
CHAPTER l. OEFINITIONS ANO BASIC RESULTS

1. LINEAR SPACES ANO PLANAR SPACES

A Linsar spaoe S is a non-empty set of elements, ca11ed points, provided
with a fami1y of distinguished subsets, ca11ed Lines, such that any two points
x and y are in exact1y one 1ine, denoted by <x,y>, and each 1ine contains at
1east two points. S is ca11ed non-trivial if it has at 1east two 1ines, and it
is ca11ed finite }f it has on1y a finite number of points. The size of a 1ine L
is the number. of points of L and the degree of a point x is the number of 1ines
passing through x. We sha11 say that two 1ines interseet if they have exactly
one point in common.

A Linear subspaee S' of S is a set of points of S such that any 11ne of
S havlng at 1east two points in S' is contalned in S'. A 1inear subspace S' of
S is ca11ed proper if S' , S.

Ap~ spaee is a 1inear space provided with a fami1y of distinguished
1inear subspaces ca11ed pZanes, such that any three non-co11inear points x,y,z
are contained in exact1y one p1ane, denoted by <x,y,z>, each p1ane containing
at 1east three non-co11inear points. A planar space is cal1ed non-trivial if it
has at 1east two p1anes. lf L is aline of Sand if x is a point of S outside L,
the unique p1ane containing L and x will be denoted by <L,x>. Similar1y, if L
and L'are two intersecting 11nes of S, the unique p1ane containing L and L'
wi11 be denoted by <L,L'>. Note that if x,y,z are non-co11inear points, the
p1ane x,y,z is not necessari1y the sma11est linear subspace of S containing
x,y,z. Actua11y, any non-trivial 1inear space can be a plane of SOme non-trivia1
planar space.

We sha11 say that aline and a p1ane interseet if they have exact1y one
point in common. Ap~ subspaee S' of S is a 1inear subspace S' of S such
that any p1ane of S having at 1east three non-co11inear points In S Is contained
i n S' .

lf X is a non-empty subset of a linear space S, the linear spaee indueed

on Xby S is the 1inear space whose points are the points of X and whose 1ines
are the intersections with Xof the 1ines of S having at least. two points in X.
S1mi1ar1y, If S is a planar space and Xis a non-empty subset of S, the planar

spaee inm.eed on Xby S is the planar space whose points are the points of X,
whose 1ines are the intersections with Xof the lines of S having at least two
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1.2.

points in X. and whose planes are the intersections with X of the planes of S
having at least three non-collinear points in X.

AcircuÙ1r space G is a non-empty set of elements called points. provided
with a family of distinguished subsets called cir~Les, such that any three points
are in exactly one circle and any circle contains at least three points. A planar
space S whose lines are the unordered pairs of points may be viewed as a circu­
lar space in which the circles are the planes of S. and conversely.

2. STEINER SYSTEMS ANO t-OESIGNS.

A Steiner 8lIstem S(t.k.v) (where t.k.v are integers with 2 , t , k , v)
is a finite set of v elements. called points. provided with a. fami1y of distin­
guished k-subsets. cal1ed blo~ks, such that any t points are contained in exactly
one block. The Steiner systems S( 2.k.v) are the finite linear spaces of v points
in which alI lines (or blocks) have the same slze k.

Aproje~tive p~e ls a linear space in which any two lines intersect and
which has at least two lines of size ~ 3. lt is well-known that in a finite
projective pIane S. alI the lines have the same slze n+l, where n ~ 2 ls called
the order of the projective pIane, so that S ls an S(2, n+l, n2 + n + l).
Conversely, any Stelner system with these parameters is a projective pIane of
order n. AgeneraZized proje~tive p~ is a non-trlvlal linear space in which
any two lines lntersect. The generalized projective planes which are not pro­
jective planes are called degenerate proje~tioe p~s and conslst of a llne L
and a point x outside L. alI lines jolnlng x to a polnt of L havlng slze 2.
An affine p~e is a non-trivial linear space in which for any line L. any
point outside L is on exactly one line disjoint fram L. The affine planes of
order n are exactly the Steiner systems S(2. n. n2).

The Steiner systems S(3.k.v) are the finite clrcular spaces of v points
in which alI clrcles have k points. We shall also use this notatlon for the
planar spaces in which alI lines have two points. the planes being the blocks
of the Steiner system. An inoersive pZane of order n 15 an S(3. n+l. n2+l).

Hore generally, a t-design S - SA (t.k.v) (where l , t , k , v and l'A)
is a finite set of v elements. called pointe. provlded wlth a famlly of k-subsets,
called blo~ks. such that any t points are ln exactly A blocks (a t-design with
A-l is a Steiner system). For any set l of 1 polnts (O, i , t-I), the 1-th
derioed design of S with respe~t to l is the (t-i)-deslgn SA(t-i. k-l. v-i)
whose points are the points outside l and whose blocks are the restrlctlons
to Sol of the blocks containing l.
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I. 3.

Il) Awe11-known necessary condition for the existence of an S,(t.k.v) is
that, for any integer i with O ~ i ~ t •

v-i k-i
, ( t-i ) / ( t-i )

is an integer. since this expression counts the number of b10cks containing
any given set of i points. In particu1ar. any point is on exact1y

v-l k-1
re, ( t-l ) / ( t-l )

b10cks. and the tota1 number of b10cks is

b = , ( ~ ) / ( ~ )

If S is a 2s-design S,(2s. k.v) where s Emo and v >. k+s, Wi1son and
Ray-Chaudhuri [ 49 l have proved that

b>.(~)

S is said to be tight if equa1ity ho1ds. Examp1es are given by the Steiner
system S(4. 7. 23) and its comp1ement the S52 (4. 16, 23).
If S is a (2s+1)-design S,(2s+1. k.v) where s Emo and v-l>. k+s. then the
precedi ng resu1 t can be app1ied to the fi rst deri ved desi gns of S. so that

v-l
b>'(s)v/k

S is said to be tight if equa1ity ho1ds. The Steiner system S(5, 8, 24) is
tight.

12) In particu1ar. any 2-design with v >. k+1 satisfies Fisher's inequa!ity

b >. v, which is equiva1ent to k ~ r since bk = vr. A symmetria 2-design is a
tight 2-design. that is a 2-design for which v=b (or equiva1ent1y k=r). The
synmetric 2-designs with À = 1 are exact1y the projective planes S{2, n+1. n2+n+1),
inc1uding the degenerate projective p1ane of 3 points.

13) The Bruck-Chow1a-Ryser theorem gives an important necessary condition
for the existence of symmetric 2-designs. name1y :
(i) if v is even. r-À shou1d be a square.
(ii) if v is odd. the Oiophantine equation

(r-À)x2 + (_1)(v-1)/2 y2 = z2

shou1d have a solution in integers x.y.z not al1 zerO [37]

More genera11y. a t-design S is cal1ed symmetria if its (t-2)th derived
designs are symmetric 2-designs.
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(I~) Cameron [13] has proved that the parameters of a synmetric 3-design are neces­
sari1y in the fo11owlng 11st

(a) v = H3, k • H2
(b) v' 4(H1), k • 2(H1)
(c) v • (A+1)(A2 + 5 A+5), k • (A+1)(A+2)
(d) v • 112, k • 12, A• 1

(e) v • 496, k • 40, A• 3 •

3. INCIDENCE STRUCTURES AND DIAGRAMS.

A 1inear space may be v1ewed as an incidence structure S = (9', r., I)

where !I denotes the set of points of S, r. denotes the set of l i nes of Sand I
is a symnetric relat10n between j) and r. : a point x and a line L are incident,
which 1s written x I L, 1f and only 1f x € L. A fZag (resp. antifZag) of a
linear space S 1s a point-11ne 1ncldent (resp. non-incldent) pair. In the defi­
nition of a linear space given in the first section, we have used the same
notation for the 11near space and for its set of points and we have identified
every line L with the set of points incident with L. We shall use both points
of view and tenninologies.

The inciden~e graph9(S) of a linear space S 1s the bipartite graph whose
verti ces are the elements of;P u r.. two verti ces bei ng adjacent i f and on ly if

they are incident. The figure below shows the incidence graph of the projective
pIane PG(2,2).
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1.5

The def1n1t10n of n non-tr1v1al 11near space can of course be translated in terms of
its 1nc1dence graPh~. In part1cular, any two points are at d1stance 2 in j and any
vertex Of' has degree ~ 2. Note that the 5teiner systems 5(2.k,v) may be defined
as the 11near spaces such that in the1r 1nc1dence graph. all 11nes (and there-
fore all p01nts) have the same'degree k (resp. r).

51m11arly, a planar space 5 may be v1ewed as an inc1dence structure
5· (9, l,rr, I) where 33, l andTC denote respect1vely the set of p01nts. lines
and planes of 5, and where I 15 the 1nc1dence relat10n, two elements of
fl u l utr be1ng 1nc1dent 1f and only 1f, cons1dered as point sets, one of them
15 str1ctly conta1ned 1n the other. The 1ncidence graph 5(5) of a planar space
is then a tr1part1te graph. A f2ag of 5 15 a set of pairw1se 1nc1dent elements
of fil u l u7t'. Amazimal f2ag 15 li set {x, L. n} where x E'p' L EL. n E1t and
x I L I n.

The NB1.dus 5v of a vertex v of ~(5) 15 the 1nc1dence structure whose
1nc1dence graph 15 the restrict10n Ofj(5) to the neighbourhood of v 1nj(5).

For example. the res1due 5n of a plane n of 5 15 noth1ng else than the linear
space n 1tself. The res1due \ of a l1ne L of 5 consists of the p01nts of L and
the planes contain1ng L. each of these planes being automatically incident with
each of these p01nts. so that the incidence graph of 5L 15 a complete bipartite
graph. 5uch inc1dence structures are called generalized digons. The residue 5x
of a p01nt x 15 a 11near space whose points are the lines containing x. whose
lines are the planes containing x and in which a point L corresponding to a

x
line L and aline nx corresponding to a plane n are incident if and only if
L cl1'. The fact that 5x is a 11near space fo11ows essentia11y from the fact
that any two intersecting l1nes of 5 are contained in exactly one plane.

L1near spaces and planar spaces may be represented by diagrarns in the
sense of Buekenhout [111. For definitions and conventions concerning incidence
structures admitting diagrarns. we refer the reader to [111. In part1cular. the
class of non-triv1al 11near spaces 15 represented by the diagram

o__=L__-<o

where the left dot represents the set (j of points and the right dot represents
the set.c of lines. The class of generalized digons is represented by the
diagram

o o

Then.according to the conventions of Buekenhout. the class of non-trivial
planar spaces 15 represented by the diagram
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1.6

expressing the fact that non-trivia1 planar spaces are incidence structures
with three sets of objets9. J: andU, represented respective1y by the three
dots O. 1 and 2, such that the residue of any e1ernent of 9 uTlis a non-trivial

,

1inear space and that the residue of any e1ernent of J: is a genera1ized digon.

This symbo1ic representation suggests several prob1ems by considering
various subc1asses of the c1ass of linear spaces. For examp1e, if the c1ass
of projective p1anes of order n is denoted by

n n
0----<0 ,

then the incidence structures admitting the diagram
n
o ~ L o

are the non-trivial planar spaces a11 of whose planes are projective p1anes
of order n. Thanks to the c1assica1 work of Veblen and Young, we know that
these are exact1y the Desarguesian projective spaces PG(d.n) of dirnension
d ~ 3. endowed with a11 their p1anes. More genera11y, the c1ass of generalized
projective p1anes is denoted by

o o

so that the diagram

0_---<0 L o

represents exactly the generalized projective spaces of dimension ~ 3, endowed
with a11 their planes. Rernember that a generalized projective space is a linear
space such that for every pair of lines L and L' intersecting in a point x, any
two 1ines not pass1ng through x and intersecting each of the 1ines L and L'
intersect (Pasch's axiom).These spaces are unions of projective spaces of any
dirnension ~ O joined together by 1ines of size 2. The planes of a generalized
projective space are the sma1lest linear subspaces containing three non-collinear
points. A genera1ized projective space has dimension n ,if there are n+1 points
which are contained in no proper 1inear subspace of Sand if any n points are
contained in a proper 1inear subspace of S. We shall denote by P(2, k+1) the
degenerate projective plane of k+l points and by P(3, k+t) the 3-dimensional
generalized projective space consisting of two disjoint lines of size k and t
respectively, al1 the other lines having size 2.
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I. 7 .

From now on, PG(d,q) will not only de note the Desarguesian projective
space of dimension dover GF(q) for q >- 2, but a1so, for q=l, the genera1ized
projective space PG(d, l) with d+l points, in which a11 1ines have size 2,

which may be viewed as the d-dimensional projective space over "GF(l)". However
AG(d,~) wil1 always denote the d-dimensiona1 Desarguesian affine space over
GF(q) (q >- 2).

If o Af o

denotes the c1ass of affine p1anes, then the diagram

oAf o Lo

represents the c1ass of non-trivial planar spaces a11 of whose p1anes are
(15) affine planes. Buekenhout [91 has proved that these are exactly the affine

spaces of order >- 4 if one of the p1anes has order ~ 4. However, if the planes
have order 3., these spaces, ca11ed HaLl trip1.e systems, are not necessarf1y
affine spaces, as shown by Hall [36]. Fina11y, if the p1anes have order 2, then
a11 Steiner systems S(3,4,v) yield planar spaces adrnitting the above diagram.

Let us mention a generalization of this situation. An affino-projeative

p~ane is a 1inear space ~ obtained from a projective p1ane by deleting a set
of points of aline L. The order of a finite affino-projective plane is the
order of the initial projective p1ane. In particular, TI is a projective p1ane
if we delete no point, TI is a punatuzoed projeative p~ if we delete just
one point, TI is an affine p~ane .,nth one point at infinity if we delete a11
points of L except one, and TI is an affine p1ane if we de1ete a11 points of L.
The planes of these four types are examples of semi-affine p~anes, that is
non-trivial 1inear spaces in which for any 1ine L, any point outside L is on

(16) at most one line disjoint from L. Dembowski [30) and Kuiper [~l, p.310) have
proved that converse1y any finite semi-affine p1ane is of one of these four
types or is a degenerate projective plane. Actua11y, De~bowski assumes that
a11 lines have size ~ 3 and that a11 points have degree ~ 3, but the c1assi­
fication of a11 finite semi-affine p1anes containing aline of size 2 or a
point of degree 2 is very easy.

Let
·A-Po o

Q 1

represent the class of affino-projective planes. Telr11nck [53J has proved
that if S corresponds to the diagram

A-Po o
o 1

L o
2

,
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I. 8.

if 5 contains at 1east one p1ane of order , 4 and contains a finite subset of

points which is not contained in any proper linear subspace of S, then 5 is
an affino-projeotive spaoe, that is a projective space fram which a subset of
a hyperp1ane has been de1eted. Note that a plane of an affino-projective
space is not necessarily an affino-projective plane.

Dua1 problems arise in a natural way. For example, what can be said about
the planar spaces with diagram

L n n
0,.....:=---<0)----0 ,

that is the non-trivial planar spaces in which the residue of every point is
a projective plane of order n (these spaces are sometimes said to be 10ca11y

a projective p1ane) ? This question seems to be rather difficult to answer.
Kantor [111 has conjectured that a finite non-trivial planar space which is
locally a projective p1ane is necessarily obtained by deleting a set of points
from a 3-dimensional projective space.

(17) A parti al answer to thi s questi on has been gi ven by Dayen and Hubaut [32 J who
proved that if 5 is a finite planar space with diagram

L
0----=----<0>----0

and if a11 lines of 5 have the same size k, then 5 is either PG(3, k-l) or

AG(3,k) or a Lobaohevsky spaoe af type k2-k+1 (resp. k3+1), that is a planar
space such that far any 1ine L and any point x outside L, the number of lines
of <x,L> which are disjoint from L and contain x is equa1 to k2-k+1 (resp.
k3+1). The only known example of this 1atter class of spaces is the planar

space 5(3, 6, 22).
5imilar1y, the prob1em of classifying the planar spaces 5 with diagram

has been solved by Cameran [141, 8rouwer and Wilbrink [8 J under the additional

assumptions that 5 is finite and that a11 lines of 5 have the same size k :
then k=2 and 5 lS a planar space 5(3, n+1, n2+1), in other words an inversive

plane of order n.

Observe that, though the class of incidence structures admitting the diagram

L L
0----=----<0>----=---<0

15 very wide and contains rather wild spaces. the ;ncidence structures admittill9

the diagram

15
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O~:.J-o-o--=L---<o1-. l Te

have been classified by Sprague [5~1 under the additional assumption that
some point is on finitely many lines or some line has finitely many points.
Such an incidence structure, in which the residue of each point is a linear
space, the residue of each line is a generalized digon and the residue of
each pIane is the dual of a linear space is, for some integer i, the incidence
structure having as varieties alI [i-l)-, i- and (i+l)- dimensionaI subspaces
of some generalized projective space, and inclusion as incidence.

Finally, note that, on the contrary, the problem of classifying the inci­
dence stru~tures admitting the diagram

L J
0"""::'---.0>-='--0

is stilI more generaI than that of classifying the incidence structureladmit­
ting diagram

o.......,L=-...o>-__o

and so, seems to be hopeless.

4. PLANAR SPACES WITH ISOMORPHIC PLANES.

Let LO be a given linear space, which we shall represent by

o
o L o

Then

o
o L o L o

denotes the non-trivial planar spaces in which every pIane is isomorphic to LO.
These spaces, called LO-spaces, were introduced by Buekenhout and Deherder [Il]
and have been investigated by Brouwer [71, Leonard [4l1 and myself (19),[12].

The only known finite Lo-spaces are the Desarguesian projective or affine
spaces of any dimension ~ 3, the Hall triple systems, the planar spaces
5(3, ILO" v) where alI lines have size 2, and finalIy the 3-dimensional genera­
lized projective spaces P(3, k+k) consisting of two disjoint lines of size k
(here alI planes are degenerate projective planes P(2, k+l)). The spaces
P(3, k+k) are also the only known finite LO-spaces with lines of different
sizes. In [19J and [421, some rather restrictive relations on the parameters
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v • v' + (V'-l)(v'-k)

1.10

of a finite LO.space with different 1ine sizes have been given. which are
particu1ar1y strong if there are more than two 1ine sizes. so that this
possibi1ity seems to be very improbab1e.
In particu1ar. it was shown that the number v of points of a finite LO-space
having at 1east two distinct 1ine sizes k and 1 ls unique1y determlned by the
following parameters of LO : v' • IL01. k. 1. the number bi< (resp. b~) of
1ines of size k (resp. 1) In LO. the number nkk of ordered palrs of intersecting
1ines of size k and the number nk1 of palrs of lntersectlng 1ines (one of size
k and the other of size 1) in LO :

bi< b~ k 1 + nkk . b~ 1- nk1 b'k k
nk1 5klk(V'-K) - nkk b~ l(V'-l)

This situatlon is very different from what we get lf LO ls a Oesargueslan
projective or affine p1ane.

The sma11est 1inear space LO having at 1east two 11ne sizes for whlch
the existence of an LO·space ls stl11 unsett1ed is represented be1ow.

(the 1ines of slze 2 are not drawn)

•

(18)

We have proved in [311 that the corresponding LO-space. which wou1d have 47
points. is rigido 1.e. has no other automorphlsm than the identlty.

We shall use 1ater the facto proved In [7 l. (19) and in [421. that in
any finite LO-space. a11 points are on the same number rk of lines of a glven
slze k.

Very little is known about the dual problem. namely the c1asslficatlon
of planar spaces with diagram

o
o L O L o

even in the finite case. However. the finite spaces wlth dlagram

Lo LO
O o O

can be c1asslfled complete1y :
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Theorem 1. [211 Let LO be a given Unear epaoe. If S ie a finite planar

space in which et'Bry plane is isomorphic to LO and the residue of every

point ie ieomorphio to LO, then LO ie a (poeeibly degenerate) projeotive

plane and S ie eithslr a projeotive epaoe PG(3,q) or a generaUzed projeo­

tf.ve epaoe P(3. k+k).

LermJa 1.1. The eet K of eizee of linee of LO ie equal to the eet of degreee

of pointe of Lo.

Proof. Let X be any point of S. Since Sx is isomorphic to LO, K coincides
with the set of degrees of X in the planes of S passing through x. Therefore,
since alI planes through X are isomorphic to LO and since K does not depend
on x. K coincides with the set of degrees of points of LO.

LermJa 1.2. If B ie aline of eize k in S and if x € B, then the point Bx of

\ OOe degree k in Sx'

Proof. Let V (resp. v') denote the number of points in S (resp. in LO). The
degree of the point Bx in Sx is equal to the number of planes of S containing
the line B. that is to (v-k)/(v'-k) = f(k) which depends on1y on the size k
of B. Since LO is isomorphic to Sx' Lenmal.1 implies that f(K) = K, and so
f(k) = k for every k € K because f:K + K:k + f(k) is an increasing function
and K is a finite set.

Proof of the theorem.

If IKI • 1. then alI lines of LO have the same size k and, by Lenma]],
a11 poi nts of Lo have degree k. Therefore Lo i 5 a projecti ve pIane of order
k-l (or a degenerate projective pIane with 3. points if k=2), and so S is
PG(3, k-l) with k-l ~ 1.

If IKI ~ 2. let B be aline of maximal size k ~ 3 in LO. AlI points of LO
outside B have a degree greater than or equal to k, and SO, by Lenmal], their
degree is equal to k.

If there are at least two points of LO outside B. then, by Lenmal2,
every point of S is on at least two lines of size k. These two lines are in
a pIane of S isomorphic to LO, and so LO contains two lines of size k inter­
secting in a point y. Since every point of LO outside aline of size k is of
degree k. the poi nt y i s the only point of LO havi ng a degree i < k, and
K· (k,i} by LemmalJ. Lemma12 again implies that every point of S is on
exactly one line of size i, and SO· the lines of size i are necessarily disjoint
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ln LO. Therefore. slnce the degree of any polnt Z of LO dlstlnct from y Is
k ~ 3. and slnce Z ls on at most one 11ne of slze t. there ls at 1east one
11ne of slze k contalnlng z but not y. and so the degree t of y ls at 1east
k. contradlctlng t < k.

Thls proves that there ls on1y one polnt of LO outslde B. In other words.
LO ls.degenerate projectlve p1ane wlth k+1 polnts. By Lenma1.2. every polnt of
S ls on exact1y one 11ne of slze k and k 11nes of slze 2. Thls Imp11es that S
ls the unlon of two llnes of slze k. a11 the other 11nes havlng slze 2.

5. n-OIMENSIONAL LINEAR SPACES.

Llnear and planar spaces be10ng to the wider c1ass of lncldence structures
wlth dlagram

•••
L

0>---"-.....0
n-2 n-l

(n ~ 2)

correspondlng exact1y to what Buekenhout ca11s n-dimensionaZ Zinear spaces [11 J;
they wi11 appear in the 1ast chapter of this thesis. An n-dimensionaZ Zinear

spoce is a linear space S provided with n disjolnt fami1ies~i (1 = 0.1 •...•
n-l) of non-empty proper 11near subspaces. ca1led i-subspacss, or more genera1ly
subspaces. such that

(1) polnts and llnes are the O-subspaces and the l-subspaces respectively.

(ii) if V is an i-subspace (i ~ n-2) and x € S-V. then there is a unique (i~)-

subspace containing V and x. denoted by <V.x> •

(ill) if V is an I-subspace and lf Wis a j-subspace containing V. then i < j •

(iv) any intersection of subspaces is a subspace or the empty set or S itse1f.

The 2-dimenslona1 and 3-dlmenslonal llnear spaces are nothlng else than the
non-trivial linear spaces and planar spaces respectlvely. The notion of n-dlmen­
slonal 1inear space is essentially the same as the notlon of geometrie Zattice

of dimension n (Birkhoff [3]). that is also the lattlce of flats of a simpZe

matroid of rank n+l (Welsh [56J). The (n-l)-spaces of mn-dimensiona1 1inear
space are cal1ed hyperpZanes.

Note that the use of the word dimension is a lltt1e confusing here. For
examp1e. a projective space P of dimenslon d • 3 Is at the same tlme a
(2-dlmensional) 1inear space if we consider only its polnts and 1lnes. a
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planar space (d1-.ns1on 3) 1f .. cons1der only 1ts polnts. llnes and p1anes.
and an n-d1-.ns1onal l1near space (2 ~ n , d) 1f we conslder alI lts llnear
subspaces of d1..ns1on < n. On the other hand. P could be a pIane of some
non-trlv1.al planar space I

6. IlETRICAlLY REGI.UR GRAPtlS. ASSOCIATION SCIIEMES. GENERALIZEO n-GONS ANO

PARTIAL GEOMETRIES.

Ile brlefly recall here a few definitions and results which wlll be used
1n Chapter Il.

Agraph G(al~s assUied to be finite. undirected. without loops and
IIUltiple edges) 15 called .troong~ zwgu1.ar with parameters (v. k. À, ~)

(Bose (41) if v denotes the n..ber of vertices of G. if every vertex 15 adja­
cent to exactly k vertices and if the n..ber of vertlces adjacent to any two
adjacent (resp. non-adjacent) vertices is À (resp. ~). Moreover. we always
assUie the non-degeneracy condition 2 , k , v-3. The adjacency matrix of G has
eigenvalues k. n-m. -m with multiplicities l, f. v-l-f, where

m • (n + ~ - À)/2 •

•

(19) An important consequence of this is the integraLity condition (Base[4])
f is a non-negative integer. Moreover. mand n are lntegers un1ess v = 4 ~+l,

k • 2 ~. À • ~-l (conference graphs)

Four other necessary conditions for the existence of a strongly regular
graph G such that both Gand its complement are connected (f.e. 1 < m< n)
are the following

(110) Krein condition (Higman (~9). Delsarte [28])
lf 1 < m< n. then

~(n-m(m-l» ~ (m-l)(n-m)(n+m(m-l»

(111) AbsoLute bound (De1sarte. Goetha1s and Seide1 [29], Neumaler [47)
If 1 < m< n. then

v ~ ì f(f+3)
Moreover. lf G15 not a Smlth graph [lG), then v (i f(f+1).

- 20 -
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(112) ~-bound (NelJllaier [46J)

If a strongly regular graph has smal1est eigenvalue-m, l < m< n, then

!'" m3 (2m - 3)

(113) CZ<:nJ-bound (NelJllaier (461)
If G is a strongly regular graph with smallest eigeinvalue-m (where m > l is
an integer) and if ~ ~ m (m-I), m2, then

ln ~ 1 m (m-l){~+l) + m-l

Metrically regular graphs are a direct generalization of strongly regular
graphs. A connected graph G is cal1ed metricaHy 1'6{IUZar {or disto:rwe-re{IUZar

(Biggs [2]» if the number of vertices at distance i fram a vertex x depends
only on i and not on x and if for any two vertices x and y at distance i, the
number of vertices which are at distance j from x and at distance k frcm y
depends only on the three distances i,j,k but not on the choice of x and y.
It is easi1y shown that the metrical1y regular graphs of diameter 2 are
exactly the connected strongly regular graphs. In turn, the notion of metri­
cally regular graph can be generalized in two directions : that of t-metrically
regular graph and that of association scheme, which we shall need later.

An association scheme with m cZa.6es on v objects (Bose and Shimamoto I 6 J)

is a family of m binary symmetric relations satisfying the following conditions :

(i) any two objects are either l-st, 2-nd, ' .. , or m-th associates

(ii) the number ni of i-th associates of an object x is independent of,

(iii) for any two i-th associates x and y, the number P~k of objects which
are j-th associates of x and k-th associates of y is independent of
the two i-th associates x and y.

Obviously, any metrically regular graph of diameter d may be seen as a d-class
association scheme by calling i-th associates any two vertices which are at
di stance 1.

Here again, we recall some necessary conditions for the existence of an m-class
•

association scheme on v points. with parameter~ ni and PJk' Consider the vxv

association matrices Aj =.(a;y) with entri es a~y = 1 if the vertices x and y
are j-th associates and a~y = O otherwise.
Let us denote by Àjk the (not necessari1y distinct) eigenvalues of Aj and by
~k the multiplicity of Àjk (it can be shown that ~k dees not depend on jl·
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114) Then the foll0w1ng cond1t10ns are necessary for the ex1stenee of an assoe1ation
scheme w1 th the above parameters :

(l) IntegNUty ooniJ:ition (Connor-Clatworthy [17])

111
Pk - v / (1 + I À~k/nt) are pos1t1ve 1ntegers for k - l •...•m

t-l

(2) 1f:Jo8i.n ooniJ:itf.on (H1gman (a91. Delsarte (28])

• 2 2O , 1 +~lÀkr Àks Àkt / nk ' v /(Pr ps)

for l , r.s.t , 111

(3) (Mathon (441). If n1 1
~ 2 and P1j ~ l. then

Metr1eally regular graphs are deeply related to some lnteresting incidenee
structures. For lnstance. a geneN~i.zed n-gon 5 (Tlts [55]) Is an incidenee
structure <S. I.. I) whose 1ncldence graph ~(5) 15 a b1partite graph on the two
sets of vert1ces:1 and I.. In lot11ch any vertex has degree ~ 2 and which has
dlameter n and g1rth 2n (i.e. the c1reu1ts of m1n1mal length have length 2n).
The elements of!! are ealled poi.ntB and the elements of I. are called !ineB.

It 15 well-known[S~].l58Jthat 1f 5 15 finite and 1f any vertex of1(5) has degree
~ 3, then there 15 an ordered palr of integers (s.t). ealled the order of 5,
such that any 11he of 5 has size 5+1 and any p01nt of 5 is on exaetly t+1 1ines.
The poi.nt graph (resp. Une graph) of 5 - (9. I.. I) has vertex set !! (resp. I)

and 1s obta1ned by call1ng two p01nts (resp. two 11nes) adjacent if and only if
they are eol11near (resp. 1ntersect1ng). The 11"e graph of 515 a1so the point

:15) graph of the dual of 5. The po{nt graph and the line graph of a finite generalized
n-gon of order (s,t) are metr1cally regular w1th d1ameter [!] , so that the
above-ment10ned necessary cond1t10ns apply to genera11zed n-gons. For example,
the Felt-Hlgman non-existence theorem for"general1zed polygons [3~1. statlng
that a f1nlte general1zed n-gon of order (s.t) w1th s.t ~ 2 does not exist lf
n ~ 2.3.4.6 or 8. can be dedueed fram the 1ntegrallty eondltion [511 and some
class1cal 1nequa11t1es between powers of t and s follow from the Kre1n eondition
[511. [391.

On the other hand. a fin1te partia~ geometry (R.K,T) where R ~ 2, K• 2.
T ~ l are integers 15 a set of elements called POi."tB together wlth a family
of d1stinguished subsets called ~ineB sueh that
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(i) each point belongs to exactly R lines and every pair of points is
contained in at most one line.

(ii) each line contains exactly K points

(iii) for any line L. any point outside L is on exactly T lines intersecting L.

In partic 'lar. the partial geometries with T-l are exactly the generalized
(116) quadrang'e. (cr 4-gons) of order (s.t) - (K-l. R-l). It is obvious that the point

graph and ~e line graph of a partial geometry are strongly regular. so that
the above-~ntioned necessary conditions apply to parti al geometries.

Finalìy. let us mention another generallzation of metrically regular
graphs. A gra~h G is called t-metricaZZy regu~ if for any n ~ t and for
any n-tuple of vertices (.,1' x2•...•xn). the nl.lllber of vertice5 which are
at distanoe l] fram Xl' 62 fram x2•...• 6n fram xn• depends only on the di5­
tances 61, .. "' In and on the distances between the xi's. but not on the choice
of the n-tu,le. So. the 2-metrically regular graphs are exactly the metrically
regular graphs.


