CHAPTER I. DEFINITIONS AND BASIC RESULTS

1. LINEAR SPACES AND PLANAR SPACES

A linear space S is a non-empty set of elements, called points, provided
with a family of distinguished subsets, called 7inee, such that any two points
x and y are in exactly one line, denoted by <x,y>, and each line contains at
least two points. S is called non-trivial if it has at least two lines, and it
is called finite #f it has only a finite number of points. The size of a line L
is the number of points of L and the degree of a point x is the number of lines
passing through x. We shall say that two lines intersect if they have exactly
one point in common.

A linear subspace S' of S is a set of points of S such that any line of
S having at least two points in S' is contained in S'. A linear subspace S' of
S is called proper if S' # S.

A planar space is a linear space provided with a family of distinguished
linear subspaces called planes, such that any three non-collinear points x,y,z
are contained in exactly one plane, denoted by <x,y,z>, each plane containing
at least three non-collinear points. A planar space is called non-trivial if it
has at least two planes. If L is a 1ine of S and if x is a point of S outside L,
the unique plane containing L and x will be denoted by <L,x>. Similarly, if L
and L' are two intersecting lines of S, the unique plane containing L and L'
will be denoted by <L,L'>. Note that if x,y,z are non-collinear points, the
plane Xx,y,z 1is not necessarily the smallest linear subspace of S containing
X,¥sZ. Actually, any non-trivial linear space can be a plane of some non-trivial
planar space.

We shall say that a line and a plane intersect if they have exactly one
point in common. A planar subspace S' of S is a linear subspace S' of S such
that any plane of S having at least three non-collinear points in S is contained
in S'.

If X is a non-empty subset of a 1inear space S, the linear space tnduced
on X by S 1s the linear space whose points are the points of X and whose lines
are the intersections with X of the lines of S having at least two points in X.
Similarly, if S is a planar space and X is a non-empty subset of S, the planar
space induced on X by S is the planar space whose points are the points of X,
whose lines are the intersections with X of the 1ines of S having at least two
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points in X, and whose planes are the intersections with X of the planes of S
having at least three non-collinear points in X.

A circular space G is a non-empty set of elements called points, provided
with a family of distinguished subsets called circles, such that any three points
are in exactly one circle and any circle contains at least three points. A planar
space S whose lines are the unordered pairs of points may be viewed as a circu-
lar space in which the circles are the planes of S, and conversely.

2. STEINER SYSTEMS AND t-DESIGNS.

A Steiner system S(t,k,v) (where t,k,v are integers with 2 ¢ t ¢« k £ v)
is a finite set of v elements, called pointe, provided with a family of distin-
guished k-subsets, called blocks, such that any t points are contained in exactly
one block. The Steiner systems S( 2,k,v) are the finite linear spaces of v points
in which all lines (or blocks) have the same size k.

A projective plane is a linear space in which any two lines intersect and
which has at least two lines of size > 3. It is well-known that in a finite
projective plane S, all the lines have the same size n+l, where n > 2 is called
the order of the projective plane, so that S is an S(2, n+l, n2 +n+1).
Conversely, any Steiner system with these parameters is a projective plane of
order n. A generalized projective plane is a non-trivial linear space in which
any two lines intersect. The generalized projective planes which are not pro-
jective planes are called degenerate projective planes and consist of a line L
and a point x outside L, all lines joining x to a point of L having size 2.

An affine plane is a non-trivial linear space in which for any 1ine L, any
point outside L is on exactly one line disjoint from L. The affine planes of
order N are exactly the Steiner systems S(2, n, nz).

The Steiner systems S(3,k,v) are the finite circular spaces of v points
in which all circles have k points. We shall also use this notation for the
planar spaces in which all lines have two points, the planes being the blocks

of the Steiner system. An zZnversive plane of order n is an S(3, n+l, n +1)

More generally, a t-design S = S, (t,k,v) (where 1 s t ¢ k ¢ v and 1 g 1)
is a finite set of v elements, called points, provided with a family of k-subsets,
called blocke, such that any t points are in exactly A blocks (a t-design with
A=1 is a Steiner system). For any set I of 1 points (0 ¢ 1 ¢ t-1), the i-th
derived design of S with respect to 1 is the (t-i)-design Sl(t-i. k-1, v-1)
whose points are the points outside I and whose blocks are the restrictions
to S-I of the blocks containing I.



[.3.

I1) A well-known necessary condition for the existence of an Sl(t,k,v) is
that, for any integer i with 0 ¢ 1 ¢ t ,

V=i k=1
A ey )/ (gl )
is an integer, since this expression counts the number of blocks containing
any given set of i points. In particular, any point is on exactly

rea () /(8

blocks, and the total number of blocks is

If S is a 2s-design 51(25, k,v) where s e]N0 and v > k+s, Wilson and
Ray-Chaudhuri [ 49 ] have proved that

b (¢ )
S is said to be tight if equality holds. Examples are given by the Steiner
system S(4, 7, 23) and its complement the 552 (4, 16, 23).
If S is a (2s+1)-design 51(25+], k,v) where s EINU and v-1 > k+s, then the
preceding result can be applied to the first derived designsof S, so that

b > (V3 ) vk

S 1s said to be tight if equality holds. The Steiner system S(5, 8, 24) is
tight.
[2) In particular, any 2-desiqn with v > k+1 satisfies Fisher's itnequality
b > v, which is equivalent to k ¢ r since bk = vr. A symmetric 2-design 1S a
tight 2-design, that is a 2-design for which v=b (or equivalently k=r). The
symmetric 2-designs with » = 1 are exactly the projective planes S(2, n+l, n2+n+1),
including the degenerate projective plane of 3 points.
13) The Bruck-Chowla-Ryser theorem gives an important necessary condition
for the existence of symmetric 2-designs, namely :
(i) if v is even, r-x should be a square,

(11) if v is odd, the Diophantine equation
(r_l)xz + (_1)(?'1){2 yz - 22
should have a solution in integers x,y,z not all zero [37]

More generally, a t-design S is called symmetric if its (t-2)th derived

designs are symmetric 2-designs.
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(I4) Cameron [13] has proved that the parameters of a symmetric 3-design are neces-
sarily in the following list

(a) v = A+3, k = A+2

(b) v = 4(a+1), k = 2(A+1)

(c) v = (A1)(A% + 5 a45), k = (A+1)(1+2)
(d) v =112, k =12, 2 = ]

(e) v = 496, k = 40, A = 3 .

< < <€ <

3. INCIDENCE STRUCTURES AND DIAGRAMS.

A linear space may be viewed as an incidence structure S = (F, £, 1)
where P denotes the set of points of S, £ denotes the set of lines of S and I
is a symmetric relation between # and £ : a point x and a line L are incident,
which is written x I L, if and only if x € L. A flag (resp. antiflag) of a
linear space S is a point-line incident (resp. non-incident) pair. In the defi-
nition of a linear space given in the first section, we have used the same
notation for the linear space and for its set of points and we have identified
every line L with the set of points incident with L. We shall use both points
of view and terminologies.

The inetdence gm;phg(S) of a linear space S is the bipartite graph whose
vertices are the elements of P U L, two vertices being adjacent if and only if
they are incident. The fiqure below shows the incidence graph of the projective
plane PG(2,2).
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The definition of a non-trivial 1inear space can of course be translated in terms of
its incidence graph-g . In particular, any two points are at distance 2 in‘j and any
vertex of}« has degree 2 2. Note that the Steiner systems S(2,k,v) may be defined

as the linear spaces such that in their incidence graph, all lines (and there-

fore all points) have the same: degree k (resp. r).

Similarly, a planar space S may be viewed as an incidence structure
S = (9. £,TC, 1) where P, £ andTC denote respectively the set of points, lines
and planes of S, and where I is the incidence relation, two elements of
Fuc UT being incident if and only if, considered as point sets, one of them
is strictly contained in the other. The incidence graphf(S) of a planar space
is then a tripartite graph. A flag of S is a set of pairwise incident elements
of Fu s ul. A maximal flag 1s a set {x, L, N} where x Efﬂ Led, n e and
x I LInm.

The residue S, of a vertex v ofj(S) is the incidence structure whose
incidence graph is the restriction ofi(S) to the neighbourhood of v inf(S).
For example, the residue S“ of a plane t of S is nothing else than the linear
space 1 itself. The residue SL of a line L of S consists of the points of L and
the planes containing L, each of these planes being automatically incident with
each of these points. s0 that the incidence graph of SL is a complete bipartite
graph. Such incidence structures are called generalized digons. The residue Sx
of a point x is a linear space whose points are the lines containing x, whose
lines are the planes containing x and in which a point Lx corresponding to a
line L and a line N, corresponding to a plane T are incident if and only if
L <Ww. The fact that Sx is a linear space follows essentially from the fact
that any two intersecting lines of S are contained in exactly one plane.

Linear spaces and planar spaces may be represented by diagrams in the
sense of Buekenhout [17]. For definitions and conventions concerning incidence
structures admitting diagrams, we refer the reader to [11]. In particular, the
class of non-trivial linear spaces is represented by the diagram

o L 0

where the left dot represents the setf? of points and the right dot represents
the set £ of lines. The class of generalized digons is represented by the
diagram

0 0

Then, according to the conventions of Buekenhout, the class of non-trivial
planar spaces is represented by the diagram



[.6

expressing the fact that non-trivial planar spaces are incidence structures
with three sets of ubjetsﬁ?,.f andTC, represented respectively by the three
dots 0, 1 and 2, such that the residue of any element ﬂft? UTC is a non-trivial
Tinear space and that the residue of any element of £ is a generalized digon.

This symbolic representation suggests several problems by considering
various subclasses of the class of linear spaces. For example, if the class
of projective planes of order n is denoted by

n n
0o o ,

then the incidence structures admitting the diagram

n n L

0 O O

are the non-trivial planar spaces all of whose planes are projective planes

of order n. Thanks to the classical work of Veblen and Young, we know that
these are exactly the Desarguesian projective spaces PG(d,n) of dimension

d > 3, endowed with all their planes. More generally, the class of generalized
projective planes is denoted by

0 0

so that the diagram

0 ELO

represents exactly the generalized projective spaces of dimension > 3, endowed
with all their planes. Remember that a generalized projective space is a linear
space such that for every pair of lines L and L' intersecting in a point x, any
two lines not passing through x and intersecting each of the lines L and L'
intersect (Pasch's axiom).These spaces are unions of projective spaces of any
dimension > 0 joined together by lines of size 2. The planes of a generalized
projective space are the smallest linear subspaces containing three non-collinear
points. A generalized projective space has dimension n if there are n+l points
which are contained in no proper linear subspace of S and if any n points are
contained in a proper linear subspace of S. We shall denote by P(2, k+l) the
degenerate projective plane of k+1 points and by P(3, k+%) the 3-dimensional
generalized projective space consisting of two disjoint lines of size k and ¢
respectively, all the other lines having size 2.
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From now on, PG(d,q) will not only denote the Desarguesian projective
space of dimension d over GF(q) for q > 2, but also, for q=1, the generalized
projective space PG(d,1) with d+1 points, in which all lines have size 2,
which may be viewed as the d-dimensional projective space over "GF(1)". However
AG(d,q) will always denote the d-dimensional Desarguesian affine space over

GF(q) (q 2 2).
Af

If o—— 0
denotes the class of affine planes, then the diagram
o Af 0 L 0

represents the class of non-trivial planar spaces all of whose planes are
affine planes. Buekenhout [ 3] has proved that these are exactly the affine
spaces of order > 4 if one of the planes has order > 4. However, if the planes
have order 3, these spaces, called Hall triple systems, are not necessarily
affine spaces, as shown by Hall [36]. Finally, if the planes have order 2, then
all Steiner systems S(3,4,v) yield planar spaces admitting the above diagram.

Let us mention a generalization of this situation. An affino-projective
plane is a linear space T obtained from a projective plane by deleting a set
of points of a 1ine L. The order of a finite affino-projective plane is the
order of the initial projective plane. In particular, I is a projective plane
if we delete no point, TN is a punctured projective plane if we delete just
one point, N is an affine plane with one point at infinity if we delete all
points of L except one, and T is an affine plane if we delete all points of L.
The planes of these four types are examples of semi-affine planes, that is
non-trivial linear spaces in which for any line L, any point outside L is on
at most one line disjoint from L. Dembowski [30] and Kuiper [31, p.310] have
proved that conversely any finite semi-affine plane is of one of these four
types or i1s a degenerate projective plane. Actually, Dembowski assumes that
all Tines have size > 3 and that all points have degree > 3, but the classi-
fication of all finite semi-affine planes containing a line of size 2 or a
point of degree 2 is very easy.

Let

A-P

0 1
represent the class of affino-projective planes. Teirlinck [53] has proved
that if S corresponds to the diagram

oP o L , ;

0 1 2
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if S contains at least one plane of order > 4 and contains a finite subset of
points which is not contained in any proper linear subspace of S, then S is
an affino-projective space, that is a projective space from which a subset of
a hyperplane has been deleted. Note that a plane of an affino-projective
space is not necessarily an affino-projective plane.

Dual problems arise in a natural way. For example, what can be said about
the planar spaces with diagram

n n
0 L O O .

that is the non-trivial planar spaces in which the residue of every point is

a projective plane of order n (these spaces are sometimes said to be locally

a projective plane) ? This question seems to be rather difficult to answer.
Kantor [11] has conjectured that a finite non-trivial planar space which is
locally a projective plane is necessarily obtained by deleting a set of points
from a 3-dimensional projective space.

A partial answer to this question has been given by Doyen and Hubaut [32] who
proved that if S is a finite planar space with diagram

O L O 0

and 1f all lines of S have the same size k, then S is either PG(3, k-1) or
AG(3,k) or a Lobachevsky space of type k2 3+1), that is a planar
space such that for any line L and any point x outside L, the number of lines
of <x,L> which are disjoint from L and contain x is equal to kz—k+l (resp.
k3+1). The only known exampie of this latter class of spaces i1s the planar
space S(3, 6, 22).

Similarly, the problem of classifying the planar spaces S with diagram

-k+1 (resp. k

GL{}AfO

has been solved by Cameron [14], Brouwer and Wilbrink [ 8 ] under the additional
assumptions that S is finite and that all lines of S have the same size k :

then k=2 and S is a planar space S(3, n+l, n2+1), in other words an inversive

plane of order n.

Observe that, though the class of incidence structures admitting the diagram

GLG—LO

1s very wide and contains rather wild spaces, the incidence structures admitting

the diagram

15
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] d o L :

P L 14

have been classified by Sprague [52] under the additional assumption that
some point is on finitely many lines or some line has finitely many points.
Such an incidence structure, in which the residué of each point is a linear
space, the residue of each line is a generalized digon and the residue of
each plane is the dual of a linear space is, for some integer i, the incidence
structure having as varieties all (i-1)-, i- and (i+1)- dimensional subspaces
of some generalized projective space, and inclusion as incidence.

Finally, note that, on the contrary, the problem of classifying the inci-
dence structures admitting the diagram

: L s J

is still more general than that of classifying the incidence structuresadmit-
ting diagram

—t o0—

and so, seems to be hopeless.

4. PLANAR SPACES WITH ISOMORPHIC PLANES.

Let L° be a given linear space, which we shall represent by

0
o L 0
Then

denotes the non-trivial planar spaces in which every plane is isomorphic to L°.
These spaces, called La-&paces, were introduced by Buekenhout and Deherder [72]
and have been investigated by Brouwer [7 ], Leonard [42] and myself [19],[22].

The only known finite Lo-spaces are the Desarguesian projective or affine
spaces of any dimension 2 3, the Hall triple systems, the planar spaces
S(3, |L°|, v) where all lines have size 2, and finally the 3-dimensional genera-
l11zed projective spaces P(3, k+k) consisting of two disjoint lines of size k
(here all planes are degenerate projective planes P(2, k+1)). The spaces
P(3, k+k) are also the only known finite Lo-spaces with lines of different
sizes. In [19] and [42], some rather restrictive relations on the parameters
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of a finite L°—space with different 1ine sizes have been given, which are
particularly strong i1f there are more than two line sizes, so that this
possibility seems to be very improbable.

In particular, it was shown that the number v of points of a finite Lo-space
having at least two distinct line sizes k and £ 1s uniquely determined by the
following parameters of L : & IL°|. Ky £, the number b' (resp. bz) of

lines of size k (resp. &) in L°, the number M of ordered pairs of intersecting
lines of size k and the number “kz of pairs of intersecting lines (one of size

k and the other of size &) in L°

bkb'k!,-i-nkkb'!. nub' k

Ve o+ (v'-2)(v'k) '—m.—,,”(—wq)'

This situation is very different from what we get if L9 is a Desarguesian

projective or affine plane.
The smallest linear space L° having at least two line sizes for which

the existence of an Lﬂ-space is still unsettled is represented below.

(the lines of size 2 are not drawn)

We have proved in [31] that the corresponding L°-space._which would have 47
points, is rigid, i.e. has no other automorphism than the identity.

(18) We shall use later the fact, proved in [7 ], {19] and in [42], that in
any finite L°-5pace. all points are on the same number i of lines of a given
size k.

Very little is known about the dual problem, namely the classification
of planar spaces with diagram

0
OLOL—-—-O o

even in the finite case. However, the finite spaces with diagram
L0 L ©

can be classified completely :
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Theorem 1. [21] Let L° be a given linear space. If S 18 a finite planar |
space in which every plane 18 tsomorphic to L® and the residue of every

point 18 i8omorphic to LD, then L° 18 a ( possibly degenerate) projective
plane and S 18 either a projective space PG(3,q) or a generalized projec-

tive space P(3, k+k).

Lemma 1.1. The set K of stazes of lines of L° 16 equal to the set of degrees
of pointe of L°.

Proof. Let x be any point of S. Since Sx is isomorphic to L9, K coincides
with the set of degrees of x in the planes of S passing through x. Therefore,
since all planes through x are isomorphic to L® and since K does not depend

on X, K coincides with the set of degrees of points of L°.

Lemma 1.2. If B 28 a line of 8ize k ©tn S and if X € B, then the point Bx of
LSX has degree k in Sx'

Proof. Let v (resp. v') denote the number of points in S (resp. in LO). The
degree of the point B, in Sx is equal to the number of planes of S containing
the 1ine B, that is to (v-k)/(v'-k) = f(k) which depends only on the size k
of B. Since L° is isomorphic to Sx’ Lemmall implies that f(K) = K, and so
f(k) = k for every k € K because f:K + K:k + f(k) is an increasing function
and K is a finite set.

Proof of the theorem.

If |K| = 1, then all lines of L° have the same size k and, by Lemmall,
all points of L% have degree k. Therefore L% is a projective plane of order
k-1 (or a degenerate projective plane with 3 points if k=2), and so S is
PG(3, k=1) with k-1 2 1.

If |[K| 2 2, let B be a line of maximal size k > 3 in L°. A1l points of L°
outside B have a degree greater than or equal to k, and so, by Lemmall, their
degree 1s equal to K.

I[f there are at least two points of L? outside B, then, by Lemmal2,
every point of S is on at least two lines of size k. These two lines are in
a plane of S isomorphic to L%, and so L° contains two lines of size k inter-
secting in a point y. Since every point of L? outside a line of size k is of
degree k, the point y is the only point of L9 having a degree 2 < k, and
K= {k,2} by Lemmall. Lemmal2 again implies that every point of S is on
exactly one line of size 2, and so.the lines of size 2 are necessarily disjoint
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in L°. Therefore, since the degree of any point z of L° distinct from y is
kK 2 3, and since z is on at most one line of size ¢, there is at least one
line of size k containing z but not y, and so the degree 2 of y is at least

k, contradicting ¢ < k.
This proves that there is only one point of L% outside B. In other words,

L° isadegenerate projective plane with k+1 points. By Lemmal.2, every point of
S is on exactly one line of size k and k 1ines of size 2. This implies that S
is the union of two lines of size k, all the other lines having size 2.

5. n-DIMENSIONAL LINEAR SPACES.

Linear and planar spaces belong to the wider class of incidence structures

with diagram

L L .es = (n
0 1 2 n=-2 n-1

W

2)

corresponding exactly to what Buekenhout calls n-dimengional linear spaces [11];
they will appear in the last chapter of this thesis. An n-dimenstonal linear
space 1s a linear space S provided with n disjoint fami]ies'si (i = 0,1, ...,
n-1) of non-empty proper linear subspaces, called i-subspaces, or more generally
subspaces, such that

(1) points and lines are the O-subspaces and the 1-subspaces respectively,

(i1) 1if V is an i-subspace (i < n-2) and x € S-V, then there is a unique (i+)-
subspace containing V and x, denoted by <V,x> ,

(iii) if V is an i-subspace and if W is a j-subspace containing V, then i < j ,
(iv) any intersection of subspaces is a subspace or the empty set or S itself.

The 2-dimensional and 3-dimensional linear spaces are nothing else than the
non-trivial linear spaces and planar spaces respectively. The notion of n-dimen-
sional linear space is essentially the same as the notion of geometric lattice
of dimension n (Birkhoff [3 ]), that is also the lattice of flats of a simple
matroid of rank n+l (Welsh [56] ). The (n-1)-spaces of an-dimensional linear

space are called Ayperplanes.

Note that the use of the word dimension is a little confusing here. For
example, a projective space P of dimension d 3 3 is at the same time a
(2-dimensional) linear space if we consider only its points and lines, a
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planar space (dimension 3) if we consider only its points, lines and planes,
and an n-dimensional 1inear space (2 ¢ n ¢ d) if we consider all its linear
subspaces of dimension < n. On the other hand, P could be a plane of some

non-trivial planar space !

6. METRICALLY REGULAR GRAPHS, ASSOCIATION SCHEMES, GENERALIZED n-GONS AND
PARTIAL GEOMETRIES.

We briefly recall here a few definitions and results which will be used

in Chapter II.
A graph G (always assumed to be finite, undirected, without loops and

multiple edges) is called stromgly regular with parameters (v, k, A, u)

(Bose[ 4]) 1f v denotes the number of vertices of G, if every vertex is adja-
cent to exactly k vertices and if the number of vertices adjacent to any two
adjacent (resp. non-adjacent) vertices is A (resp. u). Moreover, we always
assume the non-degeneracy condition 2 ¢ k ¢ v-3. The adjacency matrix of G has
eigenvalues k, n-m, -m with multiplicities 1, f, v-1-f, where

n "tu'lji + IIE'H) ’

m=(n+yu-=-21r)/2 ,

f = % (?'1 - Zk'!v;'I“IJ"lI)

An important consequence of this is the integrality condition (Bose[4 ])
f 1s a non-negative integer. Moreover, m and n are integers unless v = 4 yu+1,
K =2 u, A = y-1 (conference graphs)

Four other necessary conditions for the existence of a strongly reqular
graph G such that both G and its complement are connected (i.e. 1 < m < n)
are the following

Krein condition (Higman [39], Delsarte [28])
If1 <m < n, then
u(n-m(m-1)) < (m=1)(n-m)(n+m(m-1))
Abgolute bound (Delsarte, Goethals and Seidel [29], Neumaier [47])
If 1 <m< n, then

PR
Moreover, if G is not a Smith graph [16], then v < 1} f(f+1).
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u-bound (Neumaier [46])
If a strongly regular graph has smallest eigenvalue-m, 1< m < n, then

}4£Lm3 (2m - 3)

Claw~bound (Neumaier [46])

If G is a strongly regular graph with smallest eigeinvalue-m (where m > 1 is
an integer) and if y #m (m-1), mz, then

n s«%-m (m=1)(p+1) + m-1

Metrically regular graphs are a direct generalization of strongly regular
graphs. A connected graph G is called metrically regular (Or distance-regular
(Biggs [2])) if the number of vertices at distance i from a vertex x depends
only on i and not on x and if for any two vertices x and y at distance i, the
number of vertices which are at distance j from x and at distance k from y
depends only on the three distances i,j,k but not on the choice of x and y.

It is easily shown that the metrically regular graphs of diameter 2 are

exactly the connected strongly regular graphs. In turn, the notion of metri-
cally regular graph can be generalized in two directions : that of t-metrically
regular graph and that of association scheme, which we shall need later.

An association scheme with m classes on v objects (Bose and Shimamoto { € |)
is a family of m binary symmetric relations satisfying the following conditions :

(1) any two objects are either 1-st, 2-nd, ..., or m-th associates
(1i) the number n, of i-th associates of an object x is independent of x

(1i1) for any two i-th associates x and y, the number p}k of objects which
are j-th associates of x and k-th associates of y is independent of
the two i-th associates x and y.

Obviously, any metrically regular graph of diameter d may be seen as a d-class
association scheme by calling i-th associates any two vertices which are at
distance 1.

Here again, we recall some necessary conditions for the existence of an m-class
association scheme on v points, with parameters n and p}k. Consider the vxv
association matrices Aj =.(aiy) with entries aJ_ = 1 if the vertices x and y

XY

are j-th associates and aiy = 0 otherwise.
Let us denote by hjk the (not necessarily distinct) eigenvalues of Aj and by

M the multiplicity of ljk (it can be shown that u does not depend on j).
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114) Then the following conditions are necessary for the existence of an association
scheme with the above parameters :

(1) Integrality condition (Connor-Clatworthy [17])
m

M =V / (1 + z] kfk/"z} are positive integers for k = 1,...,m
=
(2) Krein condition (Higman [39], Delsarte [28])
o 2 2
051+ Ay A e / g € VT (up ug)
for 1 g r,s,t g m

on . n; 3 ana p = Iy en
(3) (Mathon [44]). If ny 3 2 and }J 1, th

m
1+ Ei max {2 p:z -n, + 2 S50 (1 - 513).0} £ Dgi
g=

Metrically regular graphs are deeply related to some interesting incidence
structures. For instance, a generalized n-gon S (Tits [55]) is an incidence
structure (5". L, 1) whose incidence graph j(S) is a bipartite graph on the two
sets of vertices J and L, in which any vertex has degree > 2 and which has
diameter n and girth 2n (i.e. the circuits of minimal length have length 2n).
The elements of & are called pointe and the elements of L are called lines.

It is well-known[ss](seJthat if S is finite and 1if any vertex off(S) has degree
3 3, then there is an ordered pair of integers (s,t), called the order of S,
such that any line of S has size s+1 and any point of S is on exactly t+1 lines.
The point graph (resp. line graph) of S = (.?. L, 1) has vertex set § (resp. L)
and is obtained by calling two points (resp. two lines) adjacent if and only if
they are collinear (resp. intersecting). The line graph of S is also the point
iIS)' graph of the dual of S. The point graph and the line graph of a finite generalized
n-gon of order (s,t) are metrically regular with diameter {E} , s0 that the
above-mentioned necessary conditions apply to generalized n-gons. For example,
the Feit-Higman non-existence theorem for-generalized polygons [33], stating
that a finite generalized n-gon of order (s,t) with s,t > 2 does not exist if
n#2,3,4,6 or 8, can be deduced from the integrality condition [51] and some
classical inequalities between powers of t and s follow from the Krein condition

(311, [39].

On the other hand, a finite partial geometry (R,K,T) where R » 2, K > 2,
T 2 1 are integers is a set of elements called points together with a family

of distinguished subsets called Zines such that
- 27 =~
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(i) each point belongs to exactly R lines and every pair of points is
contained in at most one line,

(11) each line contains exactly K points
(ii1) for any line L, any point outside L is on exactly T lines intersecting L.

In particular, the partial geometries with T=1 are exactly the generalized

(116) quadrang'=s (cr 4-gons) of order (s,t) = (K-1, R-1). It is obvious that the point
graph and “he line graph of a partial geometry are strongly regular, so that
the above~-mentioned necessary conditions apply to partial geometries.

Finaliy, let us mention another generalization of metrically regular
graphs. A graph G 1s called t-metrically regular if for any n ¢ t and for
any n-tuple of vertices (1], xz,...,xn). the number of vertices which are
at distance & {rom X1s 8- from Xoseees 8o from X depends only on the dis-
tances &,, ..., 5 and on the distances between the xi's, but not on the choice

n
of the n-tu>le. So, the 2-metrically regular graphs are exactly the metrically

regular graphs.



