) intersects L and has size
n+l.

Let p be a point of S-L. Counting in two different ways the number of
pairs (q, L') where L' is the line <p,q>, we get

n(ntl) = 1 + |L] = (n=1) + n + |L|n

and so |L| = n. Thus the lines of size n partition S and all other lines have
size n+l. Completing the lines of size n with one new point x, we define a
linear space S U {x} of (n+1)2

is an affine plane of order n+l. Therefore S is an affine plane from which

points in which all lines have size n+l, that

one point Ras been removed.
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2°) Consider now the case IL]| = IL2| = n. Then S-L has n° points and the lines
intersecting L have size n or n+l. Let p be a point of L. Counting in two ways
the number of pairs (q,L') where <p,q> = L' # L, we get

2 - -

n 'rp,n ("U"'rp,nﬂ n (1)

where ro.n (resp. "o n+1) denotes the number of lines of size n (resp. n+1)

intersecting L in p. It follows that n divides rp n and rp n € 2n.
I[f there is a point p € L such that rp - 2n, then (1) implies that n=2
and rp nel = 0. Thus S-L consists of 4 points x,y,z and t. If there is a line

L' distinct from L, of size greater than 2 (hence of size 3), say L' = {x,y.q},
then <z,t> = {z,t,q} (otherwise there would be no line through p disjoint from
the two disjoint lines <x,y> and <z,t>), and so S is the union of the three
lines <p,q>, {X,¥,q} and {z,t,q}, but there is no line through q disjoint from
the disjoint lines <x,z> and <p,t>, a contradiction. We conclude that all lines
of S distinct from L have size 2. Therefore, since clD = 1, S is the generalized
projective space PG(5,1) in which all lines have size 2.

If rp,n = 0 for every point p € L, then the linear space of n2 points
induced on S-L has only lines of size n, and so it is an affine plane of order
n. Therefore S 1s an affine plane A completed with at most n-1 points at infi-
nity, since A has n+l directions of lines and since the lines of at least two
directions by and b, are disjoint from L. In other words, S is an affino-pro-

jective plane of order n which is not a semi-affine plane.

We may now assume that r = 0 or n for every point x of L and that

= 1.

X,N

rp q =N for some point p € L. Hence, thanks to (1)

? rp,n+]
We first examine the case n = 2. Then S consists of the points of L, to-

gether with four additional points x,y,z,t. We know that the point p is on

exactly one line of size 3 distinct from L, say {p,X,y}. If L contains a

point q # p not belonging to the line <z,t>, then there is no line through g

disjoint from {z,t} U {p,x,y}, a contradiction. Therefore S is the generalized

projective space P(3, 3+3) consisting of two disjoint lines of size 3.

Finally, suppose that n > 3. Consider the linear space induced on S-L.
The lines of S disjoint from L, together with the restrictions to S-L of the

lTines of S intersecting L in a point y for which r = 0, determine k parti-

y,n
tions of S-L into n lines of size n (k > 2). On the other hand, the restric-

tions to S-L of the lines intersecting L in a point x for which ren =0
determine h partitions of S-L into n lines of size n-1 and one line of size n
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(h > 1 is the number of points x € L for which ren = n). Counting in two ways

the number of ordered pairs of distinct points in the linear space S-L, we get
n2(n241) = k n?(n-l) + h n(n-1)(n-2) + h n(n-1)

that is n(n+l) .= k n + h(n-1).
Therefore n divides h and, since h > 1, we have n < h, which, together with
K > 2, implies

n(n+tl) > 2 n + n(n-1).

This inequality being in fact an equality, we conclude that k=2 and h=n. In

other words, r,  # 0 for every point x of L and IL| = h =n.

Now we construct from S a bigger linear space in the following way : we add

a new point to L, as well as to each line of bys these n+l new points forming
a new line N. We also add the new point of L to all lines of By - Finally, to
each line L' of size n intersecting L, we add the new point of the unique line
of Ay disjoint from L'. The space S U N constructed in this way is a linear
space. Indeed, if two lines of S of size n intersecting L in a given point x
are both disjoint from the same line Li € 4q; then one of the lines through x
must contain at least two points of Li, contradicting the fact that S is a

linear space. On the other hand, if two lines L', L" intersecting L in distinct
points x', x" are both disjoint from a line Li € 5, and intersect in a point z
of S, then there is no line through x" disjoint from L' U Li, contradicting the
hypothesis.

Since S U N is a linear space of (n+])2 points in which all lines have size
n+l, it is an affine plane of order n+l. Therefore S is an affine plane from

which one line has been removed.
6.2. The case dﬂ > 1 with a projective line.

From now on, we always assume d > 1.

Lemma 4.1.
(i) If A and B are two disjoint lines and if C 1s a line disjoint from A U B,
then

(a-b)(c+d0) =r, - rg
(11) If A and B are two intersecting lines and tf C is a line disjoint rrom
AU B: then

(a~b)(c+dn+1) =ry - Trg
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Proof. If L and L' are two disjoint lines and if p is a point outside L U L',
we have

ry = L] + L] = do(psLsL’) + d (2)
Counting in two ways the number of trisecants of A, B and C, we get

(i) if A and B are disjoint

L dz(x,B,C) = I dz(y,A,C)
X€EA yeB

that is, using (2),
a(b+c+dn) =Py = b(a+c+du) - Ty

or (a-b)(c+d ) =ry - rp

(11) 1f A and B intersect in z

L dz(x,B,C)'= z dz(y,A,C)
X€EA yeB
X#2Z Y#2

that is, using (2),
(a-1)(btc+d]) = ry = (b-T)(a+c+d ) - rp or
(a—b)(c+d0+1) =ry-rg.

Corollary 4.1. If AR and B are two lines of differerit sizes, then all lines

disjoint from A U B have the same stize.

Corollary 4.2. If the lines A and B have the same size and if there is a line
disjoint from A U B, then ry = rp .

Lemma 4.2. If two disjoint lines A and B have different sizes, then all lines
disjoint from A U B have the same size, equal either to a or to b.

Proof. Suppose that there is a line C disjoint from A U B, of size ¢ # a,b.
By Corollary 4.1, all lines disjoint from A U B have size ¢ and they intersect
each other (otherwise A and B would have the same size). So there are c(s-1)+1
such lines. Counting in two ways the number of pairs (p,L) where L is a line
disjoint from A U B and p € L yields

(v-a—b)d0 = (c(do-])+1)c
that is

(v-a-b-c)d_ = -cP+c (3)
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By the same argument, all lines disjoint from A U C have b points and inter-
sect each other, so that

(v-a-b%-c)d_ = - b + b (4)

Subtracting (4) from (3), we get

(b2 - c2 +C - b)dU = bz - cz +c-~-b.

Since dD > 1, we must have
(b-c)(b+c) = b-c .

But b # ¢, and so b+c = 1, a contradiction. Therefore any line disjoint from
A UB has size a, or b, and Corollary 4.1 ends the proof.

Lemma 4.3. If S contains a projective line G of size g and if S 18 not a dege-
nerate projective plane, then q > 4 is the size of any projective line of S,
as well as the degree of any point outside a projective line. Moreover, the

8i3e of a.non-projective line is less than g-1.

Proof. Consider two disjoint lines A and B. Since d, > 1, there is a point p
outside A U B U G. The degree of p is equal to g because p is outside the
projective line G and it is greater than a+l since there are at least d0 > 1
lines disjoint from A through the point p outside A U B. So g > a+1 and in
particular g > 4. Moreover, any projective line G' different from G has size
g : indeed, the degree of any point outside G U G' is |G| = |G'| = g.

Proposition 4.2. If S contains a projective line; then S is a projective plane.

Proof. It suffices to prove that any two lines intersect. Assume on the
contrary that S contains two disjoint lines A and B. Let x and y be the points
of intersection of A and B with the projective line G. Let C be a line disjoint
from A U B, intersecting G in a point z. Counting in two ways the number of
pairs (p,L) where pe L nGandL n (AUC) =@, we get

(g-2)d, = [£] = (r +r_-1) - (a+c-2)(g-2) + (a-1)(c-1) (5)

where |L| denotes the total number of lines in S.
Considering the disjoint lines B and C, we have similarly

(g-Z)dﬂ = [L] - (fy+rz-1) - (b+c-2)(g-2) + (b=1)(c-1) (6)
Subtracting (6) from (5), we have

re - ry = (b-a)(g-1-c) )
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On the other hand, Lemma 4.1 gives

(a-b)(c+d ) = (a-1)g + re - (b-1)g - ry

or r, - ry = (a-b)(c+d0-g) (8)

Subtracting (8) from (7) yields
(b-a)(dﬁ-l) =0

which implies b=a since dn > 1, moreover Py = Ty thanks to (8). Thus any two
disjoint lines have necessarily the same size and all points of G have the

same degree r.

If n denotes the common size of two disjoint lines,

(g-2)s = |£] - (2r-1) - (2n-2)(g-2) + (n-1)° (9)
Solving for n, we get

n=g-1+/§

where § is the discriminant of equation (9).
Since n < g-1 by Lenma 4.3, n is uniquely determined, and so all non-projective
Tines have the same size n.

o) Suppose first that G is the only projective 1line in S. The total number of
points in S is easily seen to be

g+ (r-1)(n-1) =1 + g(n-1)

(count the points on the lines passing through a point of G, or through a
point outside G). It follows that n-1 divides g-1.

Given two disjoint lines A and B-and a point p of G outside A U B, the
number of bisecants of A and B through p does not depend on p € G and is equal
tot = dz(p,A,B) = 2n + do-r ¢ n. Counting in two ways the number of pairs
(PsL) where pe GnL,pg AUBandL nNA# ¢ #L nB, we get

(n-1)% = (g-2)(t-1)

2

Since n-1 and g-2 are relatively prime, (n-1)° divides t-1, in contradiction

with t < n.

8) Suppose now that there are at least two projective lines in S. If all pro-

Jective 1ines have a point p in common, then, since d_ > 0, there is at Teast

0
one non-projective 1ine L through p. Let G be one of the projective lines.
Consider two points x and y distinct from p and lying respectively on L and G.
Counting in two ways the number of pairs (q,L') where g # x and <g,x> = L'

(resp. q # y and <g,y> = L'), we get .
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v=1 = (n-1) + (g-1)(n-1) = g-1 + (g-1)(n-1)
and so n = g, contradicting n < g-1. Therefore the projective lines of S have
no point in common. This implies that all points of S have the same degree g.

Thus for any two disjoint lines A and B and for any point p outside A U B,
the number of bisecants of A and B passing through p is dz(p,A,B) = 2n + dD - g,
which is independent of the triple (p,A,B), and so S satisfies condition (D2).
Proposition 4.2 follows now easily from Theorem 2.

6.3. The case dn > 1 with no projective line.

Lemma 4.4. If. there is no projective line in S, then two disjoint lines have

always the same size.

Proof. Suppose on the contrary that A and B are two disjoint Tines with diffe-
rent sizes a and b. By Lemma 4.2, we know that all lines disjoint from A U B
have the same size, equal either to a or to b. It is no loss of generality to
assume that this size is b. Then Lemma 4.1 yields

_(a-b)(b+d0) =Ty - g

Now we shall give a proof in three steps :

(14)

Step 1. All lines disjoint from A have size b.

Suppose on the contrary that there is a line C disjoint from A and of
size ¢ # b. Lemma 4.2 implies that C intersects B, as well as any line dis-
joint from A U B. Thus, counting in two ways the number of pairs (p,L) where
p €L and L is disjoint from A U B, we get

(c—])d0 b = (v-a-b)d0
that 1is
cb = v-a (15)

Therefore ¢ is uniquely determined and the only possible sizes for the lines

disjoint from A are b and c. This implies that the size of any line disjoint

from A U C is either b or c. We show that b is impossible. Indeed, if a # c,

this: 1s obvious by Lemma 4.2; if a = ¢, suppose on the contrary that there is
a line B' of size b disjoint from A U C. Then Lemma 4.1 gives

(a-b)(a+dﬂ) = ry - Tp

but Corollary 4.2 implies that
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and soO

(a*w(a+du) =r, - rg
contradicting (14).
Since any line disjoint from A U C has size ¢, by Lemma 4.1,

(a-c)(c+d0) =rp - re (16)

On the other hand, since A is disjoint from the two intersecting lines B and
C, Lemma 4.1 yields

(b-c)(a+du+1) =rg - Tre (17)
Subtracting (17) from (16) and using (14), we get

(a-c)(c+d0) - (b-c)(a+du+l) = (a-b)(b+dﬂ)
that 1is

(b-c)(b+c-1-2a) = 0

and, since b # ¢

2a = b+c-1 (18)
Now (15) becomes

vie2ab-b%+a+b (19)
or v=2ac-ct+a+ c (20)

Let D be a line of size d intersecting A. We shall prove that d = a. If on _
the contrary d # a and if there is a line B' of size b disjoint from A U D,
then, by Corollary 4.1, D intersects all 1ines of size ¢ disjoint from A.
Counting in two ways the number of pairs (p,L) where L is disjoint from A U C
and p € L, we get

(d-2)d, ¢ = (v-a-c)d,
Therefore
d = (v-a+c)/c = b + 1 thanks to (15).

According to Lemma 4.2, the size of all lines disjoint from B' U D is either b
or d = b+l. In particular, there are lines disjoint from B' U D and intersec-
ting A, which have necessarily size a or b+l because they intersect A and we
have just seen that if d # a is the size of a line intersecting A, then d = b+l.
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Therefore, since a # b, all lines disjoint from B' U D have size b+1. On the
other hand, A being disjoint from the lines B and B' of the same size b, Corol-
lary 4.2. yields

which, together with (14) and Lemma 4.1, implies that all lines disjoint from
A UB' have size b. Therefore A intersects any line disjoint from B' U D.
Counting in two ways the number of flags (p,L) where L is a line disjoint from
B* U D, we get

(a-I)d0 (b+1) = (v - 2b - 1)d0
and, using (19),
b(a-b) = 0, a contradiction.

This implies that if d # a, D intersects all lines of size b disjoint from
A. In particular, D intersects B and all lines disjoint from A U B. Then, coun-
ting in two ways the number of flags (p,L) where L is a line disjoint from A U B,
we get

(d-2)d, b = (v-a-b)d,

Therefore
d = (v-a+b)/b = c+1  thanks to (15).

We have seen that if a 1ine of size d # a intersects A, C and all lines disjoint
from A U C, then d = b+1. Since b # ¢, we conclude that there is a line C' of
size ¢ disjoint from A and D. By Lemma 4.2, the size of all lines disjoint from
DUC" is either ¢ or d = c+]l. But some of these lines meet A and therefore

have size a or c+l. If a # ¢, then all lines disjoint from D U C' have size

c+1, and so cannot be disjoint from A U C'. Therefore all these lines inter-
sect A. Counting in two ways the number of flags (p,L) where L is disjoint

from D U C', we get

(a-1)d, (c+1) = (v-2¢c-1)d,

and, using (20},

c{a-c) = 0, a contradiction.

1}

Therefore a = ¢ and, by (18),

b = a+] = c+] (21)

It follows that a and b are the only line sizes in S. For any point p of S,

we denote by e, the number of i1ines of size a through p. Counting in two ways
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the number of pairs (q,L) where q # p and <q,p> = L, we get
-1 = - - -
v a (a=1) + (rp up)(b 1)
which, using (19) and (21), can be written

a(a+2) - 1 = a, (a-1) + (rp - up)&

or a(a+2—rp) =1- a (22)
Therefore a divides up-l. Let m be the positive integer such that

ma = Gy - ] (23)
(22) yields

r =a+2+m (24)

P
Consider a line B' of size b = a+1 not passing through p and note that p is

on at least du lines disjoint from B'. We have

r = a+2+4m > b+d = a+l+d > a+3 (25)

and som > 1. (23) and (24) imply that the number of lines of size b through
p is

rp -y " lfm+a(1-m) > 0

Therefore if a > 4, then m = 1 and, using (25) and (24), we get

rp = a+3 = b+dO

for any point p of S. We conclude that any line intersecting A meets B. There-
fore, if p € A, then A is the only line disjoint from B through p, contradic-
ting da > 2.

If a=2, thenb = 3 and (19) gives v = 8. Similarly, if a = 3, then b = 4

and v = 15, But these values of v are incompatible with the fact that through
any point p ¢ A U B, there are at least two lines of size b disjoint from A U B.

Thus we have proved that all lines meeting A have a points. Let A' be a
Tine meeting A. If A' is disjoint from a Tine B' of size b (necessarily disjoint
from A), Corollary 4.2 gives

I"A = T"A.

since B' is disjoint from A U A', and

FB - PB;

since A is disjoint from B U B'.

- 51 -



I1.29

Then Lemma 4.1 and (14) imply that all lines disjoint from A' U B' have size b,
contradicting the fact that some of these lines meet A.

Therefore A' meets B and all lines disjoint from A U B. Counting the
number of flags (p,L) where L is disjoint from A U B, we get

(a-2)dO b = (v-a-b)d0

and so, using (19), a = b-2
and, using (18), ¢ = b-3

In particular, a # c. Now we claim that A' meets C and all lines disjoint from
A U € (indeed, suppose, on the contrary, that one of these lines, say C', is
disjoint from A'. Corollary 4.2 and relation (16) imply that all lines disjoint
from A' U C' have size ¢, contradicting the fact that some of these lines meet
A and that a # c). Counting in two ways the number of pairs (p,L) where L is
disjoint from A U C and p € L, we get

(a-Z)d0 C = (v-a-c)d0

and so, using (20), a = ¢-2
which, together with (21) implies b = ¢, a contradiction.

This ends the proof of step 1. From now on, we may assume that
(%) in any pair of disjoint lines of different sizes, one of the lines has the
property that all lines disjoint from it have the same size.

Step 2. a and b are the only two line sizes in S.

It suffices to prove that any line D intersecting A has size a or b.
Suppose on the contrary that the size d of D is different from a and b. We
shall prove that D intersects all lines disjoint from A. Indeed, if there is
a line B' disjoint from A U D, then the size of all lines disjoint from D U B'
is either b or d. Assume first that this size is b. Then Lemma 4.1 yields

(d—b)(b+d0) =Trp - g

Subtracting this from (14), we get

(a-d)(b+d0) =Ty - rp

On the other hand, Lemma 4.1 gives

(a-d)(b+du+1) =r, - r,

since B' is disjoint from the two intersecting lines A and D. These last two
relations are contradictory. Therefore all lines disjoint from D U B' have
size d, and so they intérsect A. Counting in two ways the number of flags
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(p,L) where L is disjoint from D U B', we get
(a-1)d, d = (v-b-d)d_ .

Note that all lines disjoint from A U B' intersect D; then a similar counting
argument yields

(d-])d0 b = (v-a-b)dO
Subtracting these two relations and simplifying by do’ we get
d(a-b) = a-b

Hence
d=1, a contradiction.

Thus D intersects any line disjoint from A. In particular, D intersects
B and all lines disjoint form A U B. Counting in two ways the number of flags
(p,L) where the line L-is disjoint from A U B, we get

(d-2) b = v-a-b

which shows that d is uniquely determined. Therefore there are exactly three
line sizes in S, namely a, b and d.

Since D meets all Tines disjoint from A, any line C disjoint from D
intersects A. We shall prove that C intersects also B. This has already been
proved if C is of size d. Suppose now that C has size a and is disjoint from
B. Then Corollary 4.2 yields

Fa = Te
Together with (14), this implies

(a-b) (b+s) = re = rg

which means, by Lemma 4.1, that all lines disjoint from C U B have size b.
Thanks to assumption (%), we conclude that all lines disjoint from C have
size b, contradicting the fact that D and C are disjoint.

Thus if C is disjoint from B, C has size b. Since there is a line disjoint
from B U C, Corollary 4.2 yields

-
—

rg = re -
Applying Lemma 4.1 to the line B disjoint from the two intersecting lines A
and C, we get

(a—b)(b+d0+1) =Ty - rp
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These two relations contradict (14), and so any line disjoint from D intersects

both A and B. Let C be such a line. Counting in two ways the number of lines
disjoint from C U D, we get

(a-2)d, = (b-2)d,

Hence a = b, a contradiction. Therefore any line intersecting A has size a or b.

Step 3. Let C be a line intersecting both A and B. Any line D disjoint
from C and intersecting A U B meets A and B.

In order to prove this, we shall consider several cases, according to the sizes
of C and D.

(i) If D has size a, then we already know that D intersects A.

(i1) If C has size a and if D, intersecting A, has size b, then D meets B.
Indeed, suppose on the contrary that D and B are disjoint. Lemma 4.1,
applied to the Tine B disjoint from the two intersecting lines A and D,
yields

(a—b)(b+d0+1) =TIy = Irp

and Corollary42 implies that

but these two relations contradict (14).

(i11) If C has size a and if D, intersecting B, has size b, then D meets A.
Indeed, suppose on the contrary that D and A are disjnint. Corollary
4.2 yields ry = Te and rg = rp -
Let E be a Tine disjoint from C and D, through a point p € A. These last
two relations, together with (14), imply that E has size b. Moreover, by
Corollary 4.2,

re = rp=rg.
Lemma4.] applied to the line D disjoint from C U E (resp. A U E) yields

(a-h)(b+d0) =r

| C""ET A" "B
and (a—b)(b+dﬂ+1? =ry - rp=r,-rg
These two relations contradict each other.

(iv) If C has size a and if D.'jntersecting A, has size a, then D meets B.
Indeed, if on the contrary B is disjoint from D, Corollary 4.2 yields

o
———

I”A rD'
which, toegether with (14) and Lemma 4.1 applied to the disjoint lines B
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and D, implies that all lines disjoint from B U D have size b. Therefore,
thanks to assumption (%), we conclude that any line disjoint from D has
size b, contradicting the fact that C is disjoint from D.

(v). If C and D have size b and if D intersects B, then D meets A. Indeed,
if on the contrary A and D are disjoint, Corollary 4.2 yields

8 = "D

and

"¢ = "D
Lemma 4.1 applied to the line D disjoint from the two intersecting lines
C and A yields

(a-b)(b+uo+1) =ry - e =1y

in contradiction with (14).

(vi) If C and D have size b and if D meets A, then D meets B. Indeed, if on
the contrary D and B are disjoint, then

'8 = Tp

and, using Lemma 4.1, we get

(a=b)(b+d +#1) = ry = rp .

These two relations contradict (14).
(vii) Finally, if C has size b and if D has size a and intersects A, then D
intersects B. Indeed, suppose on the contrary that B and D are disjoint,

and let B' be a line intersecting D and disjoint from A U B. Corollary
4.2 yields

By Lemma 4.1, we get
(a-b)(b+d0) = ry - o
since B is disjoint from the two disjoint lines A and B', and
(a-b)(b+d0+1) =Py = Fgi =Ty = gy
since B is disjoint from the two intersecting lines D and B'.
These two relations contradict each other.

Now, take a 1line D disjoint from C and intersecting A U B.
Thanks to step 3, counting in two ways the number of lines disjoint from C U D
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and intersecting A U B, we have
(a-Z)d0 - (b-2)d0

which implies a = b, a contradiction:. This proves Lemma 4.4.

Lemma 4.5. If there 18 no projective line in S and if any two disjoint lines
of S have the same size, then all lines of S have the same size.

Proof. Suppose on the contrary that there are at least two distinct line sizes n
and &. Consider two disjoint lines A and B of size n and let L be a line of size
2. L and all lines disjoint from L intersect A and B. Counting in two ways the
number of bisecants of A and B passing neither through p € A n L nor through
qeEBNL, we get

(n-1)% = 1 [dy(x,A,B)-1] + 6

XEL
X#P,q
where & denotes the number of lines disjoint from L.
Since
dz(x,A,B) = 2n + dD - r
we get
(n-1)2 = (2-2)(2n+d -1) + 6 = r, + o+ T (26)

Through any point y # p,q on L, consider a line C disjoint from A U B. The same
counting argument applied to the pairs of lines {A,C} and {B,C} instead of
{A,B} Yields

2
(n-1)" = (5-2)(2n+d0—1) +& -+ ry * 1y (27)
and
2""' - — -
(n-1)" = (2 2)(2n+do 1) + 6 re+ rq try (28)
(26), (27) and (28) imply that rp = rq = ty’ and so all points of L have the

same degree. One proves in the same way that all points of any line of size n
have the same degree. Finally, since any line of size n intersects L, all
points of S have the same degree r.

Counting in two ways the number of pairs (y,C) where C is disjoint from
AUBand ye CnlL, we get

(2-2)d, = |£] - (2r-1) = 2(n-1)(r-2) + (n-1)°

Similarly,
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(n-2)d, = [£] = (2r-1) - 2(-1)(r-2) + (2-1)°

Subtracting these two relations, we have
2 2

(2-n)d; = 2(2-n)(r-2) + n= - ¢~ + 2(e-n)
Therefore, since L # n,
2r = 4 + n + du + 2 . (29)

Suppose £ > n and let L' be a line disjoint from L. The number of lines
intersecting L but not L', and passing through a point p ¢ L U L', is
r- 9 - d0 > 0
Multiplying by 2 and using (29), we get
2 -d xze-n
in contradiction with dD > 2 and ¢ > n+l.
Proposition 4.3. If S contains no projective line, then S ts i oS fire plane

projective space of dimenston 3 or a generalized projective spuss in wnild i

lines have size 2.

Proof. Thanks to Lemmas 4.4 and 4.5, we know that all lines of 5 have the saii
size n,and so that all points have the same degree r. Thus, for any two disjcii
lines L, L' and any point p outside L U L', dz(p,L,L‘) = Z2n + dﬂ - r is inde-
pendent ¢t the choice of p, L and L'. Therefore by Theorem Z (more precisel,
by Propositions 2.1 and 2.2), we have the desired conclusion.

7. LINEAR SPACES SATISFYING CONDITION (IZ2).

L

(I2) there is a non-negative integer 1, such taat for any tuo "itersecting
lines L, L' and any point x outside L U L', fhere are crxccetly 12 bt -

secants of L and L'passing through X.

The only finite linear spaces which are known to satisfy condition (i
are the (possibly degenerate) projective planes, the affine planes and the
Steiner systems S(2,2,v). We will prove that other examples (if any) shoula .
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Steiner systems S(2,k,v) satisfying some rather restrictive arithmetical condi-

tions on i2 and k.

Theorem § [20). If S ts a finite non—trivial linear space satisfying
condition (12), then

(i) S 7s a degenerate projective plane (and i2 = 1),
or (i1) S is a Steiner system S(2,k,V) with i, < k < v, such tiat
(1) ] (k=1) (k=2)
(2) K[{ (k=1)(k=2)/3 1421 (k=1) (k=2) /i ,+1
(3) i,(2k-2-1,) k(k-1)(k-2)

(4) if’(k-])(k~2)/iz 18 odd, then k~1~12 18 a square
if‘(k-])(k-Z)fiZ 18 even, then the Diophantine equation

(k_]_iz)xz v -1y (k"D (k=2)/21, i V2 = 52

| has a solution in integers X,Y¥,Z not all zero.

Moreover 1, = k=1 2ff S 78 a projective plane of order k-1

12 = k=2 1ff S 18 an affine plane of order K.

Note that this theorem gives a partial answer to an open problem mentioned

by Cameron in [15, p.54].

Proof. The proof of (3) (resp. (4)) is based on the construction of certain
partial geometries (resp. symmetric 2-designs) associated with S, whence all
other statements follow directly from the lTinear structure of S. Thus we shall
divide the proof into three parts :

/.1. The linear space S.

First of all, note that if i2 = (0, any bisecant of two intersecting
lines has size 2, and so all lines of S have size 2. Therefore, from now on,

we shall suppose 12 > 1.

It is easy to check that if S i1s the union of two intersecting lines,
then condition (I2) 1s satisfied iff S is a degenerate projective plane. Hence

we may assume, in what follows, that any point of S is on at least three lines.
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Let L and L' be two lines intersecting in x. Consider a third line L"
passing through x. Counting in two different ways the number of trisecants
of L, L' and L", we get

(IL] = V)i, = (L] = 1).1

that is |L| = |L'].
Therefore any two intersecting lines have the same size, and so all lines of
S have the same size, which we denote by k. Counting in two different ways

the number of pairs (p, Li) where p § L U L' and L, is a bisecant of L and L
passing through p, we get

(v - 2 + 1)i, = (k-1)%(k-2) (5)
If r denafes the degree of a point of S, we have

v=k = (r-1)(k-1) (6)
(5) and (b6) yield

(r-2)1, = (k-T)(k-2) (7)

which implies 12|(k-1)(k-2) (1).
On the other hand, the number of lines of S is vr/k, which must be an integer.
Thanks to (6), we deduce that

klr(r-1) (8)
which, using (7), gives
k| (k=-1)(k=2)/1, + 21[ (k-1) (k-2)/i,+1] (2)

For 12 = k=2 (resp. k-1), (5) ylelds v = kz (resp. kz—k+]) and so S 1s an
affine (resp. projective) plane.
This ends the first part of the proof.

Note® that (2) implies
k|2(1,41)(i,+2) (9)

Thanks to (1
ko= (1,+1) (1
K g (1 71 ) (

), (3) it 1s easily shown that k # 2(12+I)(1?+2) and that

)» (2
2+2) is admissible only for 12 = 2. So {9) implies that
12+2)/3 for i, » 2 and we conclude that vk <« i, for any i, > 3.

7.2. Partial geometries and association schemes.

Given a line L of S, the point set S-L, provided with the restrictions
to S-L of the Tines of S intersecting L, forms a partial ¢eometry with para-

54



I1.37

meters (R,K,T) = (k, k-1, 12) having V = v-k = (k-l)z(k-Z)/i2+k-1 points and

B = k(k-])(k—Z)/12+k lines.

The point graph (resp. line graph) of a partial geometry is defined by calling
two points (resp. two lines) adjacent iff they are collinear (resp. concurrent).
The line graph is also the point graph of the dual partial geometry. Thus four
strongly regular graphs are associated with every partial geometry, namely the

point graph G,, the Tine graph G, and their complements G. and G, .

p p L
In our problem, the parameters of Gy are
SV o= (k=11%(Kk=2)/3 ; = k(K-
vp =V = (k=-1)"(k 2)/12 + k -1 kp = k(k-2)
Ap = (k=1)(1,-1) +k - 3 M = ki,
Besides the trivial eigenvalue kp’ the other eigenvalues of GP are
. . . 21 s .
rp = k - 1, - 2 with multiplicity fp = (k-2)(k-1) k/12(2k -2 - 12)
and
sp = =K with multiplicity gp = ”p -1 - fp
For the line graph GL,
i} } VY — (k118
v = kK(k=1)(k 2)/12+k Ky = (k=1)
re = k - 12 - ] f, = f5
k(k-1)(k-2)(k-1—i2)
5. = ~(k=T) 9 = s e )

Multiplicities of eigenvalues being integers, we get
2
(3)

The other known necessary conditions for the existence of a strongly reqular
graph, namely the Krein condition (I10), the absolute bound (I11), the p-bound
(I12) and the claw-bound (I113), are tedious but easy to check : they give
nothing more than the previous conditions.

i,(2k-2-1,) [ (k-2) (k-1)

The line graph GL may also be viewed as a 2-class association scheme Lo
1f we say that two lines are first associates when they are distinct and adja-
cent (i.e. when the corresponding lines of S form a triangle with L) and second
associates otherwise. Actually we can define a 3-class association scheme £q
by subdividing the second class of Lo. The vertices of Ly are the lines of S
intersecting L, two vertices are first associates if the corresponding lines
intersect in a point outside L,
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, second associates if the corresponding lines

intersect in a point of L and third associates if the corresponding lines are
disjoint. Indeed, the number n. of i-th associates of a vertex x is independent
of x , and for any two i-th associates x and y, the number p}k of vertices
which are j-th associates of x and k-th associates of y does not depend on the

pair X,Y.

i
—

Consider the v, x v association matrices Aj ~ (aiy) with entries aiy
if the vertices x and y are j-th associates and aiy - 0 otherwise. We denote
by ljk the (not necessarily distinct) eigenvalues of Aj and by m the multipli-

city of Aik (it can be shown that ,, does not depend on j). The parameters of g,

are

n, = (k-l)2 ’ n, = (k=1)(k-2)/i, , ny = (k=1)(k-2)(k-1-1,)/1,

p:] = (k-2)i,, p:2 = k-2 , p:3 = (k-2)(k-1-1, )

péz =0, péa = (k-2)(k-1-1,)/i,, péa = (k-2) (k=1-1,) (k-2-1,)/1,
p§] = (k-1)1, , pﬁz =0, pfa = (k=1) (k-1-i,)

ﬂgg = (k=1)(k-2)/1,-1, p§3 =0, p§3 = (k-l)(k—Z—iz)(k~142]/Wz
P$1 = (k-1)1,, p%z = k-1, p$3 = (k=1) (k-2-i,)

sz =0, Pg3 = (k-1)(k-2-1,)/1,, p§3 = (k=) (k=1-i,) (k=3~1,)+i.+]
My = kelm1, Ao = =(k=1) , Aq = —(k-T) ars
A1 = 1 Aoo = =1, \q = (k-1)(k=2)/1,

gy = - (k=1-1,), Aqp = k=T, Nyq = =(k=2)(k-1-1,)/1,

2, - : : . "o
oy = (k=2) (k=1)“k/i,(2k-2-1 ay = K(k=1)(k=2) (k=1-1,)/1,(2k-2-1,), uy = k-1

2)
Condition (3) and 1 + Hp * ot ug TV imply that all multiplicities are
integers. Moreover it is not difficult to check that the Krein condition as
well as the condition given by Mathon (I14) are satisfied for all pairs [iz,k)
satisfying (1), (2), (3) with 12 < k-3.

7.3. Symmetric 2-designs.

[f 12 < k-2, a non-trivial symmetric 2-design D(p,g) can be associated
with any pair (p,q) of distinct points of S as follows : the points of D(p,q)
are the lines through p distinct from the T1ine <p,q>, the blocks of U(p,q)
are the lines through q distinct from <p,q>, a point and a block being incident
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iff the corresponding lines intersect. Each point of D(p,q) is on k-1 blocks

and each block contains k-1 points, any two points are on 12 blocks and any

two blocks have i, points in common. Thus D(p,q) is an S, {z,k-],(k-l)(k-z)/12+]),
2

The Bruck-Chowla-Ryser theorem (I3) gives a necessary condition for the exis-
tence of such a design, namely (4). This ends the procof of Theorem 5.

Unfortunately, there remain infinitely many pairs of parameters (iz,k)
with 12 < k-3 satisfying the conditions (1), (2), (3) and (4) : for instance,
all pairs (iz,k) with 12 =9g" (n>1) and k = (i2+1}(12+2)/2. Indeed, it is
easy to check that these pairs satisfy the first three conditions. We shall
prove that the fourth condition is also satisfied by using the following

Theorem [37], [40] . The equation
b xz + C yz = 22 (10)

has solutions in integers Xx,y,z not all zero if and only if for every prime
p as well as for p = =, the Hilbert norm-residue symbol (b,c)p is equal to

+ 1.

The symbol (b,c)p 1s defined to be +1 or -1 according as the congruence

2 2 2 (

bx"+cy” =z 2" (mod pm)

does have solutions in integers x,y,z, not all multiples of .p, for everv power
p" of the prime p, or not, and (b,c) =+ 1 or - 1 according as (10)

‘does or does not have solutions in real numbers x,y,z # 0. Thus (b,c) = +]
unless both b and ¢ are negative. We shall use the following properties of the
Hilbert norm-residue symbol :

(P1) m (b,c)p = 1 (the product being over all primes p, including p = =)
P

(P2) (b,c2>p =1,

(P3) if p is an odd prime and b,c ¥ 0 (mod p), then {b,c)p =1,

(P4) 1if p is an odd prime and if Cy = C, $ 0 (mod p), then [b,c1)p = (bjcz)p

If i,=9" (n3>1)andk = (1,41)(i,42)/2, then k = (9"+2)(9"+1)/2 =
3 (mod 4), and so (k-1)(k=2) = 2 (mod 4). Since i, is odd and divides k-1,
(k-

we conclude that (k-1)(k-2)/2 12 is an odd integer and (4) becomes

9"+1 _n
7’

has a solution in integers x,y,z not all zero, or equivalently

W2 - gn yZ I



[1.40

has a solution in integers Xx,y,m not all zero. Since (11) has solutions in
real numbers x,y,m # 0, thanks to the above theorem, we have only to prove

9"+ :
that s =1 = +] for ever m . Moreover thanks to (P1) and to
(=5— )p every prime p reove n (P1)

n
(Ezil-, -1)_ = +1, 1t is sufficient to check this for the odd primes. Thus, let

p be any odd prime.
9"+1 9"+ i 9"+ 1
If p (-—Em— , then (55—, -1)p = 1 by (P3). If on the contrary p | =— ,
then 9" = -1 (mod p) and we deduce from (P4) and (P2) that
9"+ 9"+1  n

(T—:'])p=(—-2'—,9)p=1.

Therefore condition (4) is satisfied for the above values of 12 and k.

For k ¢ 100 there are only six pairs (iz,k) with 12 < k=3 satisfying
conditions (1) to (4), namely (2,12), (24,65), (20,66), (3,10), (7,36) and (9,55)
(for the last three, k = (12+1)(12+2)f2).The existence of a symmetric 2-design
312(2, k-1, (k-1)(k—2)/12+1) is known [57] for only two of these pairs, namely
(2,12) and (3,10).

Note that if S satisfies one further hypothesis, the symmetric 2-designs
D(p,q) are extendable and (I4) rules out all pairs (iz,k) with 12 ¢ k-3, except
one. Given a point p and a line L not through p, let £(p,L) denote the set of
Iines passing through p and intersecting L and let S(p,L) denote the set of
points distinct from p and belonging to a 1line of £(p,L). Note that if i2 < k-1,
two lines L, L' such that £{p,L) = L(p,L') are necessarily disjoint.

Proposition 6.1. Let S be a finite linear space satisfying condition (l2) with
1 g 12 < kK=3. If there ts a point p € S such that for any line L not through p,
any point of S(p,L) s on a line L' such that L(p,L ) = L(p,L"), then 12 = 2
and k = 12.

Proof. Consider the design D(p) whose points are the lines through p, whose
blocks are the distinct sets L(p,L), incidence of points and blocks being

given by set inclusion. Thus any block has exactly k points and the total number
of points is r = (k-])(k-Z)/12+2. By hypothesis, given a line L not through p,
any point of S(p,L) is on one and only one line L' such that L(p,L) = L(p,L")
(only one because we have seen before that such lines are necessarily disjoint).
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It follows that any three points of D(p) are in exactly 12 blocks and that the
total number of blocks is r(r-1)/k. Therefore, D(p) is a symmetric 3-design
SiJGJn(k-1)(k-2)/12+2). Note that for any point q distinct from p, the 2-design
D(p,q) is isomorphic to the derived design of D(p) relative to <p,q>. Theorem 5
and the theorem of Cameron (I4) listing the admissible parameters of symmetric
3-designs imply immediately that i, = 2 and k = 12. The pair (1,,k) = (2,12)
corresponds to a hypothetical Tinear space S(2, 12, 628), the existence of which
is unsettled.

Finally, let us mention the following

Proposition 5.2. The only finite linear spaces S(2,k,v) with k a prime power

that satisfy condition (12) are projective or affine planes.

Proof. Let S be a finite linear space S(2,k,v) satisfying condition (I2) which
is neither a projective plane nor an affine plane, so that

k 2 1, + 3 (12)
Let k = p" with p a prime number. (2) implies that

k | 2(i,41)(i,%2) .

Since 12+1 and 12+2 are relatively prime, we conclude that
p" | 2(i,41)  or  p | 2(i,+2)
(

Therefore, by (12),

pn = 2(12+1) or pn = 2(i2+2) .

and so p" = 2" with n 3 2.
If p" = 2(12+2), then (1) becomes
2" 1 @12 -

and so |

N2 o | 2(men=2) 29 op 3.
Therefore (iz,k) = (2,8) or (6, 16), contradicting (2).

If k = 2(i,+1), then (3) becomes

22" -1) - (2" -1y | 2™ oy 2™ oy

N+ 1 -

Since and 2"-1 are each relatively prime with 2(2" - 1)-(2""' -1), this

implies that
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22" -1)-(2" V- | 2" 2150

-1

and so 2(2" -1) < 2(2" -1), a contradiction.

8. LINEAR SPACES SATISFYING CONDITION (I1).
L

Ll
(I1) there is a non—negative integer 11 such that for any ordered pair of

intersecting lines L, L' and for any point x outside L U L', there
are exactly 11 lines through X which intersect L but not L'.

The study of finite linear spaces satisfying condition (I1) reduces
exactly to that of finite linear spaces satisfying condition (IZ2), thanks
to the following result :

—— L .

Theoremé[26)The finite non—-trivial linear spaces satisfying (l11) are
the finite degenerate projective planes and the Steiner systems
S(2,k,v) (k < v) satisfying condition (12).

We have seen in Theorem 5 that the finite non-trivial linear spaces
satisfying condition (I2) are necessarily Steiner systems S(2,k,v) or de-
generate projective planes, so that conditions (I1) and (I2) are equivalent.

Proof of Theorem 6.

Let S be a finite non-trivial linear space satisfying condition (I1).
[t is easily seen that if S is the union of two intersecting lines, then S
is a degenerate projective plane. Suppose now that S is not the union of two
intersecting ljnes_ Then, for any two intersecting lines L and L', the degree
of any point x outside L U L' is

ro= (Ll + )+ (xL,L") = L]+ iy + 3 (xL,LY),

- 65 -
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and so L and L' have the same size. Therefore all lines of S have the same
size. Since conditions (I1) and (I2) are equivalent for Steiner systems
S(2,k,v), the theorem is proved.

9. LINEAR SPACES SATISFYING CONDITION (10).

Ll

(I0) there 18 a non—negative integer 10 such that for any two intersecting

lines L, L' of S and for any point X outside L U L', there are exactly

i, lines through X which are disjoint from L U L'.

The study of finite linear spaces satisfying condition (I0) reduces

essentially to that of fintte linear spaces satisfying condition (I2), thanks

to

the following

—

—

TheoremTRE.If S s a finite non-trivial linear space satisfying condition

(I0), then one of the following occurs

(1) S Zs a punctured projective plane or an affine plane with one point
at infinity,

(11) S Zs a degenerate projective plane or a Steiner system S(2,k,v) (k<v)

satisfying condition (12)

Conversely, each of these finite spaces satisfies condition ([0).

In particular, the only known finite linear spaces satisfying condition

(I0) are, besides the trivial examples P(2, k+1) and PG(d,1), the finite semi-

affine planes (in which 1, 1s always zero) .

Proof. Let S be a finite non-trivial linear space satisfying condition (I0).
Note first that if S is the union of two intersecting lines, then S is either
a degenerate projective plane or AG(Z2,2) with one point at infinity. On the

- 006
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other hand, as mentioned in section 3, conditions (I0) and ([2) are equivalent
for Steiner systems S(2,k,v), so that we may assume from now on that S contains
two lines of distinct sizes and that every point of S has degree > 3. The fol-
lowing lTemmas wili show that, under these assumptions, io = 0; this will make
the proof of Theorem 7 easier.

Lemma 7.1. If S contains a point X of degree 3, then iﬂ = 0.

Proof. Let A,B,C be the three lines passing through x. If io # 0, there would
be a Tine D disjoint from B U C through a point y of A distinct from x, so that

rx > 4, a contradiction.

In the following lemmas, we assume that every point of S has degree > 4.

Lemma 7.2. If A,B,C are three pairwise intersectinglines of size a,b,C respec-
ttvely, then

ry = Yp = (a-b)(c+10) t raoe = TRac

In particular, tf A,B,C are concurrent, then
ry = rg = (a-b)(c+i)

Proof. Counting in two ways the number of bisecants of A and B which are disjoint
from C, we get

) i](y381C) - L i](Z,A;C)
yeA Z€B
yéBUC ZEAUC

from which we immediately deduce the desired formulas by using

i](y:B:c) = ry - C - 10

and

i

i1(2,A,C) = r - ¢c-i_ .

Z

Corollary 7.2.

(1) If A and B are two intersecting lines of the same size, then ry = rg -

(11)  For any point X of S, all lines passing through X, except possibly one,
have the same size.

(111) If three points X,Y,Z are such that the lines A = <X,2> and B = <y,2>

are distinet and have the same size, then re = fy.

- 67 -
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Proof. Since we have assumed that all points of S have degree > 4, there is a
line C concurrent with the two intersecting lines A and B. (i) follows imme-
diately from Lemma 7.2 applied to A, B and C.

In order to prove (ii), suppose that A and B are two lines of distinct
sizes a and b passing through x (which, by hypothesis, has degree > 4). If C
and C' are two Tines passing through x and distinct from A and B, it follows
immediately from Lemma 7.2 that C and C' have the same size c¢. On the other
hand, if ¢ # b, then the same argument applied to C' and A which are distinct
from the two lines B and C of distinct sizes shows that ¢ = a, and so (ii) 1is
proved.

In order to prove (iii), note first that rp = rp by (i). Then Lemma 7.2
applied to the three Tines A, B and C = <x,y> yields ranc ~ TBac = 0, that 1is

I"x = I"‘y.

Letma 7.3. Let p be a point of S. If B 1s the only line of stze b passing through
p, then

(1) any two points outside B have the same degree,

(11) any two lines distinet from B and concurrent with B have tne same size.

Proof. Let x and y be two points outside B such that x, y and p are not collinear.
By Corollary 7.2 (ii) all lines distinct from B thrcugh p have the same size a,
and so we deauce from Corollary 7.2. (1ii) that x and y have the same degree.

This implies that all points outside B have the same degree r.

Now let C and D be two lines distinct from B and intersecting in a point
z € B. If z=p, we already know that C and D have the same size. If z # p, let
A (resp. A') be a line through p, distinct from B and intersecting C (resp. D).
Then, by Lemma 7.2 and Corollary 7.2 (i), we get

rg = (a-b)(c+iﬂ) tro-r,

and

= (a-b)(d+i ) + r-r, .

Since a # b, these equalities imply ¢ = d.

Lemma 7.4. If every potnt of S has degree = 4, then iﬂ =0

Proof. As we have seen at the beginning, we may assume that S contains two lines
A and B having distinct sizes a and b respectively and intersecting in a point p.

08
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Moreover, by Corollary 7.2 (ii), we may also assume that all lines distinct
from B and containing the point p have size a.

Suppose first that every line intersecting B and not passing through p
has size # a. Then, if b > 2, any point x ¢ B is on at least two lines of
size # a. Therefore, by Corollary 7.2 (ii), A(Xx) = <x,p> is the only Tline
through x having size a. From Lemma 7.3 (i1), we deduce that any two lines
distinct from A(x) and concurrent with A(x) have the same size. Since p has
degree > 4 and p € A(x), this contradicts the fact that B is the only line
of size b containing p. This shows at the same time that b = 2 (let B = {p,q})
and that any point x ¢ B is on at least two lines of size a. Since by hypothesis,
the size ¢(x) of the line C(x) = <x,q> is distinct from a, we deduce from
Corollary 7.2 (ii) that C(x) is the only line of size c(x) containing x. There-
fore, by Lemma 7.3 (i), any point y € C(x) has degree

r . =r_.
y P

Since B is the only line of size # a containing p, we have

v-1 = (r-1)(a-1) + (b-1) ,

and since C(y) is the only line of size # a containing y, we have
v-1 = (r -1)(a-1) + (c(y)-1) .

Since b = 2, these three equations imply that
c(y) =b =2,

from which we deduce that all 1ines containing q have size 2, all other lines
of S having size a. Therefore S - {q} is a Steiner system S(2,a,v-1) with point
(v=2)/(a-1).

Let C # B be a 1ine of S passing through q. If u is a point of A outside B U C,
then io(u,B,C) = r'-1; but if v is a point outside A U B U C, then

1U(v,B,C) = r'-2, and so condition (I0) is not satisfied, a contradiction.

degree r'

Suppose now that there is a line intersecting B, not passing through p
and having size a. Then, by Lemma 7.3 (ii), there is a bisecant C of A and B
having size a. Lemma 7.2 applied to the triple (A,B,C) yields

ry - rg = (a=b)(a+i ) + r - rg.. (1)

where r = Fanc is, by Lemma 7.3 (i), the common degree of the points outside B.
On the other hand, let A' be a line distinct from A ana B and passing through
ANnB. Lemma 7.2 applied to the triple (A,B,A") yields

N,
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Py = ry = (a-b)(a+i ) (2)

(1) and (2) together give
r= rgoe (3)

Since A' and B are concurrent with A and have different sizes, Lemma 7.3
(i1) implies that every point x € A distinct from p is on at least r-1 lines
of size a, so that

v-1 = (r-1)(a-1) + c-1 (4)

where ¢ = a or is the size of the unique line of size # a passing through x. On
the other hand, we know by Lemma 7.3 (11). that all lines distinct from B and
passing through B n C have size a, so that

v-1 = (anC -1)(a-1) + b-1 (5)

(3), (4) and (5) together imply b = c. Therefore a # ¢ and (4) shows that every
point outside B is on exactly one line of size b, all the other lines having
size a. Either the 1lines of size b are pairwise disjoint or they are concurrent
in a point y € B. We shall successively consider these two possibilities.

If the 1ines of size b are pairwise disjcint, then by Lemma 7.3 (i), all
points of S have the same degree r.Lemma 7.2 applied to the triple (A,B,A') yields

r(a-b) = (a-b)(a+iﬂ) ,

and so, since a # b, we get r = a + io, which means that for any point x outside
A, every line through x which is disjoint from A is also disjoint from every
line intersecting A and not passing through x. Therefore every line through x
intersects A and iu = 0.

If the lines of size b are concurrent in a point y € B, then, by Lemma /.3
(i) all points distinct from y have the same degree r. Lemma /.2, applied to
the triple (A,B,B'), where B' # B is a line of size b intersectingA, yields

ar-(b-1)r - ry = (a-b)(b+1ﬂ) +r - ry o

+ 3 .
b 0

Thus, every line through a point outside B intersects B and 1U = 4,

and so, since a # b, we get r

We will now end easily the proof of Theorem 7. Indeed we have seen in
Lemmas 7.1 and 7.4 that iD = 0, which means that S contains no line disjoint

i )
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from two intersecting lines. Therefore, for any line L, every point outside L
is on at most one line disjoint from L, in other words, S is a semi-affine
plane. Since we know (I6) that the finite semi-affine planes are, besides the
finite affine planes and the (possibly degenerate) finite projective planes,
the finite punctured projective planes and the finite affine planeswith one
point at infinity, and since each of these planes satisfies condition (10),
Theorem 7 is proved.

10. LINEAR SPACES SATISFYING CONDITION (IDy.

We shall end this chapter with the study of finite linear spaces satis-
fying condition (ID), that 1is (JP, 1,2,1; 3,4,4) according to our conventions
in section 2. Actually (ID) can be expressed in a simpler way (in terms of

lines only) :

(ID) thgpe is a non—negative integer & such that for any two intersecting lines

L and L', there are exactly & lines disjoint from L U L'.

Using the work done in section 9, we shall prove the following

TheoremB(26]The finite non—-trivial linear spaces satis uing condition
(ID) are exactly the jfinite semi-affine planes and the Stertner systems

S(2,k,Vv) with k < v |

Proof. Let A and B be two intersecting lines of a finite non-trivial linear
space S, and let §(A,B) denote the number of lines disjoint from both A and
B. The proof is based on the following counting argument

L] = (rp-a+1) + (rg=b+1) - (rp.o + (a-1)(b-1)) +¢ (A,B) (1)

where the first (resp. second) term on the right hand side counts the number
of lines having a non-empty intersectionwith A (resp. B) and the third term
counts the number of lines having a non-empty intersection with both A and B.

We immediately deduce from (1) that all Steiner systems S(2,k,v) satisfy
condition (ID), since all terms different from &4(A,B) are independent of the
choice of the two intersecting 1ines A and B. Moreover, it 1s obvious from
their definition that the semi-affine planes are exactly the non-trivial linear

/1
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spaces satisfying condition (ID) with § = 0. Therefore, it remains only to
prove that if S is a finite non-trivial linear space satisfying condition

(ID) and containing two lines of different sizes, then necessarily § = 0.

We shall prove this in the following lemmas, which are similar to those of
section 9.

Lemma 8.1. If S contains a point X of degree < 3, then § = 0.

Proof. Let A and B be two lines intersecting in x. If & # 0, then there is
a line C disjoint from A U B, so that r = 4, a contradiction.
In the following lemmas, we assume that every point of S has degree > 4.

Lemma 8.2. If C intersects A and B, then
Py = rg = (a-b)c + "anc ~ TBAC
In particular, tf A,B,C are concurrent, then

Py = rg = (a~-b)c.

Proof. Since A and C intersect, (1) yields

[£] = (ryma+l) + (reme#l) = (rpoc + (a=1)(c=1)+ 8 (2)
Since B and C intersect, we have similarly
L] = (rg=b+1) + (re=c+1) = (rg,c + (b=1)(c-1)) + (3)

By subtracting (2) from (3), the lemma 1s proved.

Corollary 8.2. ldentical to Corollary 7.2, both in statement and proof (it
suffices to replace "Lemma 7.2" by "Lemma 8.2").

Lemma 8.3. ldentical to Lemma 7.3, both in statement and proof.
Lemma 8.4. If all points of S have degree > 4, then & = 0.

Proof. Since it is very similar to that of Lemma 7.4, we shall only indicate
what has to be changed. At the end of the second paragraph, we conclude that

S'" =S - {g} is a Steiner system S(2,a,v-1) with point degree r' = (v-2)/(a-1).
Then 6(B,C) is the number of lines in S' which are disjoint from A N B and

An C, and §(B,A) is the number of 1ines in S' which are disjocint from A. There-
fore, if b' = (v-1)(v-2)/a(a-1) denotes the total number of line:s in S', we have

§(B,C) =b" - 2r" + 1
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and
§(B,A) = b' - ar' + a-l

Since §(B,C) = 6(B,A) = §d and r' > 1, we conclude that a = 2, so that all
lines of S have the same size, a contradiction.

The third paragraph of the proof of Lemma 7.4 remains valid here, 1f

we replace "Lemma 7.2" by "Lemma 8.2" and if we delete "i_ " in (1) and (2).

0
In the fourth paragraph, we suppose that the lines of size b are pair-

wise disjoint, so that, by Lemma 8.3 (i), all points of S have the same degree r.

Then, Lemma 8.2 applied to the triple (A,B,A') yields

r(a-b) = (a-b)a ,

and so, since a # b, we get r = a. This means that, for any point x outside A,
every line through x intersects A. Therefore & = 0.

Finally, in the fifth paragraph, we suppose that the lines of size b
are concurrent in a point y € B, and so, by Lemma 8.3 (i), all points distinct
from y have the same degree r. Lemma 8.2, applied to the triple (A,B,B'),
where B' # B is a line of size b intersecting A, yields

ar-(b-1)r - ry = (a=b)b + r - ry :

Therefore, since a # b, we get r = b, which means that for any point x outside
B, all lines through x intersect B, and so § = 0. This ends the proof.



