INTRODUCTION

Inspired by the linearity properties which are a common feature of most
classical spaces, Libois has introduced the notion of linear space around
1960. A linear space is a set of elements called points, provided with a
family of subsets, called lines, such that any two points are in exactly one
line, each line containing at least two points. Buekenhcut introduced then
the notion of planar space, that is a linear space provided with a family of
distinguished linear subspaces, called planes, such that any three non-col-
linear points are in exactly one plane, each plane containing at least three
non-collinear points.

One of the reasens for the success of these notions is that projective
and affine spaces may be entirely characterized by their linear (or planar)
structure. Indeed, by the classical work of Veblen and Young at the beginning
of this century, the projective spaces are exactly the Tinear spaces (endowed
with all their linear subspaces) in which any two intersecting lines are con-
tained in a linear subspace which is a projective plane. In other words, a
planar space in which all planes are projective planes consists of the points,
lines and planes of some projective space. On the other hand, by a theorem of
Buekenhout (1969), the affine spaces of order > 4 are exactly the linear spaces
(endowed with all their linear subspaces) in which any two intersecting lines
are contained in a linear subspace which is an affine plane of order > 4. In
other words, a planar space in which all planes are affine planes of order > 4
consists of the points, lines and planes of some affine space (in order to cha-
racterize the affine spaces of order g 3, the only additional requirement is
the transitivity of the parallelism relation on lines).

Linear and planar spaces correspond respectively to the diagrams

0———£——o and o L 0- L 0

and are particular cases of the more general notion of n-dimensional linear
space (or geometric lattice or simple matroid), corresponding to the diagram

CL—CLSLO...O—-—-L—-——O
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The uUse of diagrams goes back to Dynkin and Coxeter. Diagrams for geometries,
appearing around 1955 in Tits'geometric interpretation of the simple groups

of Lie-Chevalley type, were later generalized by Buekenhout in an attempt to
associate a geometry to the sporadic simple groups. The above mentioned point-
line characterizations of the Desarguesian affine and projective spaces form
only a small part of a recently achieved characterization of all Lie incidence
geometries in terms of points and lines. This remarkable work, associated with
the names Veldkamp, Tits, Buekenhout, Shult, Cohen and Cooperstein, is fascina-
ting in the sense that very complex geometric structures are characterized by
a few simple axioms involving only points and lines.

Let us go back lo the elementary notion of linear space. If X 1is a non-empty
subset of a linear space S, the linear space induced on X 1is defined as follows
its points are those of X and its lines are the intersections of X with the
lines of S having at least two points in X.

Clearly the class of finite linear spaces is much too wide to allow a com-
plete classification : for example, the structure induced on any non-empty subset
of a finite projective space is a linear space. This raises three types of problems
(i) find sufficient conditions for a finite linear space to be embeddable in some

finite projective space,

(1) classify the finite linear spaces satisfying some given combinatorial regu-

larity condition,

(ii1) classify the finite linear spaces whose automorphism aroup is transitive on
some given configurations of points and lines.

Of course, similar types of problems may also be formulated for planar spaces.
These lecture notes will essentially focus on problems of type (ii), and the

results will have some consequences for problems of type (i). Although this will

not be our topic here, let us mention that much progress was made recently on

problems of type (iii), mainly because of the classification of all finite simple

groups.
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In Chapter I, the reader will find the definitions of most of the notions
appearing later, as well as some basic theorems (numbered in the left margin)

which will be used in subsequent chapters. The only original result in Chanter I
concerns Lo-spaces, i.e non-trivial planar spaces all of whose planes are

isomorphic to some given linear space L, the corresponding diagram being

Finite Lo-spaces have been investigated by Buekenhout, Deherder, Brouwer,
Leonard and myself, but examples other than projective or affine spaces or
Steiner systems S(3,k,v) seem to be extremely rare. On-other hand, very little
is known about planar spaces with diagram

0
OL‘\’}L—O

even in the case where L® is a projective plane. We prove that a finite planar
space admitting diagram

: L9 L°

is necessarily a 3-dimensional generalized projective space.



0.4

In Chapter II, starting from the observation that the generalized pro-
jective spaces of dimension < 3 are characterized by the fact that for any
two disjoint lines L and L', any point outside L U L' is on exactly one line
intersecting both L and L', we completely classify (in a joint work with
A. Beutelspacher) the finite linear spaces S satisfying the following condition

(D2) there is an integer d2 such that for any pair of disjoint lines L and L',
any point outside L U L' is on exactly d2 lines intersecting both L and L'.
Such a space S is a generalized projective space of dimension ¢ 3, or PG(d,1)
with d > 4, or a semi-affine plane or a small exceptional space with 7 points.

Condition (D2) can be interpreted in terms of metrical regularity in the
incidence graph of S, as suggested by the figures below, which are self-explana
tory :

(D2)

More generally, we will say that a linear space S satisfies condition
@J,i,j,k;z,m,n) where 4§ is either the point set 7 or the line set £ of S and
i,J,k,%,m,n are positive integers, if there is an integer ¢ such that for any
triple (u,v,w) of vertices of the incidence graph-ﬁ of S where u € 4 and
d(u,v) = i, d(v,w) = j, d(w,u) = k, there are exactly ¢ vertices of»? which
are simultaneously at distance ¢ from u, m from v and n from w.

We prove that condition (D1), pictured below, is stronger than {(02).
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We also prove that the finite non-trivial linear spaces satisfying

(with d0 > 0) either satisfy (D2) or are obtained from an affine plane by

deleting aline or a point, or is an affino-projective plane.

Generalizing a problem proposed by Cameron in 1980, we investigate the
conditions obtained from the preceding ones by starting with an ordered pair
of intersecting lines L and L' instead of an ordered pair of disjoint lines,
that is

L ? N
3
i ?C T
(12) x —-‘n@
L “

(11)
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These three conditions are equivalent in the case of Steiner systems S(2,k,v).
The only known examples of finite non-trivial linear spaces satisfying one of
them are certain semi-affine planes and the S(2,2,v)'s. We prove that any other
example would necessarily be a Steiner system S(2,k,v) whose parameters k and 12
satisfy very strong arithmetical conditions : for example, if k < 100, there
remain only six admissible pairs (iz,k).

We end Chapter II by proving that the finite non-trivial linear spaces
satisfying condition

(ID)

(which means that there is an integer & such that for any two intersecting
lines L and L', there are exactly § lines disjoint fromL U L")
are exactly the Steiner systems S(2,k,v) with k < v.

In Chapter III, we start from the observation that the 3-dimensional
generalized projective spaces are exactly the planar spaces in which

(I) for every pair (m, n') of planes intersecting in a line, any line
intersecting 1 intersects n',
and (I') there are at least two planes intersecting in a line.
We first prove that the finite planar spaces satisfying

(I1) for every pair (m, n') of planes intersecting in exactly one point,
any line intersectingnn intersects n',
and (II') there are at least two planes intersecting in exactly one point
are essentially obtained by deleting certain points from a 3-dimensional pro-
jective space; more precisely, such a space is either obtained from PG(3,k)
by deleting an affino-projective (but not projective) plane of order k or by
deleting k collinear points, or is obtained by adding a new point (joined to
all other points by lines of size 2) to a punctured projective plane or to an
affine plane with one point at infinity or to an affine plane, or is PG(4,1).



We also investigate the finite planar spaces satisfying

(IIl) for every pair (n, n') of disjoint planes, any line intersecting
m intersects 1
and (III') there are at least two disjoint planes.
We prove that up to six small uninteresting spaces and up to a possibly empty
class of spaces (in which all planes admitting a disjoint plane are pairwise
disjoint and which contain at least four non-coplanar points outside the union
of these planes), any finite planar space satisfying (III) and (IIl') is either
obtained from PG(3,k) by deleting a line or an affino-projective (but not affine)
plane of order k or is rather unexpectedly related to the Fischer spaces FIB or
F36 constructed from a Hermitian quadric in PG(3,4).



CHAPTER I. DEFINITIONS AND BASIC RESULTS

1. LINEAR SPACES AND PLANAR SPACES

A linear space S is a non-empty set of elements, called points, provided
with a family of distinguished subsets, called iines, such that any two points
x and y are in exactly one line, denoted by <x,y>, and each 1ine contains at
least two points. S is called non-trivial if it has at least two lines, and it
is called finite #f it has only a finite number of points. The size of a line L
is the number of points of L and the degree of a point x is the number of lines
passing through x. We shall say that two lines intersect if they have exactly
one point in common.

A linear subspace S' of S is a set of points of S such that any line of
S having at least two points in S' is contained in S'. A linear subspace S' of
S is called proper if S' # S.

A planar space is a linear space provided with a family of distinguished
linear subspaces called planes, such that any three non-collinear points x,y,z
are contained in exactly one plane, denoted by <x,y,z>, each plane containing
at least three non-collinear points. A planar space is called non-trivial if it
has at least two planes. If L is a line of S and if x is a point of S outside L,
the unique plane containing L and x will be denoted by <L,x>. Similarly, if L
and L' are two intersecting lines of S, the unique plane containing L and L'
will be denoted by <L,L'>. Note that if x,y,z are non-collinear points, the
plane x,y,z 1is not necessarily the smallest linear subspace of S containing
Xs¥,Z. Actually, any non-trivial linear space can be a plane of some non-trivial
planar space.

We shall say that a 1ine and a plane intersect if they have exactly one
point in common. A planar subspace S' of S is a linear subspace S' of S such
that any plane of S having at least three non-collinear points in S is contained
in S'.

If X is a non-empty subset of a linear space S, the linear space tnduced
on X by S 1s the linear space whose points are the points of X and whose lines
are the intersections with X of the lines of S having at least two points in X.
Similarly, if S is a planar space and X is a non-empty subset of S, the planar
space induced on X by S is the planar space whose points are the points of X,
whose lines are the intersections with X of the lines of S having at least two
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points in X, and whose planes are the intersections with X of the planes of S
having at least three non-collinear points in X.

A circular space G is a non-empty set of elements called points, provided
with a family of distinguished subsets called ecircles, such that any three points
are in exactly one circle and any circle contains at least three points. A planar
space S whose lines are the unordered pairs of points may be viewed as a circu-
lar space in which the circles are the planes of S, and conversely.

2. STEINER SYSTEMS AND t-DESIGNS.

A Steiner system S(t,k,v) (where t,k,v are integers with 2 ¢ t < k £ V)
is a finite set of v elements, called points, provided with a family of distin-
guished k-subsets, called blocks, such that any t points are contained in exactly
one block. The Steiner systems S( 2,k,v) are the finite linear spaces of v points
in which all lines (or blocks) have the same size k.

A projective plane is a linear space in which any two lines intersect and
which has at least two lines of size > 3. It is well-known that in a finite
projective plane S, all the lines have the same size n+1, where n > 2 is called
the order of the projective plane, so that S is an S(2, n+l, n2 +n+1).
Conversely, any Steiner system with these parameters is a projective plane of
order n. A generalized projective plane is a non-trivial linear space in which
any two lines intersect. The generalized projective planes which are not pro-
Jective planes are called degenerate projective planee and consist of a line L
and a point x outside L, all lines joining x to a point of L having size 2.

An affine plane is a non-trivial linear space in which for any line L, any
point outside L 1s on exactly one line disjoint from L. The affine planes of
order N are exactly the Steiner systems S(2, n, nz).

The Steiner systems S(3,k,v) are the finite circular spaces of v points
in which all circles have k points. We shall also use this notation for the
planar spaces in which all lines have two points, the planes being the blocks
of the Steiner system. An invereive plane of order n is an S(3, n+l, n2+1).

More generally, a t-design S = S, (t,kov) (where 1 g t s k ¢ vand 1 g 1)
is a finite set of v elements, called points, provided with a family of k-subsets,
called blocks, such that any t points are in exactly A blocks (a t-design with
A=1 is a Steiner system). For any set I of i points (0 ¢ 1 ¢ t-1), the i-th
derived design of S with respect to 1 is the (t-1)-design Sx(t-i. k-1, v-1)
whose points are the points outside I and whose blocks are the restrictions
to S-I of the blocks containing I.



1)

12)

13)
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A well-known necessary condition for the existence of an Sk(t,k,v) is
that, for any integer i with 0 < i ¢ t ,

v-i k-1
Mg )/ (g )
is an integer, since this expression counts the number of blocks cortaining
any given set of 1 points. In particular, any point is on exactly

v-1 k-1
r=a (4 )/ ()
blocks, and the total number of blocks is

b=a(Y) /(%)

If S is a 2s-design Sl(zs, k,v) where s e]No and v > k+s, Wilson and
Ray-Chaudhuri [ 49 ] have proved that

bz ()
S is said to be tight if equality holds. Examples are given by the Steiner
system S(4, 7, 23) and its complement the 552 (4, 16, 23).
If S is a (2s+1)-design SA(2s+1, k,v) where s €N, and v-1 > k+s, then the
preceding result can be applied to the first derived designsof S, so that

o2 (Y3 ) vk
S is said to be tight if equality holds. The Steiner system S(5, 8, 24) is
tight.

In particular, any 2-desiqgn with v > k+1 satisfies Fisher's inequality
b > v, which is equivalent to k < r since bk = vr. A symnetric 2-destgn is a
tight 2-design, that is a 2-design for which v=b (or equivalently k=r). The
symmetric 2-designs with A = 1 are exactly the projective planes S(2, n+l, n
including the degenerate projective plane of 3 points.

The Bruck-Chowla-Ryser theorem gives an important necessary condition
for the existence of symmetric 2-designs, namely :
(i) if v is even, r-x should be a square,
(i1i) if v is odd, the Diophantine equation

2+n+1),

(r_A)XZ + (_1)(V-1)/2 y2 = 22
should have a solution in integers x,y,z not all zero [37]

More generally, a t-design S is called symmetric if its (t-2)th derived

designs are symmetric 2-designs.
- 10 -
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Cameron [13] has proved that the parameters of a symmetric 3-design are neces-
sarily in the following list

(a) v = 243, k = 242

(b) v = 4(a+1), k = 2(A+1)
(c) v = (A1)(3% + 5 M5), k = (A+1)(A+2)
(d) v =112, k=12, A = 1

(e) v =496, k = 40, A = 3 .

3. INCIDENCE STRUCTURES AND DIAGRAMS.

A linear space may be viewed as an incidence structure S = (F, £, 1)
where.? denotes the set of points of S, £ denotes the set of lines of S and I
is a syrmetric relation between $ and £ : a point x and a line L are incident,
which is written x I L, if and only if x € L. A flag (resp. antiflag) of a
linear space S is a point-line incident (resp. non-incident) pair. In the defi-
nition of a linear space given in the first section, we have used the same
notation for the linear space and for its set of points and we have identified
every line L with the set of points incident with L. We shall use both points
of view and terminologies.

The incidence gnqﬂzg(S) of a linear space S is the bipartite graph whose
vertices are the elements of P u £, two vertices being adjacent if and only if
they are incident. The figure below shows the incidence graph of the projective
plane PG(2,2).
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The definition of a non-trivial linear space can of course be translated in terms of
its incidence graphvg. In particular, any two points are at distance 2 in4 and any
vertex of}‘ has degree 2z 2. Note that the Steiner systems S(2,k,v) may be defined

as the linear spaces such that in their incidence graph, all lines (and there-

fore all points) have the same-degree k (resp. r).

Similarly, a planar space S may be viewed as an incidence structure
S = (9. £,T, 1) where P, £ andTC denote respectively the set of points, lines
and planes of S, and where I is the incidence relation, two elements of
fuce UT being incident if and only if, considered as point sets, one of them
is strictly contained in the other. The incidence graphﬁ(S) of a planar space
is then a tripartite graph. A flag of S is a set of pairwise incident elements
of u L ul. A maximal flag is a set {x, L, N} where x ES’. Led, n e and
xILIm

The residue S, of a vertex v of&(S) is the incidence structure whose
incidence graph is the restriction ofi(S) to the neighbourhood of v inf(S).
For example, the residue SH of a plane It of S is nothing else than the linear
space I itself. The residue SL of a line L of S consists of the points of L and
the planes containing L, each of these planes being automatically incident with
each of these points. so that the incidence graph of SL is a complete bipartite
graph. Such incidence structures are called generalized digons. The residue Sy
of a point x is a Tinear space whose points are the lines containing x, whose
lines are the planes containing x and in which a point Lx corresponding to a
line L and a line m, corresponding to a plane T are incident if and only if
L <w. The fact that Sx is a linear space follows essentially from the fact
that any two intersecting lines of S are contained in exactly one plane.

Linear spaces and planar spaces may be represented by diagrams in the
sense of Buekenhout [17]. For definitions and conventions concerning incidence
structures admitting diagrams, we refer the reader to [11]). In particular, the
class of non-trivial linear spaces is represented by the diagram

o L 0

where the left dot represents the setc? of points and the right dot represents
the set £ of lines. The class of generalized digons is represented by the
diagram

) 0
Then,according to the conventions of Buekenhout, the class of non-trivial
planar spaces is represented by the diagram

- 12 -
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L L.

0 1 2

expressing the fact that non-trivial planar spaces are incidence structures
with three sets of objetsé?, L andT, represented respectively by the three
dots 0, 1 and 2, such that the residue of any element of & UTC is a non-trivial
Tinear space and that the residue of any element of £ is a generalized digon.

This symbolic representation suggests several problems by considering
various subclasses of the class of linear spaces. For example, if the class
of projective planes of order n is denoted by

n n
-0 ,

then the incidence structures admitting the diagram

n n L
+——O0—0

are the non-trivial planar spaces all of whose planes are projective planes

of order n. Thanks to the classical work of Veblen and Young, we know that
these are exactly the Desarguesian projective spaces PG(d,n) of dimension

d > 3, endowed with all their planes. More generally, the class of generalized
projective planes is denoted by

0————0
so that the diagram

0————0—L—0

represents exactly the generalized projective spaces of dimension > 3, endowed
with all their planes. Remember that a generalized projective space is a linear
space such that for every pair of lines L and L' intersecting in a point x, any
two lines not passing through x and intersecting each of the lines L and L'
intersect (Pasch's axiom).These spaces are unions of projective spaces of any
dimension > 0 joined together by lines of size 2. The planes of a generalized
projective space are the smallest linear subspaces containing three non-collinear
points. A generalized projective space has dimension n if there are n+l points
which are contained in no proper linear subspace of S and if any n points are
contained in a proper linear subspace of S. We shall denote by P(2, k+1) the
degenerate projective plane of k+1 points and by P(3, k+2) the 3-dimensional
generalized projective space consisting of two disjoint lines of size k and ¢
respectively, all the other lines having size 2.

- 13 -
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From now on, PG(d,q) will not only denote the Desarguesian projective
space of dimension d over GF(q) for q > 2, but also, for q=1, the generalized
projective space PG(d,1) with d+1 points, in which all lines have size 2,
which may be viewed as the d-dimensional projective space over "GF(1)". However
AG(d,q) will always denote the d-dimensional Desarguesian affine space over

GF(q) (q > 2).

1f L
denotes the class of affine planes, then the diagram
o Af -0 L 0

represents the class of non-trivial planar spaces all of whose planes are
affine planes. Buekenhout [ 3] has proved that these are exactly the affine
spaces of order > 4 if one of the planes has order > 4. However, if the planes
have order 3, these spaces, called Hall triple systems, are not necessarily
affine spaces, as shown by Hall [36]. Finally, if the planes have order 2, then
all Steiner systems S(3,4,v) yield planar spaces admitting the above diagram.
Let us mention a generalization of this situation. An affino-projective
plane is a linear space T obtained from a projective plane by deleting a set
of points of a line L. The order of a finite affino-projective plane is the
order of the initial projective plane. In particular, T is a projective plane
if we delete no point, T is a punctured projective plane if we delete just
one point, MM is an affine plane with one point at infinity if we delete all
points of L except one, and T is an affine plane if we delete all points of L.
The planes of these four types are examples of semi-affine planes, that is
non-trivial linear spaces in which for any line L, any point outside L is on
at most one line disjoint from L. Dembowski [30] and Kuiper [31, p.310] have
proved that conversely any finite semi-affine plane is of one of these four
types or is a degenerate projective plane. Actually, Dembowski assumes that
all lines have size > 3 and that all points have degree > 3, but the classi-
fication of all finite semi-affine planes containing a 1ine of size 2 or a
point of degree 2 is very easy.
Let
A-P

0 1
represent the class of affino-projective planes. Teirlinck [53] has proved
that if S corresponds to the diagram

AP 5 L, y

0 1 2

- 14 -
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if S contains at least one plane of order > 4 and contains a finite subset of
points which is not contained in any proper linear subspace of S, then S is
an affino-projective epace, that is a projective space from which a subset of
a hyperplane has been deleted. Note that a plane of an affino-projective
space is not necessarily an affino-projective plane.

Dual problems arise in a natural way. For example, what can be said about
the planar spaces with diagram

n n
L
o -0- 0 ’

that is the non-trivial planar spaces in which the residue of every point is

a projective plane of order n (these spaces are sometimes said to be locally

a projective plane) ? This question seems to be rather difficult to answer.
Kantor [11] has conjectured that a finite non-trivial planar space which is
locally a projective plane is necessarily obtained by deleting a set of points
from a 3-dimensional projective space.

A partial answer to this question has been given by Doyen and Hubaut [32] who
proved that if S is a finite planar space with diagram

G L \ 0

and if all lines of S have the same size k, then S is either PG(3, k-1) or
AG(3,k) or a Lobachevsky space of type kz-k+1 (resp. k3+1), that is a planar
space such that for any line L and any point x outside L, the number of lines
of <x,L> which are disjoint from L and contain x is equal to k2—k+1 (resp.
k3+1). The only known example of this Tatter class of spaces is the planar
space 5(3, 6, 22).

Similarly, the problem of classifying the planar spaces S with diagram

GLOAfO

has been solved by Cameron [14], Brouwer and Wilbrink [ 8 ] under the additional
assumptions that S is finite and that all Tines of S have the same size k :
then k=2 and S is a planar space S(3, n+l, n2+1), in other words an inversive

plane of order n.

Observe that, though the class of incidence structures admitting the diagram

OLCLO

is very wide and contains rather wild spaces, the incidence structures admitting

the diagram

15
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have been classified by Sprague [52] under the additional assumption that
some point is on finitely many lines or some line has finitely many points.
Such an incidence structure, in which the residué of each point is a linear
space, the residue of each line is a generalized digon and the residue of
each plane is the dual of a linear space is, for some integer i, the incidence
structure having as varieties all (i-1)-, i- and (i+1)- dimensional subspaces
of some generalized projective space, and inclusion as incidence.

Finally, note that, on the contrary, the problem of classifying the inci-
dence structures admitting the diagram

CLCJO

is still more general than that of classifying the incidence structuresadmit-
ting diagram

0 L 0- -0

and so, seems to be hopeless.

4. PLANAR SPACES WITH ISOMORPHIC PLANES.

Let L° be a given linear space, which we shall represent by

Then

denotes the non-trivial planar spaces in which every plane is isomorphic to LO.
These spaces, called Lo-spaces, were introduced by Buekenhout and Deherder (12]
and have been investigated by Brouwer [7 ], Leonard [42] and myself [19],[22].

The only known finite L°—spaces are the Desarquesian projective or affine
spaces of any dimension z 3, the Hall triple systems, the planar spaces
S(3, [L°[. v) where all lines have size 2, and finally the 3-dimensional genera-
lized projective spaces P(3, k+k) consisting of two disjoint Tines of size k
(here all planes are degenerate projective planes P(2, k+1)). The spaces
P(3, k+k) are also the only known finite Lo-spaces with lines of different
sizes. In [19) and [42], some rather restrictive relations on the parameters

- 16 -
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of a finite L°—5pace with different line sizes have been given, which are
particularly strong if there are more than two line sizes, so that this
possibility seems to be very improbable.
In particular, it was shown that the number v of points of a finite L°-space
having at least two distinct line sizes k and £ is uniquely determined by the
following parameters of L% : v' = |L°], k, 2, the number by (resp. bj) of
Tines of size k (resp. ¢) 1in L°, the number Mk of ordered pairs of intersecting
lines of size k and the number N of pairs of intersecting lines (one of size
k and the other of size &) in Lo :

"R ' ogo '

v e P e e T
ke "k kk "2

This situation is very different from what we get if L% is a Desarguesian

projective or affine plane.
The smallest linear space L° having at least two line sizes for which
the existence of an L°-space is still unsettled is represented below.

(the lines of size 2 are not drawn)

We have proved in [37] that the corresponding L°-space.‘wh1ch would have 47
points, is rigid, i.e. has no other automorphism than the identity.

(18) We shall use later the fact, proved in [7 ], {19] and in [42], that in
any finite L%-space, all points are on the same number r, of lines of a given
size k.

Very little is known about the dual problem, namely the classification
of planar spaces with diagram

L:Lo

even in the finite case. However, the finite spaces with diagram
Lo L
can be classified completely :

- 17 -



Theorem 1. [21] Let L° be a given linear space. If S 18 a finite planar
8pace in which every plane i8 isomorphic to LO and the residue of every
point i8 isomorphic to Lo, then L° s a (poseibly degenerate) projective
plane and S 18 either a projective space PG(3,q) or a generalized projec-
tive space P(3, k+k).

Lemma 1.1. The set K of siaes of lines of L° 16 equal to the set of degrees
of points of L°.

Proof. Let x be any point of S. Since Sx is isomorphic to L%, K coincides
with the set of degrees of x in the planes of S passing through x. Therefore,
since all planes through x are isomorphic to L% and since K does not depend
on X, K coincides with the set of degrees of points of Lo.

Lemma 1.2. If B 18 a line of 8ize k tn S and if x € B, then the point Bx of
-Sx has degree k in Sx'

Proof. Let v (resp. v') denote the number of points in S (resp. in L9). The
degree of the point Bx in Sx is equal to the number of planes of S containing
the 1ine B, that is to (v-k)/(v'-k) = f(k) which depends only on the size k
of B. Since L° is isomorphic to Sx’ Lemmall implies that f(K) = K, and so
f(k) = k for every k € K because f:K + K:k + f(k) is an increasing function
and K is a finite set.

Proof of the theorem.

If [K| = 1, then all lines of L° have the same size k and, by Lemmall,
all points of L° have degree k. Therefore L% is a projective plane of order
k-1 (or a degenerate projective plane with 3. points if k=2), and so S is
PG(3, k-1) with k-1 2 1.

If |K| 2 2, let B be a Tline of maximal size k » 3 in L®. A1l points of L°
outside B have a degree greater than or equal to k, and so, by Lemmall, their
degree is equal to k.

If there are at least two points of LY outside B, then, by Lemmal2,
every point of S is on at least two lines of size k. These two lines are in
a plane of S isomorphic to L%, and so L% contains two lines of size k inter-
secting in a point y. Since every point of L% outside a line of size k is of
degree k, the point y is the only point of L° having a degree £ < k, and
K = {k,2} by Lemmall. Lemmal2 again implies that every point of S is on
exactly one line of size ¢, and so. the lines of size 2 are necessarily disjcint
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in L°. Therefore, since the degree of any point z of L° distinct from y is
k 2 3, and since z is on at most one line of size &, there is at least one
line of size k containing z but not y, and so the degree % of y is at least
k, contradicting 2 < k.

This proves that there is only one point of L° outside B. In other words,
L° isadegenerate projective plane with k+1 points. By Lemmal2, every point of
S is on exactly one line of size k and k 1ines of size 2. This implies that S
is the union of two lines of size k, all the other lines having size 2.

5. n-DIMENSIONAL LINEAR SPACES.

Linear and planar spaces belong to the wider class of incidence structures
with diagram

o——0——0 ... O0—90 (n 2 2)

0 1 2 n-2 n-1
corresponding exactly to what Buekenhout calls n-dimengional linear spaces [11];
they will appear in the last chapter of this thesis. An n-dimensional linear
space is a linear space S provided with n disjoint fami]ies'si (i = 0,1, ...,
n-1) of non-empty proper linear subspaces, called i-subspaces, or more generally
subspaces, such that

(i) points and lines are the O-subspaces and the 1-subspaces respectively,

(ii) if V is an i-subspace (i g n-2) and x € S-V, then there is a unique (i+)-
subspace containing V and x, denoted by <V,x> ,

(iii) if V is an i-subspace and if W is a j-subspace containing V, then i < j ,
(iv) any intersection of subspaces is a subspace or the empty set or S itself.

The 2-dimensional and 3-dimensional linear spaces are nothing else than the
non-trivial linear spaces and planar spaces respectively. The notion of n-dimen-
sional linear space is essentially the same as the notion of geometric lattice
of dimension n (Birkhoff [3]), that is also the lattice of flats of a simple
matroid of rank n+l (Welsh [56]). The (n-1)-spaces of aan-dimensional Tinear
space are called hyperplanes.

Note that the use of the word dimension is a little confusing here. For
example, a projective space P of dimension d 3 3 is at the same time a
(2-dimensional) linear space if we consider only its points and lines, a
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planar space (dimension 3) 1f we consider only its points, lines and planes,
and an n-dimensional 1{inear space (2 ¢ n ¢ d) if we consider all its linear
subspaces of dimension < n. On the other hand, P could be a plane of some
non-trivial planar space !

6. METRICALLY REGULAR GRAPHS, ASSOCIATION SCHEMES, GENERALIZED n-GONS AND
PARTIAL GEOMETRIES.

We briefly recall here a few definitions and results which will be used
in Chapter II.

A graph G (2always assumed to be finite, undirected, without loops and
multiple edges) is called strongly regular with parameters (v, k, A, u)
(Bose[ 4]) 1f v denotes the number of vertices of G, if every vertex is adja-
cent to exactly k vertices and if the number of vertices adjacent to any two
adjacent (resp. non-adjacent) vertices is A (resp. u). Moreover, we always
assume the non-degeneracy condition 2 ¢ k ¢ v-3. The adjacency matrix of G has
eigenvalues k, n-m, -m with multiplicities 1, f, v-1-f, where

n =/(u-1)% + 4(k-y) ,

m=(n+yu-=-21)2 ,

f= % (v=1 - Zk'(V;I)(u-xl)

An important consequence of this is the integrality comdition (Bose[4 ])
f is a non-negative integer. Moreover, m and n are integers unless v = 4 p+l1,
k =2y, A = u-1 (conference graphs)

Four other necessary conditions for the existence of a strongly regular
graph G such that both G and its complement are connected (i.e. 1 <m < n)
are the following

Krein condition (Higman [39], Delsarte [28])
If 1 <m < n, then
u(n-m(m-1)) < (m=1)(n-m)(n+m(m-1))
Abgolute bound (Delsarte, Goethals and Seidel [29], Neumaier [47])
If 1 <m < n, then

v & 5 f(£+3)
Moreover, if G is not a Smith graph [16], then v < 1}- f(f+1).
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u=bowund (Neumaier [46])
If a strongly regular graph has smallest eigenvalue-m, 1< m < n, then

p‘ms(&l-3)

Claw-bound (Neumaier [46])
If G is a strongly regular graph with smallest eigeinvalue-m (where m > 1 is
an integer) and if y #m (m-1), mz, then

N &g m (m1) () + me1

Metrically regular graphs are a direct generalization of strongly regular
graphs. A connected graph G 1s called metrically regular (or distance-regular
(Biggs [ 2])) if the number of vertices at distance i from a vertex x depends
only on i and not on x and if for any two vertices x and y at distance i, the
number of vertices which are at distance j from x and at distance k from y
depends only on the three distances i,j,k but not on the choice of x and y.

It is easily shown that the metrically regular graphs of diameter 2 are

exactly the connected strongly regular graphs. In turn, the notion of metri-
cally regular graph can be generalized in two directions : that of t-metrically
regular graph and that of association scheme, which we shall need later.

An association scheme with m classes on v objects (Bose and Shimamoto { 6 1])
is a family of m binary symmetric relations satisfying the following conditions :

(i) any two objects are either 1-st, 2-nd, ..., or m-th associates
(ii) the number n, of i-th associates of an object x is independent of x

(iii) for any two i-th associates x and y, the number p}k of objects which
are j-th associates of x and k-th associates of y is independent of
the two i-th associates x and y.

Obviously, any metrically regular graph of diameter d may be seen as a d-class
association scheme by calling i-th associates any two vertices which are at
distance fi.

Here again, we recall some necessary conditions for the existence of an m-class
association scheme on v points, with parameters n, and p}k. Consider the vxv
association matrices Aj =_(aiy) with entries aJ_ = 1 if the vertices x and y

Xy
are j-th associates and aiy = 0 otherwise.
Let us denote by Ajk the (not necessarily distinct) eigenvalues of Aj and by

Ml the multiplicity of Ajk (it can be shown that M does not depend on j).
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114) Then the following conditions are necessary for the existence of an association
scheme with the above parameters :

(1) Integrality condition (Connor-Clatworthy [17])

m
e =V / (1 + :.EI "xz.k/"z) are positive integers for k = 1,...,m

(2) Xrein condition (Higman [39], Delsarte [28])

o 2 2
0s1 Y kr ks Akt / Mk Y /(up ug)

for 1 g r,s,t g m

(3) (Mathon [44]). If ny 3 2 and p}J > 1, then

m
1+ 1:1‘ max {2 p}z -n + 2 84, (1 - 5”),0} £ pgi
=

Metrically regular graphs are deeply related to some interesting incidence
structures. For instance, a generalized n-gon S (Tits [55]) is an incidence
structure (F, £, 1) whose incidence graph j(S) is a bipartite graph on the two
sets of verticesJ and L, in which any vertex has degree > 2 and which has
diameter n and girth 2n (i.e. the circuits of minimal length have length 2n).
The elements of & are called pointe and the elements of L are called Iines.

It is well-known[s§][5gJthat if S is finite and {f any vertex ofﬁ(S) has degree
3 3, then there is an ordered pair of integers (s,t), called the order of S,
such that any line of S has size s+1 and any point of S is on exactly t+1 lines.
The point graph (resp. line graph) of S = (.?. L, 1) has vertex set 9 (resp. L)
and is obtained by calling two points (resp. two lines) adjacent if and only if
they are collinear (resp. intersecting). The line graph of S is also the point

115)' graph of the dual of S. The point graph and the line graph of a finite generalized
n-gon of order (s,t) are metrically regular with diameter [%} , SO that the
above-mentioned necessary conditions apply to generalized n-gons. For example,
the Feit-Higman non-existence theorem for-generalized polygons [33], stating
that a finite generalized n-gon of order (s,t) with s,t > 2 does not exist if
n#2,3,4,6 or 8, can be deduced from the integrality condition [51] and some
classical inequalities between powers of t and s follow from the Krein condition
(511, [39].

On the other hand, a finite partial geometry (R,K,T) where R > 2, K » 2,
T 2 1 are integers is a set of elements called points together with a family

of distinguished subsets called Zines such that
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(i) each point belongs to exactly R lines and every pair of points is
contained in at most one line,

(i1) each line contains exactly K points
{ii1) for any line L, any point outside L is on exactly T lines intersecting L.

In particular, the partial geometries with T=1 are exactly the generalized

(116) quadrang'=s (cr 4-gons) of order (s,t) = (K-1, R-1). It is obvious that the point
graph and “he line graph of a partial geometry are strongly regular, so that
the above-mentioned necessary conditions apply to partial geometries.

Finaliy, let us mention another generalization of metrically regular
graphs. A graph G is called t-metrically regular if for any n < t and for
any n-tuple of vertices (x], xz,...,xn). the number of vertices which are
at distance € {rom Xys 8n from Xoswees S from Xos depends only on the dis-
tances é;, ..., 5. and on the distances between the xi's, but not on the choice
of the n-tusle. So, the 2-metrically regular graphs are exactly the metrically
regular graphs.
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CHAPTER II. FINITE LINEAR SPACES WITH METRICAL REGULARITIES IN
THEIR INCIDENCE GRAPHS.

1. INTRODUCTION.

In a linear space, the classical axiom of Pasch may be reformulated as
follows
(%) for any two disjoint lines L and L', any point outside L U L' 78 on at
most one line intersecting both L and L'.

Indeed, suppose that condition (%) is satisfied. Let A and A' be two distinct
lines intersecting in a point p and denote by L and L' two lines intersecting
A and A' such that neither L nor L' passes through p. If L and L' were disjoint,
we would have at least two lines through p intersecting L and L' : a contradic-
tion. Thus L and L' have a point in common and Pasch's axiom is satisfied. The
converse is obvious.

It follows that condition (&) characterizes the generalized projective
spaces. If "at most one" is replaced by "exactly one" in (%), we get a charac-
terization of the generalized projective spaces of dimension ¢ 3.

Note that the finite affine planes of order n have a similar property :
for any two disjoint (hence parallel) lines L and L', any point outside L u L'
is on exactly n lines intersecting both L and L'.

These examples suggest the problem of classifying the linear spaces which
satisfy the following condition :

(D2) there is a non-negative integer dz such that for any two disjoint lines L,
L' and any point x outside L U L', there are exactly d2 lines through x inter-
secting the two lines L and L'.

In the finite case, the answer is given by the following result :

Theorem 2. (A. Beutelspacher and A. Delandtsheer [ 1])

If S 18 a finite linear space satisfying condition (D2), then one of the
following occurs :

(i) S t8 a generalized projective space, and if the dimension of S is

at least 4, then any line of S has exactly two points,
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(ii) S 78 an affine plane, an affine plane with one point at infinity,
or a punctured projective plane,

(i11) S <s the Fano quasi-plane, obtained from PG(2,2) by "breaking”
one of its lines into three lines of size 2.

Conversely, each of these finite spaces satisfies (D2)

Note that condition (D2) can be viewed as a metrical condition on the
incidence graph-9 of S. Indeed, remember that in the incidence graph of a
linear space, any two points are at distance 2, two lines are at distance 2
or 4 according as they intersect or not, and a point and a line are at distance
1 or 3 according as they are incident or not. Therefore, condition (D2) may
be translated in the following way :
there is a non-negative integer d2 such that if u,v,w are any three vertices
of 4 with distances d(u,v) = d{u,w) = 3 and d(v,w) = 4, therné& contains exactly
d, verticesksuch that d(u,t) = 1, d(v,t) = d(w,t) = 2.

This leads naturally to the more general question : what happens if we choose
other values for the distances in this condition ?

Among other things, we shall investigate the finite linear spaces satisfying

one of the three conditions (D2), (D1), (DO), which are pictured below, first
from a naive point of view, then in terms of the incidence graph.
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(o1) \. .4(

The reason for the notations do, d] and d2 is clear : the letter d
reminds that the two lines L and L' are disjoint and the subscript reminds
that we count certain lines intersecting 0, 1 or 2 of the Tines L and L'.

2. GRAPH THEORETICAL BACKGROUND.

Actually, the above conditions form a part of the definition of a
3-metrically regular graph. Indeed, a connected graph is called 3-metrically
regular if G is metrically regular and if for any triple (x,y,z) of vertices
such that d(x,y) =1, d(y,z) = j, d(z,x) = k, the number of vertices which
are at distance 2 from x, at distance m from y and at distance n from z
depends only on the distances i,j,k,2,m,n but not on the choice of triple

(X5¥,2)
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These graphs have been studied quite a lot during the past few years.

For instance, Cameron, Goethals and Seidel [76] have proved that if G is a
connected 3-metrically regular graph of diameter 2, whose complement G is
also connected, then G is the pentagon, or G is of pseudo or negative Latin
square type, or G or G is a Smith graph (for more details, see [21]). On the
other hand, Meredith [45] has proved that if G is connected 3-metrically
reqgular graph of girth > 4, then G is a cycle (actually, the hypothesis of
Meredith is stronger : he assumes that for any two isometric triples of
vertices, there is an automorphism of G mapping the first onto the second;
but his proof is essentially combinatorial).

Such metrical conditions are satisfied by point-, line- or incidence
graphs of some classical geometries and have been used in certain characteri-
zation problems.

For instance, it follows immediately from theorems of Bose {5 ], Thas
and Payne [48] that the point-graph of a generalized quadrangle of order (s,t)
with s > 1 and t > 1 is 3-metrically regular if and only if t = 52 if and only
if every triad has exactly s+1 centers (i.e. for any triple (x,y,z) of pair-
wise non-collinear points, there are exactly s+1 points which are collinear
with x,y and z). The point-graphs of generalized quadrangles with s = 1 or
t = 1 are obviously 3-metrically regular.

Metrical conditions have also been used to characterize some classical
generalized hexagons. Let us mention two examples. Thas [54] has proved that if
S is a finite generalized hexagon of order (s,t) with 2 < t ¢ s, whose point-
graph satisfies the following condition :
for any triple of vertices (x,y,z) with d(x,y) = d(y,z) = 3, d(z,x)

2 (resp.

d(z,x) = 3), there is at least one vertex v such that d(y,v) = 1, d(x,v) =
d(z,v) = 2,
then t = s, s is a prime power, and S is isomorphic to the classical generalized

hexagon H(s) associated with Gz(s). Ronan [50] has characterized, among the
finite generalized hexagons satisfying the requlus eondition, those which are
associated with G2(q)d 304(q) and their duals, by means of the number n which
counts, given any four vertices x,y,z,u with d(x,y) = d(y,z) = 6, d(x,z) =
d(u,y) = 4, d(u,x) = d(u,z) = 2, the number (if it is distinct from t+1) of

vertices v such that d(x,v) = d(z,v) = 4, d(y,v) = 2.



IT.5

3. TERMINOLOGY AND NOTATIONS FOR LINEAR SPACES.

Let S be a finite linear space and 4 its incidence graph. We shall say
that a triple (u,v,w) of vertices of 4 is of type (4,1,j.k) (where 4 denotes
either the point-set &° or the Tine-set £) if u €4, d(u,v) = i, d(v.w) = j
and d(w,u) = k. For a given type (4,1,j,k) and a given triple of positive
integers (2,m,n),.the problem (4,1,j,k;2,m,n) consists in classifying the
finite non-trivial linear spaces which satisfy the following condition :
there is a constant ¢ such that for any triple (u,v,w) of vertices of type
(J,i,j,k) 1nj, the number of vertices t which are at distance & from u, m
from v and n from w is exactly c.

Obviously, certain choices of 4 ,i,j,k,2,m,n are absurd. An easy but rather
tedious enumeration leads to 102 problems (§,i,j,k;2,m,n) which have a sense
(i.e. such that there exists a linear space whose incidence graph contains at
least one 4-tuple (u,v,w,t) of the desired type). In the following sections,
we shall investigate the most interesting of these problems namely &f,3,4,3;
1,2,2), (£,3,4,3;1,2,4), (£,3,4,3;1,4,4), (£1,2,133,4,4), (F,3,2,3;1,4.4),
(313,2,3;],4,2) and also a problem which is trivially equivalent to (J,3,2,3;
1,2,2).

Most of the remaining problems are easily solved and the answers are
often the Steiner systems S(2,k,v), the projective planes or some “very small"
linear spaces. However a few problems are still unsolved. For example, we have
no other characterization of the finite Tinear spaces satisfying condition
0?,3,4,1;3,4,4) than saying that they are the finite linear spaces in which
for any two disjoint lines L and L', the number of lines disjoint from L U L'
is a constant independent from L and L'. Note also that some of these problems
may seem rather artificial : this is due to the fact that the distances between
three vertices ofaﬁ are not always sufficient to describe completely the cor-
responding geometrical configuration in S (for instance, three lines which
are pairwise at distance 2 i”'ﬁ may be concurrent or form a triangle in S : this
explains why the only solution of problem (£,2,2,2;1,1,1) is the most trivial
of all non-trivial linear spaces, namely the triangle $S(2,2,3)).

Before starting the proofs of the main results, we briefly define some
notations used in this chapter :
S will always denote a finite linear space of v points, with point"setép and
line-set L.
K is the set of line sizes in S
r. is the degree of the point x € S (also denoted by r if all points of S have

X
the same degree)
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rR=2=xIr is the sum of the degrees of the points of L.
X€eL
Usually, the size of a line A,B,C, ... will be denoted by a,b,c, ... respectively.

A line G of S will be called projective if G intersects all the other lines
of S. The total number of projective lines in S will be denoted by = and the
number of projective lines containing a point x by oy (or p if this number
is independent of x).

A bisecant of two lines L and L' will be a line distinct from L and L'
and intersecting L U L' in exactly two points. A trisecant of three lines L,
L', L" will be a Tine distinct from L, L', L" and intersecting L U L' U L" in
exactly three points.

For any triple (x,L,L') where L and L' are two disjoint lines and x is a
point outside L U L', we denote by d,(x,L,L') the number of lines through x
which intersect both L and L', by d1(x,L,L') the number of lines through x
which intersect L but not L' and by do(x,L,L') the number of.lines through x
which are disjoint from L and L'. Then, the conditions (D2), (D1) and (DO)
express that dz(x,L,L'), d](x,L;L') and do(x,L,L') respectively are independent
of the triple (x,L,L').

For any triple (x,L,L') where L and L' are two intersecting lines and x
is a point outside L U L', we denote by iz(x,L,L') the number of bisecants of
L and L' through x, by i](x,L,L') the number of lines through x which intersect
L but not L' and by 10(x,L,L‘) the number of lines through x which are disjoint
from L and L'. The conditions (I2), (I1) and (I0) express that iz(x,L,L'),
i1(x,L,L") and i (x,L,L') respectively are independent of the triple (x,L,L").

Note that in a Steiner system S(2,k,v), the three conditions (I0), (I1)
and (I2) are equivalent. Indeed, for any two intersecting lines L and L', the
degree of any point x outside L and L' is

r

K+ i3(06LL") + i (xL,L")
2k = iy(x,LsL") + i (x5LsL"),

so that the constancy of one of the ij's implies the constancy of the other
two. This remark will be useful in the study of conditions (I0) and (I1). A
similar argument shows that the conditions (DO), (D1) and (D2) are equivalent
in a Steiner system S(2,k,v).

4. LINEAR SPACES SATISFYING CONDITION (D2)

We now prove Theorem 2 stated on pages II 1-2.Throughout this proof, S
denotes a finite linear space satisfying condition (D2).
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The proof is divided into two main parts : we first investigate the case where
some additional regularity conditions are satisfied, then we handle the case
in which S contains a projective line.

4.1. Some Additional Regularity Conditions.

Proposition 2.1. If d2 < 1, then S is a generalised projective space of dimen-
ston d. Moreover if d > 4, S = PG(d,1).

Proof. If d2 < 1, condition (%) (hence also Pasch's axiom) is satisfied, so
that S is a generalized projective space of dimension d.

Suppose that d > 4 and that there is a line L containing at least three
distinct points Pys Gy Go- There exist two disjoint lines L1 and L2 through
9 and CPD respectively. This implies d2 = 1. On the other hand, since d > 4,
there is a line L' disjoint from L and there is a point p outside the 3-dimen-
sional subspace generated by L and L'. Clearly, there is no line through p
intersecting L and L'. Hence d2 = 0, a contradiction.

Thanks to Proposition 2.1, we may now assume that d2 > 2, and also that
there are two disjoint lines in S and that for any two disjoint lines there is
a point outside their union (otherwise S would be a generalized projective
space of dimension g 3).

First we consider the situation in which all lines of S have the same size.

Proposition 2.2. If all lines of S have size n, then S is @ affine plane of
order n.
Proof. Denote by L and L' two disjoint lines of S. Counting in two ways the
number of flags (p,A) withpé¢ L UL' andL nAZ#P#L" nA, we get

(v - 2n)d, = n%(n-2) ,
that is

(v-n)d2 = n(n2 - 2n + dz) (1)
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On the other hand, all points of S have the same degree r, with

v-1 = r(n-1) ,

or

(r-1)(n-1) . (2)
Equations (1) and (2) together imply that n-1 is a divisor of

v-n

n(n2 -2n + dz), and so n-1 divides dz—l. Using 2 ¢ d2 < n, we conclude that
d, = n. Therefore v = n® and S is an affine plane of order n.

The following Lemma is crucial for our purpose :

Lemma 2.1. Any two lines L] and L2 disjoint from a given line L have the same

size.

Proof. We count in two ways the number of trisecants of L, L, and L2.
If L] and L2 are disjoint, we get

Lyldy = [Lyld, .

If L] and L2 have a point in common, we get

(lLll - ])dz = (lLQ’ - ])dz .
In both cases [Lq| = |L,]

Proposition 2.3. If S contains two disjoint lines of different sizes, then S

1s the Fano quasi-plane.

Proof. Let X and Y be two disjoint lines of different sizes x and y, respecti-
vely. We suppose X < y. Thanks to Lemma 2.1, any Tine of S intersects X or Y.
Therefore, through any point p outside X and Y, there are d2 bisecants of X and
Y, y-d2 lines of size y disjoint from X and x-d2 lines of size x disjoint from
Y. In particular, any point outside X and Y has degree x+y-d2. Since y > x 2 d2’
we have y > d2‘

Step 1. If all lines disjoint from X have a point g in common, then S is
the Fano quasi-plane.

Indeed, through any point not on X or Y there are exactly y-d2 lines disjoint
from X; since all these lines pass through g € Y, it fo]Tow; that y = d2+1. This
means conversely that any line through q which is incident with a point p # g
outside X, is disjoint from X. In other words, any line through q intersecting
X is a line of size 2. But for any line X' of size 2, there exists a line Y'
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disjoint from X' and a point p' outside X' and Y'. Therefore d, < 2, hence
d2 =2,y=3,x=2.

Since there are at least two lines through q disjoint from X, any point
p # q outside X has degree x+y—d2 = 3. So, every line has at most three points.
This implies v < 7. The assertion follows easily.

Now, let us assume that the lines disjoint from X have no point in common.
We shall get a contradiction in three steps.

Step 2. There is a positive integer z such that any line intersecting X
has size x or z with

1+ (v-x)/y (3)

z
and

y =2+ (dp=1)/(y-dy) . (4)
Indeed, since any line disjoint from X has size y, in our present situation,
any point outside X has degree x+y-d2. So, if we denote by dX the number of

Tines disjoint from X, we have

dy = (v-x)(y-d,)/y .
Let Z be a line intersecting X. If Z is not a line of size x, then - in view
of Lemma 2.1 - any line disjoint from X must intersect Z. Hence

(12| - 1)(y-d2) = dX’ or |Z] =1+ (v-x)/y . (5)
Using Lemma 2.1 again, we see that any two lines disjoint from X -intersect.

Counting in two ways the number of flags (p,L), where L # Y is a line disjoint
from X and p &€ Y, we get by (5) :

y(y - dy - 1) =dy -1 = (z-1)(y-dp) - 1.

Step 3. d2 =X .
Indeed, assume on the contrary d2 < x. Then any point outside X is on at least
one line disjoint from Y.
We claim that the lines disjoint from Y have no point in common. (Assume that
the lines disjoint from Y intersect in a point g. Since any point outside X
and Y is on exactly x-d2 lines disjoint from Y, we have x = d2+1. This implies
that any line through q and a point of Y is a line of size 2. Also, any such
line X' is disjoint from at least one line disjoint from X. Using Lemma 2.1, we

get 2 = [X'| = [X] = x, and so d, = x-1 = 1, a contradiction).
Like in step 2 we see that any line intersecting Y has size y or z' with
z' =1+ (v-y)/x (6)
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and
x =2z'+ (d2—1)/(x-d2) > 2'.

The set K of line sizes of S is {x,y,z} = {X,y,z'} with z' < x < y. Therefore
z = z', which yields, together with (3) and (6),

(V‘X)/)’ = (V-y)/x »
or

(y=x)(v-y=x) = 0 .
Since x # y, we have v = x+y, contradicting the fact that S contains a point
belonging neither to X nor to Y.

Step 4. d2 X
Indeed, assume on the contrary d2 = X. This means that for any line L disjoint
from X and any point p outside X and L, any line through p intersecting X has
a point in common with L. In particular, any line Z intersecting X intersects
any line disjoint from X as well. So, Z has size z by the argument of step 2.
Therefore, the lines distinct from X have size z or y, according as they inter-
sect X or not. Since any line Z # X which intersects X has size z, we get

(v=x-y)x = (v=x-y)d, = x y (z-2) (7)
Moreover, for any point p on X,

(rp - 1)(z-1) = v-x (8)

Equations (7) and (8) together imply rp = y+1 .

On the other hand, the degree of any point q not on X is rq = ¥y since there is
no line disjoint from both X and Y and since d2 = X.

Next, we claim that there exist two disjoint lines intersecting X. (Assume
that there were a line, say Z, which intersects X and all lines intersectingX.
Counting the number of flags (p,L) withp ¢ X UY,peZandL nX#P#LnNY,
we would get

(2-2)(dy-1) = (x-1)(y-1)
that is y = z-1 < z, contradicting (4)).

Denote by Z and Z' two disjoint lines intersecting X. Lemma 2.1 states that
any line L disjoint from Z U Z' has size z. By (4), z # y, so L intersects X
and therefore L meets Y. Counting in two ways the number of Tines disjoint from
ZUZ', we get

(x-2) (y+1-2z+x) = (y-2)(y-2z+x)
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hence

(y=x) (x+y=2z) = x=2 ,
therefore

y-x|x-2 .
But (4) implies that

y=x|x-1
so
y = x+]

and (4) y%e]ds z = 2.

Since any line intersecting X has size 2, no line through a point p outside
X UY can intersect both X and Y, a contradiction.

By steps 1, 3 and 4, Proposition 2.3 is proved.

4.2. The case of projective lines.

In view of Propositions 2.2 and 2.3, we may suppose from now on that S
contains lines of different sizes, and that any two disjoint lines have the
same size.

Lemma 2.2. There is at least one projective line in S.

Proof. We assume that for any line L of S there is a line disjoint from L.

Let M be the maximal and m the minimal size of a line in S. Denote by
X, X' (resp. Y, Y') two disjoint Tines of size M (resp. m). Some obvious
counting yields

M (m-2) ¢ (v-2M)d, (9)
and

(v-2m)d,, < m°(M-2) .

25
Together

ME(m-2) + 2 dy(M-n) < m(M-2)

-

or

Mn(M-m) + 2d,(M-m) < 2(M°-n%) = 2(Mam) (M-m).

Dividing by M-m > 0 gives

Mmn+ 2 d 2(M+m) ,

9 &
therefore
34
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0 < (M-2)(m-2) = Mm - 2(M+m) + 4 < Mm - 2(M+m) + 2d, < O.

Hence m = d2 = 2, and all the above inequalities are in fact equalities. In
particular, equality holds in (9), so v = 2M, a contradiction.

With the following propositicn, Theorem 2 is proved.

Proposition 2.4. S is a punctured projective plane or an affine plane with one

point at infintty.

Prooy. By Lemma 2.2, there exists a projective line G of size g. Let L and L'
denote two disjoint lines, necessarily of the same size ¢. Counting in two ways
the number of flags (p,X) withp § L UL', p € G, where X # G is a line inter-
secting L and L', we get

(3-2)(dy-1) = (2-1)

This implies that all projective lines have the same size g and that all non-

2 (10)

projective lines have the same size 2.

The proof of Proposition 2.4 will fQllow in a series of steps.

Step 1. There are at least two projective lines in S.
Indeed, assume that there is only one projective T1ine G in S. Then any line
through a point q outside G is a Tine of size ¢ and any line different from
G through a point p on G is a Tine of size g5 as well. Therefore

rq(£~1) = v-1 = g—1+(rp-1)(i-1).

Hence g-1 is a divisor of g-1, and so ¢-1 and g-2 are relatively prime. Now
(10) implies that (2-1)2 divides d2—1, a contradiction.

Step 2. If all projective lines pass through a common point o, then S
is an affine plane with one point o at infinity.
Indeed, since there is more than one projective line, any point p # o has
degree g. So, throggh any such point p there is the same number of projective
Tines; in particular, the set of projective lines is precisely the set of lines
through o. Hence

v-1 = ro(g-l) .
On the other hand, if p denotes a point different from o, we have
v-1 = g-1 + (rD-])(£-1) = g-1+ (g=-1)(2=1) = (g-1)2

Together it follows that o has degree 2.
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If L and L' are two disjoint lines, none of them passes through o. On
the other hand, any of the 2 lines through o is projective. Therefore d2 = 9.
By (10), this implies g = g+1, hence v = 12+1. Consider the incidence structure
S-{o},which consists of all points of S, except 0. We have just seen that S-{o}
is a linear space with 22 points, in which any line has exactly 2 points.
Therefore, S-igjis an affine plane. Then, obviously, S itself is an affine plane
with one point o at infinity.

Step 3. Suppose that for any point p of S there is a projective line not
through p. Then S is a punctured projective plane.
Indeed, in the present situation, any point of S has degree g. Let us denote
by m the total number of projective lines and by p the number of projective
lines through a point. Clearly, the following equations hold :

Tg=Vop (17)

v-1 = p(g-1) + (g-0)(2-1) = g(2-1) + p(g-2) (12)

m-1 = g(p-1) (13)
Equations (11) and (13) imply

v = (9(p-1)+1)g (14)

Using (12), we get
(o(g-2) = (9=1))(p=g) = 0
If o=g; S would be a projective plane, hence
o = (9-1)/(g-2) (15)

Next, we claim that g = ¢2+1. In order to prove this, denote by q and n
the unique non-negative integers with

g=qge+tn and O g n < .

From (15) we deduce that g-¢ divides ¢-1. Therefore
Qe +n =g | 2-1,

in particular
qe + n-g g 2=l ,

which implies q=1. So, n divides ¢-1. Denote by t the positive integer such
that nt = ¢-1.

From (10) we infer that g-2 2¢2

#n=2 = n(t+1)-1 divides (2-1)° = n“t. But

"

n(t+1)-1 | (n(t+1)-1)n(t-1) = n°t? - n® - n(t-1) ,

- 36 -
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therefore

n(t+1)-1 | n(n+t-1) ,
hence

n(t+1)-1 | n+t-1,

and son < 1. Since nt = ¢-1 # 0, it follows that n = 1, i.e. g = ¢+1.

Now (10) implies dz = 2, (15) yields p=2, and by (14) we have v = £2+2. In
particular, it follows that the lines of size ¢ form a “complete parallel class"
of S. Introducing one new point which is incident precisely with the lines of
size 2 of S, it is easy to see that this new lTinear space is a projective plane
of order 2. Thus S is a punctured projective plane.

5. LINEAR SPACES SATISFYING CONDITION (D1).

Ll

(D1) there is a non-nmegative integer d1 such that for any ordered pair of
disjoint lines L, L' of S and any point x outside L U L', there are exactly

d, lines through X tintersecting L but not L'.

The finite linear spaces satisfying (D1) are classified in [27]:

Theorem 3. If S is a finite non-trivial linear space satisfying condition

(D1), then ome of the following occurs :

(i) S s an affine plane, an affine plane with one point at infinity, a
punctured projective plane or a (possibly degenerate) projective plane,

(1) S ie a 3-dimensional projective space PG(3,d;) ,

(i11) S 28 a 3-dimensional generalized projective space P(3, k+2),

(iv) S s a degenerate projective space PG(d,1), d > 2 .

Conversely, each of these finite spaces satisfies (D1).

Comparing Theorems 2 and 3, we observe that condition (D1) is stronger than
condition (D2). _ 37
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Let S denote a finite linear space satisfying (D1). The proof of Theorem 3
uses the following lemmas :

Lemma 3.1. If dq = 0, then S is o semi-affine plane.

Proof. Let L be a line and x a point outside L. If x is on two lines L' and L"
both disjoint from L, then any point y # x on L" is on at least one line (namely
L") intersecting L' but not L, contradicting d; = 0. Therefore, for any line L
of S, any point outside L is on at most one line disjoint from L. In other words,
S is a semi-affine plane, and so, since S is finite, we know by (16) that S is

an affine plane, an affine plane with one point at infinity, a punctured pro-
jective plane or a (possibly degenerate) projective plane.

Lemma 3.2. If S is the union of two of its lines and <if d] 2 1, then S is either

a degenerate projective plane or a gereralized projective space P(3, k+2).

The proof is very easy and will be omitted.

Thanks to these lemmas, we may assume from now on that
(A) d1 > 1 and for any two lines of S , there is at least one point outside

thetr union.
Lemma 3.3. Any two disjoint lines have the same size.

Proof. Let L and L' be two disjoint lines. The degree of every point x ¢ L U L'
is

=
i

= L] +dy + dj(x,L'5L)
IL'] + dy + dy(x,LL'),

and so L] = |L'] .

Lemma 3.4. If S contains non-projective lines of distinet sizes, then for
every point X of S and for every size L of a non-projective line, there are
two disjoint lines of size L not containing X. Moreover, % > 3 dT'

Since ¢ is the size of a non-projective line, we conclude from Lemma 3.3
that S contains at least two disjoint lines of size 2, and so there is a non-
projective line L of size £ not containing x. Suppose that all lines disjoint
from L pass through x. Since L is non-projective, there is at least one line
L' disjoint from L. Thanks to the assumption (A), we know that there is at
least one point y ¢ L U L' and one Tine L" disjoint from L passing through y.
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L' and L" have size ¢ by Lemma 3.3 and have the point x in common since we
have assumed that all lines disjoint from L intersect in x.

Let h # 2 be the size of a non-projective 1line. We conclude again from Lemma
3.3 that S contains at least two disjoint lines H] and H2 of size h. If

x € Hy U H,, then it follows from the assumption d; > T that x is on at least
one line H3 disjoint from H1, and by Lemma 3.3, H3 has size h. Therefore there
is a line H of size h passing through x. If h = 2, Tet H' be a bisecant of L
and L' disjoint from H. By lemma 3.3, H' has size h = 2, and so H' is disjoint
from L". Hence, by Lemma 3.3 again, H' has size &, contradicting ¢ # h. There-
fore h > 2 and H contains a point y ¢ L UL'. Since d; > 1, we conclude that y
is on at least one line disjoint from L and not containing x, contradicting the
assumption that all lines disjoint from L contain x.

Therefore there exist two disjoint lines Lys L of size £ not containing
x and two disjoint lines Hl’ H2 of size h not containing x. The point x is on
at least 2 d] lines disjoint from H] or H2 and so, by Lemma 3.3, x is on at.
least 2 d1 lines of size h. Moreover, x is on exactly ¢ - d1 bisecants of L,
and L2, so that, by Lemma 3.3 again, x is on at most ¢ - d] lines of size h.
Therefore 3 d1 < 1.

Lemma 3.5. All mom-projective lines have the same size.
Proof. Suppose that S contains non-projective lines of distinct sizes a and b,
with a > b.

If S contains three pairwise disjoint lines A, A', A" of size a, and if B
is a 1ine of size b, then, by Lemma 3.3, every line of size a (in particular
every line disjoint from A) intersects B. Therefore, counting in two ways the
number of lines intersecting A' but disjoint from A and from A'n B, we get

(b-2)dy = : (r. -a-1) ,
x€A'-(A'nB) X

where

ro=a+ d1 + do(x,A,A") xa+dy+ 1]
and so

(b-2)d1 > (a—l)d1
and, since d] > 0,

b > a+l, contradicting the assumption a > b.
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Therefore S does not contain three pairwise disjoint lines of size a,
and so for any triple (x,A,A') where A,A' are two disjoint lines of size a
and x ¢ A UA', do(x,A,A') = 0. By Lemma 3.4, we conclude that every point
x of S has degree

r = rx = a+ d] . (n

Let B and B' be two disjoint lines of size b and let A be a line of size a.
We know by Lemma 3.3 that every line of size b (in particular every line
disjoint from B) intersects A. Therefore, counting in two ways the number of
lines intersecting B' but disjoint from B and from B' n A, we get

-2)d, = - b-1)
(324 o )

and so, by (1),
(a-Z)d] = (b-1)(a + di - b-1)
or equivalently

(a-b=1)(dy - b+1) = 0 .

Since by Lemma 3.4, b > 3 d} and since d] > 1, we have d1 - b+1 # 0. There-
fore a = b+1. Let A’ be a line disjoint from A. Counting in two ways the number
of lines intersecting A' but disjoint from A and A' n B, we get

(b-2)d; = (a-1)(r-a-1) ,

and so, using (1) and a = b+1, we conclude that b = 2 d], contradicting Lemma 3.4.

Proof of Theorem 3.

Let L, L' be two disjoint lines and let x be a point outside L U L'.
Counting the lines containing x and intersecting L, we get

L] = dp(x,LsL") + dg

from which it follows, by Lemma 3.5, that dz(x,L,L') is independent of the

triple (x,L,L"). In other words, condition (D2) is satisfied. Theorem 3 follows
now easily from Lemmas 3.1, 3.2 and Theorem 2.
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6. LINEAR SPACES SATISFYING CONDITION (DO).

L d

LI

(D0) there is a non-negative integer do such that for any two disjoint lines
L,L' of S and any point X outside L U L', there are exactly do linee through
X disjoint from L UL'.

The finite linear spaces satisfying (D0) with d > 0 are classified in

Theorem 4 [24]. If S i8 a finite non-trivial linear space satisfying
econdition (DO) with d, > 0, then one of the following occurs :

(1) S 8 an affino-projective plane (but not an affine plane with
one point at infinity),

(i1) S is an affine plane of order > 3 from which either one point or
one line has been removed,

(111) S 7Zs a 3-dimensional projective space PG(3,q),

(iv) S Zs a generalized projective space P(2, k+1), P(3, k+k) or
PG(d,1) with d > 2

Conversely, each of these finite spaces satisfies (D0) with do > 0.

We assume here that the parameter d0 is non-zero while in (D2) and (D1)
we have also considered the case where the parameter was zero. We have no
classification of the finite linear spaces which do not contain three pair-
wise disjoint lines.

Proof of Theorem 4.

Let S be a finite non-trivial Tinear space satisfying condition (DO)
with d, > 0. During the proof, we always assume that S is not the union of
two of its lines, because otherwise, as it is easily seen, S would be a dege-
nerate projective plane P(2, &+1) or a generalized projective space P(3, k+k)
consisting of two Tines of the same size k.

We divide the proof into three cases, according as d0 =1, or d0 > 1 and
S contains a projective line, or d0 > 1 and S contains no projective 1ine.
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6.1. The case d0 = 1,

Proposition 4.1. If d0= 1, then one of the following occurs

- S 28 a generalized projective space of 6 points, either P(3, 3+3) or PG(5,1)
- S 78 an affino-projective plane (but not an affine plane with one point at
infinity)

- S 18 an affine plane from which either one point or one line has been removed.

Proof. If for any line L of S and any point p ¢ L, p is on at most one line
disjoint from L, then S is a finite semi-affine plane, and so, by (I6), S is

a projective plane, a punctured projective plane, an affine plane or an affine
plane with one point a infinity (the last case is easily ruled out).

Assume now that there are two intersecting lines L1 and L2’ both disjoint
from a line L of S. Since d = 1, the line Ly (resp. Lz) determines a partition
A4 (resp. az) of the points of S-L into lines. On the other hand, any two lines
Li € 4, and Lé € Ay must intersect, otherwise a point of-Lé would be on at least
two lines disjoint from L U Li. Therefore all lines of 81 (resp. 52) have the
same size |Ly| (resp. |L,|). Moreover any line L' ¢ a; U a, distinct from L is
disjoint from at most one line of A (i = 1,2) : indeed if on the contrary L'
is disjoint from two lines L% and L; of bi» then any point of L' inside S-L is
on at least two lines disjoint from L% u L;, contradicting d0 = 1. Therefore
Lyl = [Lp] or [Lq] = ILpl # 1.

1°) Consider first the case |L,| =n, |L2{ = n+1. In this case, S-L is a set
of n(n+1) points partitioned by 87 into n+1 Tines of n points and by 4, into
n lines of n+1 points. Any line L' ¢ 8y Uay, (L' # L) intersects at least n
lines of 8 and at most n lines Of‘Az, therefore L' contains exactly n points
of S-L and is disjoint from exactly one line Li € 8- If L' is disjoint from
L, then any point of L' is on at least two lines disjoint from L U Li, a con-
tradiction. Therefore any line L' ¢ 24, U 4, (L' # L) intersects L and has size
n+1.

Let p be a point of S-L. Counting in two different ways the number of
pairs (q, L') where L' is the line <p,q>, we get

n(ntl) = 1 + |[L| = (n=-1) + n + |L|n

and so |L| = n. Thus the lines of size n partition S and all other lines have
size n+l. Completing the lines of size n with one new point x, we define a

linear space S U {x} of (n+l)2
is an affine plane of order n+l. Therefore S is an affine plane from which

one point Ras been removed.

points in which all lines have size n+l, that

- 42 -



1T.20

2°) Consider now the case IL]| = ILZI = n. Then S-L has n° points and the lines
intersecting L have size n or n+l. Let p be a point of L. Counting in two ways
the number of pairs (q,L') where <p,q> = L' # L, we get

2

n = rp,n (n-1) + rp,n+1 n (1)

where rp n (resp. rp n+1) denotes the number of lines of size n (resp. n+l)

intersecting L in p. It follows that n divides rp n and rp n € 2n.
] ]

If there is a point p € L such that rp’n = 2n, then (1) implies that n=2
and rp,n+1 = 0. Thus S-L consists of 4 points x,y,z and t. If there is a line
L' distinct from L, of size greater than 2 (hence of size 3), say L' = {X,y,q},
then <z,t> = {z,t,q} (otherwise there would be no line through p disjoint from
the two disjoint lines <x,y> and <z,t>), and so S is the union of the three
lines <p,q>, {X,y¥.q} and {z,t,q}, but there is no line through q disjoint from
the disjoint lines <x,z> and <p,t>, a contradiction. We conclude that all lines
of S distinct from L have size 2. Therefore, since d0 = 1, S is the generalized

projective space PG(5,1) in which all lines have size 2.

If rp’n = 0 for every point p € L, then the linear space of n2 points
induced on S-L has only Tines of size n, and so it is an affine plane of order
n. Therefore S is an affine plane A completed with at most n-1 points at infi-
nity, since A has n+l directions of lines and since the lines of at least two
directions Ay and 8, are disjoint from L. In other words, S is an affino-pro-

jective plane of order n which is not a semi-affine plane.

We may now assume that r = 0 or n for every point x of L and that

= 1.

XN

rp n =" for some point p € L. Hence, thanks to (1)
3

? rp,n+]
We first examine the case n = 2. Then S consists of the points of L, to-

gether with four additional points x,y,z,t. We know that the point p is on

exactly one line of size 3 distinct from L, say {psx,y}. If L contains a

point g # p not belonging to the line <z,t>, then there is no line through g

disjoint from {z,t} U {p,X,y}, a contradiction. Therefore S is the generalized

projective space P(3, 3+3) consisting of two disjoint lines of size 3.

Finally, suppose that n > 3. Consider the linear space induced on S-L.
The Tines of S disjoint from L, together with the restrictions to S-L of the
Tines of S intersecting L in a point y for which ry,n = 0, determine k parti-
tions of S-L into n lines of size n (k » 2). On the other hand, the restric-
tions to S-L of the lines intersecting L in a point x for which r =n

XN
determine h partitions of S-L into n lines of size n-1 and one line of size n
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(h 2 1 is the number of points x € L for which Pen = n). Counting in two ways
]
the number of ordered pairs of distinct points in the linear space S-L, we get

n2(n2<1) = k n2(n-1) + h n(n=1)(n-2) + h n(n-1)

that is n(n+1) .= k n + h(n-1).
Therefore n divides h and, since h > 1, we have n ¢ h, which, together with
k > 2, implies

n(n+l) > 2 n + n(n-1).

This inequality being in fact an equality, we conclude that k=2 and h=n. In
other words, L # 0 for every point x of L and |L| = h = n.

Now we construct from S a bigger linear space in the following way : we add

a new point to L, as well as to each line of Bys these n+1 new points forming

a new line N. We also add the new point of L to all lines of b Finally, to
each line L' of size n intersecting L, we add the new point of the unique line
of A4 disjoint from L'. The space S U N constructed in this way is a linear
space. Indeed, if two lines of S of size n intersecting L in a given point x
are both disjoint from the same line Li € 415 then one of the lines through x
must contain at least two points of Li, contradicting the fact that S is a
linear space. On the other hand, if two lines L', L" intersecting L in distinct
points x', x" are both disjoint from a line Li € 8y and intersect in a point 2
of S, then there is no line through x" disjoint from L' U Li, contradicting the
hypothesis.

Since S U N is a linear space of (n+1)2 points in which all lines have size
n+l, it is an affine plane of order n+l. Therefore S is an affine plane from
which one line has been removed.

6.2. The case d0 > 1 with a projective line.

From now on, we always assume d0 > 1.

Lemma 4.1.
(1) If A and B are two disjoint lines and if C is a line disjoint from A U B,
then

(a-b)(c+d0) =ry- g
(i1) If A and B are two intersecting lines and if C s a line disjoint from
AUB, then

(awb)(c+d0+l) =r,-rg
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Proof. If L and L' are two disjoint lines and if p is a point outside L U L',
we have

ro = LI+ JL'] = dy(psLsl') + dg (2)
Counting in two ways the number of trisecants of A, B and C, we get

(i) if A and B are disjoint

I dy(x,B,C) = £ dy(y,A,C)
XEA y€B

that is, using (2),
a(b+c+d0) - s b(a+c+d0) - g

or (a-b)(c+d ) =r, - 1y

(ii) if A and B intersect in z
z dz(x,B,C) = I dy(y,A,C)
X€EA y€B
X#2 y#z
that is, using (2),
(a-l)(b+c+do) s Ty (b-1)(a+c+d0) - g or

(a-b)(c+d0+1) =ry-rg -

Corollary 4.1. If A and B are two lines of different sizes, then all lines

disjoint from A U B have the same size.

Corollary 4.2. If the lines A and B have the same stze and if there is a line
disjoint from A U B, then ry =1y .

Lemma 4.2. If two disjoint lines A and B have different sizes, then all lines
disjoint from A U B have the same size, equal either to a or to b.

Proof. Suppose that there is a line C disjoint from A U B, of size c # a,b.
By Corollary 4.1, all lines disjoint from A U B have size ¢ and they intersect
each other (otherwise A and B would have the same size). So there are c(s-1)+1
such lines. Counting in two ways the number of pairs (p,L) where L is a line
disjoint from A U B and p € L yields

(v—a—b)dO = (c(do-])+1)c
that is

(v-a-b-c?)d_ = -cP4c (3)
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By the same argument, all lines disjoint from A U C have b points and inter-
sect each other, so that

2

(v-a-bz-c)dO =-b"+b (4)

Subtracting (4) from (3), we get

2 2

(b2 - cZ4c-byd =b?-cFrc-b.

Since do > 1, we must have
(b=c)(b+c) = b-c .

But b # c, and so b+c = 1, a contradiction. Therefore any line disjoint from
A U B has size a, or b, and Corollary 4.1 ends the proof.

Lemma 4.3. If S containg a projective line G of size q and if S 78 not a dege-
nerate projective plane,. then q > 4 <8 the size of any projective line of S,
as well as the degree of any point outside a projective line. Moreover, the
8i3e of a.non-projective line is less than g-1.

Proof. Consider two disjoint lines A and B. Since d, > 1, there is a point p
outside A U B U G. The degree of p is equal to g because p is outside the
projective line G and it is greater than a+l since there are at least d0 > 1
lines disjoint from A through the point p outside A U B. So g > a+1 and in
particular g > 4. Moreover, any projective line G' different from G has size
g : indeed, the degree of any point outside G U G' is |G| = |G'| = g.

Proposition 4.2. If S contains a projective line; then S is a projective plane.

Proof. It suffices to prove that any two lines intersect. Assume on the
contrary that S contains two disjoint lines A and B. Let x and y be the points
of intersection of A and B with the projective line G. Let C be a line disjoint
from A U B, intersecting G in a point z. Counting in two ways the number of
pairs (p,L) where p€ L nGandL n (AUC) =@, we get

(g-2)d, = |£] = (ry+r 1) - (a+c-2)(g-2) + (a-1)(c-1) (5)

where |£| denotes the total number of lines in S.
Considering the disjoint lines B and C, we have similarly

(g-2)dO = [L| - (ry+rz-1) - (b+c-2)(g-2) + (b=1)(c-1) (6)
Subtracting (6) from (5), we have
Fe = Ty = (b-a)(g-1-c) (7)
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On the other hand, Lemma 4.1 gives

(a-b)(c+do) = (a=1)g + ry - (b=1)g - ry
or r -r = (a-b)(c+d -g) (8)

Subtracting (8) from (7) yields
(b-a)(da-l) =0

which implies b=a since d0 > 1,  moreover ry = ry thanks to (8). Thus any two

disjoint lines have necessarily the same size and all points of G have the

same degree r.

If n denotes the common size of two disjoint lines,

(g-2)s = [£] = (2r-1) - (2n-2)(g-2) + (n-1)° (9)
Solving for n, we get

n=g-1+/§

where § is the discriminant of equation (9).
Since n < g-1 by Lenma 4.3, n is uniquely determined, and so all non-projective
lines have the same size n.

o) Suppose first that G is the only projective line in S. The total number of
points in S is easily seen to be

g+ (r-1){(n-1) = 1 + g(n-1)

(count the points on the lines passing through a point of G, or through a
point outside G). It follows that n-1 divides g-1.

Given two disjoint lines A and B-and a point p of G outside A U B, the
number of bisecants of A and B through p does not depend on p € G and is equal
tot= dz(p,A,B) =2n + do-r < n. Counting in two ways the number of pairs
(psL) where pe GnlL, pg AUBandL NnA# 4 #LnB, weget

(n-1)% = (g-2)(t-1)

Since n-1 and g-2 are relatively prime, (n-])2

with t < n.

divides t-1, in contradiction

g) Suppose now that there are at least two projective lines in S. If all pro-
jective lines have a point p in common, then, since d0 > 0, there is at Teast
one non-projective line L through p. LetG be one of the projective lines.
Consider two points x and y distinct from p and lying respectively on L and G.
Counting in two ways the number of pairs (q,L') where g # x and <qg,x> = L'

(resp. q # vy and <q,y> = L'), we get 17
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v-1 (n-1) + (g-1)(n-1) = g-1 + (g-1)(n-1)

g, contradicting n < g-1. Therefore the projective lines of S have
no point in common. This implies that all points of S have the same degree g.

1]

and so n

Thus for any two disjoint lines A and B and for any point p outside A U B,
the number of bisecants of A and B passing through p is dz(p,A,B) =2n + d0 - g,
which is independent of the triple (p,A,B), and so S satisfies condition (D2).
Proposition 4.2 follows now easily from Theorem 2.

6.3. The case do > 1 with no projective line.

Lemma 4.4. If. there is no projective line in S, then two disjoint lines have

always the same size.

Proof. Suppose on the contrary that A and B are two disjoint lines with diffe-
rent sizes a and b. By Lemma 4.2, we know that all lines disjoint from A U B
have the same size, equal either to a or to b. It is no loss of generality to
assume that this size is b. Then Lemma 4.1 yields

(a-b)(b+d ) = ry - rp

Now we shall give a proof in three steps :

(14)

Step 1. All Tines disjoint from A have size b.

Suppose on the contrary that there is a line C disjoint from A and of
size ¢ # b. Lemma 4.2 implies that C intersects B, as well as any line dis-
joint from A U B. Thus, counting in two ways the number of pairs (p,L) where
pE€L andl is disjoint from A U B, we get

(c—])do b = (v—a-b)d0
that is
cb = v-a (15)

Therefore ¢ is uniquely determined and the only possible sizes for the lines
disjoint from A are b and c. This implies that the size of any line disjoint
from A U C is either b or c. We show that b is impossible. Indeed, if a # c,
this-is obvious by Lemma 4.2; if a = c, suppose on the contrary that there is

a line B' of size b disjoint from A U C. Then Lemma 4.1 gives
(a-b)(a+d0) =y - g
but Corollary 4.2 implies that
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and so
(a-Q(a+dD) =ry-rg

contradicting (14).
Since any line disjoint from A U C has size ¢, by Lemma 4.1,

(a-c)(c+do) =ry-re (16)

On the other hand, since A is disjoint from the two intersecting lines B and
C, Lemma 4.1 yields

(b-c)(a+d0+1) =rg-re (17)
Subtracting (17) from (16) and using (14), we get

(a—c)(c+d0) - (b-c)(a+do+1) = (a-b)(b+d0)
that is

(b=c)(b+c-1-2a) = 0

and, since b # ¢

2a = b+c-1 (18)
Now (15) becomes

vel2ab-bi+a+h (19)
or v=2a-ct+a+c (20)

Let D be a Tine of size d intersecting A. We shall prove that d = a. If on _
the contrary d # a and if there is a line B' of size b disjoint from A U D,
then, by Corollary 4.1, D intersects all lines of size c disjoint from A.
Counting in two ways the number of pairs (p,L) where L is disjoint from A U C
and p € L, we get

(d-2)d, ¢ = (v-a-c)d,

Therefore
d = (v-a+c)/c = b + 1 thanks to (15).

According to Lemma 4.2, the size of all lines disjoint from B' U D is either b
or d = b+1. In particular, there are lines disjoint from B' U D and intersec-
ting A, which have necessarily size a or b+l because they intersect A and we
have just seen that if d # a is the size of a line intersecting A, then d = b+1.
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Therefore, since a # b, all lines disjoint from B' U D have size b+1. On the
other hand, A being disjoint from the lines B and B' of the same size b, Corol-
lary 4.2. yields

I"B = rB|
which, together with (14) and Lemma 4.1, implies that all lines disjoint from
A U B' have size b. Therefore A intersects any line disjoint from B' U D.
Counting in two ways the number of flags (p,L) where L is a line disjoint from
B' U D, we get

(a-i)d0 (b+1) = (v - 2b - 1)d0
and, using (19),

b(a-b) = 0, a contradiction.

This implies that if d # a, D intersects all lines of size b disjoint from
A. In particular, D intersects B and all lines disjoint from A U B. Then, coun-
ting in two ways the number of flags (p,L) where L is a line disjoint from A U B,
we get

(d—2)d0 b= (v—a.—b)d0
Therefore
d = (v-a+b)/b = c+1  thanks to (15).

We have seen that if a 1ine of size d # a intersects A, C and all lines disjoint
from A U C, then d = b+1. Since b # ¢, we conclude that there is a line C' of
size ¢ disjoint from A and D. By Lemma 4.2, the size of all lines disjoint from
DUC' is either ¢ or d = c+1. But some of these lines meet A and therefore

have size a or c+1. If a # ¢, then all lines disjoint from D U C' have size

c+l, and so cannot be disjoint from A U C'. Therefore all these lines inter-
sect A. Counting in two ways the number of flags (p,L) where L is disjoint

from D U C', we get

(a-I)d0 (c+l) = (v-2¢c-1)d;
and, using (20),

0, a contradiction.

H

c(a-c)

Therefore a

1

¢ and, by (18},

b = a+] = c+] (21)

It follows that a and b are the only line sizes in S. For any point p of S,
we denote by %G the number of Tines of size a through p. Counting in two ways
- 50 -
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the number of pairs (q,L) where q # p and <q,p> = L, we get
-1 = - - -
v % (a-1) + (rp up)(b 1)
which, using (19) and (21), can be written

2) - 1= - -
a(a+2) o (a=1) + (rp ap)a
- =] -

or a(a+2 rp) % (22)
Therefore a divides ap-l. Let m be the positive integer such that

ma-= oy ~ 1 (23)
(22) yields

r =a+2+m (24)

P
Consider a line B' of size b = a+1 not passing through p and note that p is

on at least d0 lines disjoint from B'. We have

Ty = a+2+m 3 b+do_= a+1+dO > a+3 (25)

and som > 1. (23) and (24) imply that the number of lines of size b through
p is

ry =6y = 1fm+a(1-m) > 0

Therefore if a > 4, then m = 1 and, using (25) and (24), we get

ry = a+3 = b+d0

for any point p of S. We conclude that any line intersecting A meets B. There-
fore, if p € A, then A is the only line disjoint from B through p, contradic-
ting dé 3 2. -

If a =2, then'b = 3 and (19) gives v = 8. Similarly, if a = 3, then b = 4*

and v = 15. But these values of v are incompatible with the fact that through
any point p ¢ A U B, there are at least two lines of size b disjoint from A U B.

Thus we have proved that all lines meeting A have a points. Let A' be a
line meeting A. If A' is disjoint from a line B' of size b (necessarily disjoint
from A), Corollary 4.2 gives

since B' is disjoint from A U A', and
Y‘B = rB|
since A is disjoint from B U B'.
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Then Lemma 4.1 and (14) imply that all lines disjoint from A' U B' have size b,
contradicting the fact that some of these lines meet A.

Therefore A' meets B and all lines disjoint from A U B. Counting the
number of flags (p,L) where L is disjoint from A U B, we get

(a-2)d0 b= (v-a-b)d°

b-2
b-3

and so, using (19), a
and, using (18), c

In particular, a # c. Now we claim that A' meets C and all lines disjoint from
A U € (indeed, suppose, on the contrary, that one of these lines, say C', is
disjoint from A'. Corollary 4.2 and relation (16) imply that all lines disjoint
from A' U C' have size ¢, contradicting the fact that some of these lines meet
A and that a # c). Counting in two ways the number of pairs (p,L) where L is
disjoint from A U C and p € L, we get

(a-—2)do c = (v—a-c)d0

and so, using (20), a = c-2
which, together with (21) implies b = ¢, a contradiction.

This ends the proof of step 1. From now on, we may assume that
(%) in any pair of disjoint lines of different sizes, one of the lines has the
property that all lines disjoint from it have the same size.

Step 2. a and b are the only two line sizes in S.

It suffices to prove that any line D intersecting A has size a or b.
Suppose on the contrary that the size d of D is different from a and b. We
shall prove that D intersects all lines disjoint from A. Indeed, if there is
a line B' disjoint from A U D, then the size of all lines disjoint from D U B'
is either b or d. Assume first that this size is b. Then Lemma 4.1 yields

(d—b)(b+d0) =rp - g

Subtracting this from (14), we get
(a-d)(b+d0) =ry -y
On the other hand, Lemma 4.1 gives

(a—d)(b+d0+1) =Ty

since B' is disjoint from the two intersecting lines A and D. These last two
relations are contradictory. Therefore all lines disjoint from D U B' have
size d, and so they intérsect A. Counting in two ways the number of flags
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(p,L) where L is disjoint from D U B', we get
(a-1)d, d = (v-b-d)d .
Note that all Tines disjoint from A U B' intersect D; then a similar counting
argument yields
(d-l)d0 b = (v-a-b)d,
Subtracting these two relations and simplifying by do’ we get
d(a-b) = a-b
Hence

d=1, a contradiction.

Thus D intersects any line disjoint from A. In particular, D intersects
B and all lines disjoint form A U B. Counting in two ways the number of flags
(p,L) where the line L-is disjoint from A U B, we get

(d-2) b = v-a-b

which shows that d is uniquely determined. Therefore there are exactly three
line sizes in S, namely a, b and d.

Since D meets all lines disjoint from A, any line C disjoint from D
intersects A. We shall prove that C intersects also B. This has already been
proved if C is of size d. Suppose now that C has size a and is disjoint from
B. Then Corollary 4.2 yields

Y‘A=Y‘C

Together with (14), this implies

(a-b)(b+s) = re = g
which means, by Lemma 4.1, that all Tines disjoint from C U B have size b.
Thanks to assumption (%), we conclude that all Tines disjoint from C have

size b, contradicting the fact that D and C are disjoint.

Thus if C is disjoint from B, C has size b. Since there is a line disjoint
from B U C, Corollary 4.2 yields

rg = ¢ -
Applying Lemma 4.1 to the line B disjoint from the two intersecting lines A
and C, we get

(a-b)(b+d0+1) =rpy-re
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These two relations contradict (14), and so any line disjoint from D intersects
both A and B. Let C be such a line. Counting in two ways the number of lines
disjoint from C U D, we get

(a-2)d, = (b-2)d,

Hence a = b, a contradiction. Therefore any line intersecting A has size a or b.

Step 3. Let C be a line intersecting both A and B. Any line D disjoint
from C and intersecting A U B meets A and B.
In order to prove this, we shall consider several cases, according to the sizes
of C and D.

(i) If D has size a, then we already know that D intersects A.

(ii) If C has size a and if D, intersecting A, has size b, then D meets B.
Indeed, suppose on the contrary that D and B are disjoint. Lemma 4.1,
applied to the line B disjoint from the two intersecting 1ines A and D,
yields

(a—b)(b+d0+1) =ry-rp

and Corollary42 implies that

but these two relations contradict (14).
(iii) If C has size a and if D, intersecting B, has size b, then D meets A.
Indeed, suppose on the contrary that D and A are disjoint. Corollary
4.2 yields ra = Te and rg =rp - |
Let E be a Tine disjoint from C and D, through a point p € A. These last
two relations, together with (14), imply that E has size b. Moreover, by
Coroliary 4.2,
rg=rp=rg-
Lemma4.l applied to the 1ine D disjoint from C U E (resp. A U E) yields
(a-b)(b+d ) = ro - rp =rp - rg
and (a=b)(b+d #1) =ry = rp =rp = rg
These two relations-contradict each other.

(iv) If C has size a and if D, intersecting A, has size a, then D meets B.
Indeed, if on the contrary B is disjoint from D, Corollary 4.2 yields
r'A=rD'
which, toegether with (14) and Lemma 4.1 applied to the disjoint lines B
_54_



I1.32

and D, implies that all lines disjoint from B U D have size b. Therefore,
thanks to assumption (%), we conclude that any 1ine disjoint from D has
size b, contradicting the fact that C is disjoint from D.

(v) If C and D have size b and if D intersects B, then D meets A. Indeed,
if on the contrary A and D are disjoint, Corollary 4.2 yields

8 =7

and

re = rp
Lemma 4.1 applied to the line D disjoint from the two intersecting lines
C and A yields

(a-b)(b+00+l) =ry - re=r,

in contradiction with (14).

(vi) If C and D have size b and if D meets A, then D meets B. Indeed, if on
the contrary D and B are disjoint, then

8 ="p

and, using Lemma 4.1, we get

(a—b)(b+do+]) =ry =Ty

These two relations contradict (14).
(vii) Finally, if C has size b and if D has size a and intersects A, then D
intersects B. Indeed, suppose on the contrary that B and D are disjoint,

and let B' be a line intersecting D and disjoint from A U B. Corollary
4.2 yields

By Lemma 4.1, we get
(a-b)(b+d0) =r, - Tp
since B is disjoint from the two disjoint lines A and B', and
(a-b)(b+d°+1) =rp-Trg =Ty g
since B is disjoint from the two intersecting lines D and B'.
These two relations contradict each other.

Now, take a line D disjoint from C and intersecting A U B.
Thanks to step 3, counting in two ways the number of lines disjoint from C U D
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and intersecting A U B, we have
(a-2)do = (b-2)do

which implies a = b, a contradiction. This proves Lemma 4.4.

Lemma 4.5. If there i8 no projective line in S and if any two disjoint lines
of S have the same size, then all lines of S have the same size.

Proof. Suppose on the contrary that there are at least two distinct line sizes n
and 2. Consider two disjoint lines A and B of size n and let L be a line of size
2. L and all lines disjoint from L intersect A and B. Counting in two ways the
number of bisecants of A and B passing neither through p € A n L nor through
qeEBNL, we get

(-1)% = = [dy(x,A,B)-1] + 6

xeL
X#£p,q
where & denotes the number of lines disjoint from L.
Since
we get
(n-1)% = (1-2)(2n4d=1) + 6 = 1 + )+ (26)

Through any point y # p,q on L, consider a 1ine C disjoint from A U B. The same
counting argument applied to the pairs of lines {A,C} and {B,C} instead of
{A,B} yields

(n-1)% = (1-2)(204d-1) + 6 - v 4w (27)
and
(n-1)% = (2-2)(2n4d -1) + 6 - r + rqt Ty (28)

(26), (27) and (28) imply that rp r =r_, and so all points of L have the

same degree. One proves in the same way that all points of any line of size n
have the same degree. Finally, since any line of size n intersects L, all
points of S have the same degree r.

Counting in two ways the number of pairs (y,C) where C is disjoint from
AUBand ye CnlL, we get

(1-2)d_ = |£] - (2r-1) - 2(n-1)(r=2) + (n-1)

Similarly,
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(n-2)d, = |[£] = (2r-1) = 2(-1)(r-2) + (1-1)°

Subtracting these two relations, we have

(2-n)d, = 2(2=n)(r-2) + n° = 2% + 2(z-n)
Therefore, since L # n,
2r = g+ n + d0 + 2 . (29)

Suppose ¢ > n and let L' be a line disjoint from L. The number of lines
intersecting L but not L', and passing through a point p € L U L', is

r-g- d0 >0
Multiplying by 2 and using (29), we get
2 -djzemn

in contradiction with d0 > 2 and 2 = n+l.

Proposition 4.3. If S contains no projective line, then S 15 an affine rvlane,
projective space of dimension 3 or a generclized projective spuass in walld &

lines have size 2.

Proof. Thanks to Lemmas 4.4 and 4.5, we know that all line¢ of 5 have the sai
size n,and so that all points have the same degree r. Thus, for any two disjciit
lines L, L' and any point p outside L U L', d2(p,L,L') =2n+ d - ris inde

pendent c¢f the choice of p, L and L'. Therefore by Theorem Z (more precisel,
by Propositions 2.1 and 2.2), we have the desired conclusion.

7. LINEAR SPACES SATISFYING CONDITION (IZ2).
L

Ll
(I2) there is a non-negative tnteger 12 such that for any tuo Interscoting
lines L, L' and any point x outside L U L', there are crxcctly 12 bi-
secants of L and L'passing through x.
The only finite linear spaces which are known to satisfy condition (i

are the (possibly degenerate) projective planes, the affine planes and tne
Steiner systems S(2,2,v). We will prove that other examples (if any) shoul: L.

57 -



11.35

Steiner systems S(2,k,v) satisfying some rather restrictive arithmetical condi-
tions on i2 and k.

Theorem & [2C). If S is a finite non-trivial linear space satisfying
condition (12), then

(i) S 7Zs a degenmerate projective plane (and 12 =1),

or (ii) S 78 a Steiner system S(2,k,v) with 12 < k < Vv, sucn that

(1) 5] (k-1) (k-2)

(2) K|[ (k=1) (k=2)/1 421 (k=1) (k=2)/i 1]

(3) ,(2k=2-1,) [k(k-1)%(k=2)

(4) 2f (k-1)(k-2}/i, 28 odd, then k-1-i, s a square

if (k-])(k-Z)/iZ 18 even, then the Diophantine equation
(k_1_12)x2 + (_])(k-1)(k-2)/21'z i y2 - Z2

has a solution in integers X,y,Z not all zero.

Moreover i, = k=1 2ff S 28 a projective plane of order k-1

12 = k=2 2ff S 18 an affine plane of order K.

Note that this theorem gives a partial answer to an open problem mentioned
by Cameron in [15, p.54].

Proof. The proof of (3) (resp. (4)) is based on the construction of certain
partial geometries (resp. symmetric 2-designs) associated with S, whence all
other statements follow directly from the Tinear structure of S. Thus we shall
divide the proof into three parts :

7.1. The linear space S.

First of all, note that if 12 = 0, any bisecant of two intersecting
lines has size 2, and so all lines of S have size 2. Therefore, from now on,
we shall suppose i2 > 1.

It is easy to check that if S is the union of two intersecting lines,
then condition (I2) is satisfied iff S is a degenerate projective plane. Hence
we may assume, in what follows, that any point of S is on at least three lines.
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Let L and L' be two lines intersecting in x. Consider a third line L"
passing through x. Counting in two different ways the number of trisecants
of L, L' and L", we get

(L] = Vi, = (JL'] - 1).d
that is [L| = [L'].
Therefore any two intersecting lines have the same size, and so all lines of
S have the same size, which we denote by k. Counting in two different ways

the number of pairs (p, Ly) where p §¢LUL' and Ly is a bisecant of L and L'
passing through p, we get

(v - 2k + 1)i, = (k-1)%(k-2) (5)
Ifr denotes the degree of a point of S, we have

v-k = (r-1)(k-1) (6)
(5) and (6) yield

(r-2)i, = (k-1)(k-2) (7)

which implies i2|(k-1)(k-2) (n.
On the other hand, the number of Tines of $ is vr/k, which must be an integer.
Thanks to (6), we deduce that

k[r(r-1) (8)
which, using (7), gives

k|[(k-1)(k—2)/1’2 + 2] (k=1)(k=2)/i,+1] (2)
For i, = k-2 (resp. k-1), (5) yields v = 2 (resp. k2—k+]) and so S is an
affine (resp. projective) plane.
This ends the first part of the proof.

Note that (2) implies

k|2(1,+1) (1,+2) (9)

Thanks to (1), (2), (3) it is easily shown that k # 2(12+I)(1?+2) and that
k = (1, +1)( 12+2) is admissible only for i = 2. So (9) implies that

k < 2(1,+1)(i,+2)/3 for i, » 2 and we conclude that k< i, for any i, > 3.

7.2. Partial geometries and association schemes.

Given a line L of S, the point set S-L, provided with the restrictions
to S-L of the lines of S intersecting L, forms a partial geometry with para-
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meters (R,K,T) = (k, k=1, i,) having V = v-k = (k-1)2

B = k(k-])(k-Z)/12+k lines.

The point graph (resp. line graph) of a partial geometry is defined by calling
two points (resp. two lines) adjacent iff they are collinear (resp. concurrent).
The line graph is also the point graph of the dual partial geometry. Thus four
strongly regular graphs are associated with every partial geometry, namely the

(k-2)/12+k-1 points and

point graph Gp’ the line graph GL and their complements ép and GL'
In our problem, the parameters of G, are
=V = (k-1V8(Kk=2V/i. + k - = k(k-
Vp =V = (k=-1)"(k 2)/12 + k=1 kp = k(k=2)
Ap = (k-l)(12-1) +k -3 Mp = k1'2

Besides the trivial eigenvalue kp, the other eigenvalues of GP are

rp k=i, -2 with miltiplicity f, (k-2)(k—])2k/i2(2k -2 - i,)

P
and
sp = -k with multiplicity gp = Vp -1- fp
For the line graph GL,
- - Ve - (Lo1y2
v = k(k=1)(k 2)/12+k kL = (k-1)
AL T (k-2)1’2 T (k~1)12
re = k - 12 -1 fL = fp
k(k-l)(k—2)(k-1—i2)
sp = ~(k=1) 9 =R s ke ey

Multiplicities of eigenvalues being integers, we get

12(2k—2-12)j(k-2)(k-1)2 (3)

The other known necessary conditions for the existence of a strongly regular
graph, namely the Krein condition (I10), the absolute bound (I11), the p-bound
(I12) and the claw-bound (I13), are tedious but easy to check : they give
nothing more than the previous conditions.

The line graph GL may also be viewed as a 2-class association scheme D
if we say that two lines are first associates when they are distinct and adja-
cent (i.e. when the corresponding lines of S form a triangle with L) and second
associates otherwise. Actually we can define a 3-class association scheme Iq
by subdividing the second class of Ly. The vertices of Iy are the lines of S
intersecting L, two vertices are first associates if the corresponding lines
intersect in a point outside L,

OO



IT.38

» second associates if the corresponding lines
intersect in a point of L and third associates if the corresponding lines are
disjoint. Indeed, the number n; of i-th associates of a vertex x is independent
of x , and for any two i-th associates x and y, the number p}k of vertices
which are j-th associates of x and k-th associates of y does not depend on the
pair Xx,y.

Consider the v XV association matrices Aj = (aiy) with entries aiy = 1
if the vertices x and y are j-th associates and aiy = 0 otherwise. We denote
by A5k the (not necessarily distinct) eigenvalues of Aj and by y, the multipli-

city of Ajk (it can be shown that m does not depend on j). The parameters of g,

are
ny = (k)2 ny = (k-1)(k=2)/ipy » Ny = (k-1)(k=2) (k-1-1,)/1,

1 . ,
piy = (k=2)i,, pl, = k-2 , P15 = (k-2)(k1-1,)

1 1 . . .

Py = 0, Poy = (k-2)(k-1-1,)/1,, p;3 = (k-2) (k-1-1,) (k-2-1,)/1,

2 . 2 .
ply = (k-D)i, , pS, =0, pey = (k-1)(k-1-1,)

2 : , |
Py = (k=-1)(k-2)/i,-1, p§3 =0, p%S = (k-l)(k—2—12)(k~142]/12

3 _ 3 3 .

Pyy = (k=1)i,, P1p = k-1, Pyg = (k-T)(k=2-1,)

3 3 L o
p22 =0, p23 = (k*])(k—2‘12)/12, pr = (k-1)[(k“l*le)(k—j~12)+lz,+1
Ay = k-]~i2 s Ao = -(k-1) , Ma = -(k-1) /12—?
Aoy = = 1y Aop = =1, Aog = (k=1)(k-2)/1,

Agp = —(k-1-1,), Agp = k=1, Agq = ~(k=2)(k-1-i,)/1,
by = (k-Z)(k-T)Zk/iz(Zk-E-iz). by = k(k=1)(k=2) (k=1-1,)/i,(2k=2-1,), uy = k-1

Condition (3) and 1 + My +up tug =V imply that all multiplicities are
integers. Moreover it is not difficult to check that the Krein condition as
well as the condition given by Mathon (I14) are satisfied for all pairs (i,,k)
satisfying (1), (2), (3) with 12 < k-3.

7.3. Symmetric 2-designs.

If 12 < k-2, a non-trivial symmetric 2-design D(p,q) can be associated
with any pair (p,q) of distinct points of S as follows : the points of D(p,q)
are the lines through p distinct from the line <p,q>, the blocks of D(p,q)
are the lines through q distinct from <p,q>, a point and a block being incident
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iff the corresponding lines intersect. Each point of D(p,q) is on k-1 blocks

and each block contains k-1 points, any two points are on 12 blocks and any

two blocks have 12 points in common. Thus D(p,q) is an S; (2,k-],(k-])(k-2)/12+])
2

The Bruck-Chowla-Ryser theorem (I3) gives a necessary condition for the exis-
tence of such a design, namely (4). This ends the procf of Theorem 5.

Unfortunately, there remain infinitely many pairs of parameters (iz,k)
with iz < k-3 satisfying the conditions (1), (2), (3) and (4) : for instance,
all pairs (15,k) with i, = 9" (n21)and k = (i2+1)(i2+2)/2. Indeed, it is
easy to check that these pairs satisfy the first three conditions. We shall
prove that the fourth condition is also satisfied by using the following

Theorem [37], [40] . The equation
b x2 +C y2 = 22 (10)
has solutions in integers x,y,z not all zero if and only if for every prime

p as well as for p = =, the Hilbert norm-residue symbol (b,c)p is equal to

+ 1.
The symbol (b,c)p is defined to be +1 or -1 according as the congruence
b x2 + C yz = 22 (mod pm)
does have solutions in integers x,y,z, not all multiples of .p, for everv power
pm of the prime p, or not, and (byc) =+ 1 or - 1 according as (10)
‘does or does not have solutions in real numbers x,y,z # 0. Thus (b,c)_ = +I

unless both b and ¢ are negative. We shall use the following properties of the

Hilbert norm-residue symbol :

(b,c)p = 1 (the product being over all primes p, including p = =)

2
=1,
)P

(P3) if p is an odd prime and b,c §# 0 (mod p), then {b,c)p =1,

(P1) T
P
(P2) (b,c

(P4) if p is an odd prime and if ¢y =6y $ 0 (mod p), then (b,cl)p = (b,cz)p .

If i, = 9" (n3 1) and k = (i,41)(i,%2)/2, then k = (9"+2)(9"+1)/2 -
3 (mod 4), and so (k-1)(k-2) (mod 4). Since 12 is odd and divides k-1,

we conclude that (k-1)(k-2)/2 12 is an odd integer and (4) becomes

i
™~

2 2

- g" y =z

n
9"+] g" x2

has a solution in integers x,y,z not all zero, or equivalently
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n
R (1)
has a solution in integers x,y,m not all zero. Since (11) has solutions in
real numbers x,y,m % 0, thanks to the above theorem, we have only to prove
n
that (ggil-, —1)p = +] for every prime p. Moreover thanks to (P1) and to
n
(gzil , -1)m = +1, it is sufficient to check this for the odd primes. Thus, let
p be any odd prime.
n n n
+ + 9'+1]
1f p | 22, then (L, -1), = 1 by (P3). If on the contrary p | 25
then 9" = -1 (mod p) and we deduce from (P4) and (P2) that

n n
G Ny = (G, T

Therefore condition (4) is satisfied for the above values of i2 and k.

For k ¢ 100 there are only six pairs (iz,k) with 12 < k-3 satisfying
conditions (1) to (4), namely (2,12), (24,65), (20,66), (3,10), (7,36) and (9,55)
(for the last three, k = (12+1)(i2+2)/2).The existence of a symmetric 2-design
312(2, k-1, (k-])(k-Z)/12+1) is known [57] for only two of these pairs, namely
(2,12) and (3,10).

Note that if S satisfies one further hypothesis, the symmetric 2-designs
D(p,q) are extendable and (I4) rules out all pairs (i2,k) with 12 < k-3, except
one. Given a point p and a 1ine L not through p, let £(p,L) denote the set of
Tines passing through p and intersecting L and let S(p,L) denote the set of
points distinct from p and belonging to a line of L(p,L). Note that if 12 < k-1,
two Tines L, L' such that £L(p,L) = L(p,L') are necessarily disjoint.

Proposition 5.1, Let S be a finite linear space satisfying condition (12) with
1 % 12 ¢ k=3. If there is a point p € S such that for any line L not through p,
any point of S(p,L) is on a line L' such that L(p,L ) = L(p,L"), then 12 = 2
and k = 12.

Proof. Consider the design D(p) whose points are the lines through p, whose
blocks are the distinct sets L(p,L), incidence of points and blocks being

given by set inclusion. Thus any block has exactly k points and the total number
of points is r = (k-])(k-2)/i2+2. By hypothesis, given a line L not through p,
any point of S(p,L) is on one and only one line L' such that L(p,L) = L(p,L")
(only one because we have seen before that such lines are necessarily disjoint).
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It follows that any three points of D(p) are in exactly iz blocks and that the
total number of blocks is r(r-1)/k. Therefore, D(p) is a symmetric 3-design
SiJBJg(k—1)(k-2)/12+2). Note that for any point g distinct from p, the 2-design
D(p,q) is isomorphic to the derived design of D(p) relative to <p,q>. Theorem 5
and the theorem of Cameron (I4) listing the admissible parameters of symmetric
3-designs imply immediately that iz = 2 and k = 12. The pair (iz,k) = (2,12)
corresponds to a hypothetical Tinear space S(2, 12, 628), the existence of which
is unsettled.

Finally, let us mention the following

Proposition 5.2. The only finite linear spaces S(2,k,Vv) with k a prime power

that satisfy condition (12) are projective or affine planes.
Proof. Let S be a finite Tinear space S(2,k,v) satisfying condition (I2) which
is neither a projective plane nor an affine plane, so that

ki, +3 (12)

Let k pn with p a prime number. (2) implies that

k| 2(1,41)(i,%2)

Since 12+1 and 12+2 are relatively prime, we conclude that
" | 2(ip*1)  or P | 2(ip+2)
(

Therefore, by (12),

p" = 2(i,+1) or p" = 2(i+2) ,

2
and so pn = 2" with n > 2.
If p" = 2(12+2), then (1) becomes
22 L1 (2™ -1
and so |
22 1 2(Mn=2) g L g op 3.
Therefore (iz,k) = (2,8) or (6, 16), contradicting (2).
If k = 2(i,41), then (3) becomes
22" -1) - (2" -1y | ™R a2 a1y

Since 2™ and 2"-1 are each relatively prime with 2(2" - 1)-(2"1 -1), this
implies that
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202" -1)-(2" Ty 2"V 0

and so 2(2" -1) ¢ Z(Zn-] -1), a contradiction.

8. LINEAR SPACES SATISFYING CONDITION (I1).
L

Ll
(I1) there is a non—negative integer i, such that for any ordered pair of

intersecting lines L, L' and for any point x outside L U L', there
are exactly i] lines through X which intersect L but not L'.

The study of finite linear spaces satisfying condition (I1) reduces
exactly to that of finite linear spaces satisfying condition (I2), thanks
to the following result :

Theoremé6[2€) The finite non—trivial linear spaces satisfying (11) are
the finite degenerate projective planes and the Steiner systems
S(2,k,v) (k < v) satisfying condition (12).

We have seen in Theorem 5 that the finite non-trivial linear spaces
satisfying condition (I2) are necessarily Steiner systems S(2,k,v) or de-
generate projective planes, so that conditions (I1) and (I2) are equivalent.

Proof of Theorem 6.

Let S be a finite non-trivial linear space satisfying condition (I1).
It is easily seen that if S is the union of two intersecting lines, then S
is a degenerate projective plane. Suppose now that S is not the union of two
intersecting ljnes. Then, for any two intersecting lines L and L', the degree
of any point x outside L U L' is

re = ILL#dy +dg0abalt) = U+ e ALt
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and so L and L' have the same size. Therefore all lines of S have the same
size. Since conditions (I1) and (I2) are equivalent for Steiner systems
S(2,k,v), the theorem is proved.

9. LINEAR SPACES SATISFYING CONDITION (10).

Ll
(I0) there is a non-negative integer io such that for any two intersecting

lines L, L' of S and for any point x outside L U L', there are exactly

io lines through x which are disjoint from L U L'.

The study of finite linear spaces satisfying condition ([0) reduces
essentially to that of finTte linear spaces satisfying condition (I2), thanks
to the following

TheoremTRE.If S is a finite non-trivial linear space satisfying condition

(I0), then one of the following occurs

(1) S Zs a punctured projective plane or an affine plane with one point
at infinity,

(11) S is a degenerate projective plane or a Steiner system S(2,k,v) (k<v)

satisfying condition (12)

Conversely, each of these finite spaces satisfies condition (10).

In particular, the only known finite linear spaces satisfying condition
(I0) are, besides the trivial examples P(2, k+1) and PG(d,1), the finite semi-

affine planes (in which 1, is always zero).

Proof. Let S be a finite non-trivial linear space satisfying condition (I0).
Note first that if S is the union of two intersecting lines, then S is either
a degenerate projective plane or AG(2,2) with one point at infinity. On the
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other hand, as mentioned in section 3, conditions (I0) and (I2) are equivalent
for Steiner systems S(2,k,v), so that we may assume from now on that S contains
two Tines of distinct sizes and that every point of S has degree > 3. The fol-
lowing lemmas will show that, under these assumptions, io = 0; this will make
the proof of Theorem 7 easier.

Lemma 7.1. If S contains a point X of degree 3, then io = 0.

Proof. Let A,B,C be the three lines passing through x. If 10 # 0, there would
be a line D disjoint from B U C through a point y of A distinct from x, so that

ry 4, a contradiction.

In the following lemmas, we assume that every point of S has degree > 4.

Lemma 7.2. If A,B,C are three pairwise intersectinglines of size a,b,C respec—
tively, then

ry - rg = (a-b)(c+io) +* e~ TBne

In particular, i1f A,B,C are concurrent, then
Fp=Tg ~© (a'b)(c"'io)

Proof. Counting in two ways the number of bisecants of A and B which are disjoint
from C, we get

T i](y,B,C) = I 1](2,A,C)
Y€EA Z€B
y¢BUC ¢ AUC

from which we immediately deduce the desired formulas by using

il(y,B,C) =r =c=i

Y 4]
and
.i-[(Z,A,C) = Y‘z -C - io
Corollary 7.2.
(1) If A and B are two intersecting lines of the same size, then rp =g -

(i1)  For any point X of S, all lines passing through X, except possibly one,
have the same size.

(ii11) If three points X,Y,Z are such that the lines A = <X,z> and B = <y,2>
are distinet and have the same size, then re = ry’
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Proof. Since we have assumed that all points of S have degree > 4, there is a
line C concurrent with the two intersecting lines A and B. (i) follows imme-
diately from Lemma 7.2 applied to A, B and C.

In order to prove (ii), suppose that A and B are two lines of distinct
sizes a and b passing through x (which, by hypothesis, has degree > 4). If C
and C' are two lines passing through x and distinct from A and B, it follows
immediately from Lemma 7.2 that C and C' have the same size c. On the other
hand, if ¢ # b, then the same argument applied to C' and A which are distinct
from the two lines B and C of distinct sizes shows that ¢ = a, and so (ii) is
proved.

In order to prove (iii), note first that rp, = rg by (i). Then Lemma 7.2
applied to the three lines A, B and C = <x,y> yields *anc = TBnc = 0, that is

f‘x = ry.

Letma 7.3. Let p be a point of S. If B is the only line of stze b passing through
p, then

(i) any two points outside B have the same degree,

(11) any two lines distinet from B and concurrent with B have tne same stze.

Proof. Let x and y be two pcints outside B such that x, y and p are not collinear.
By Corollary 7.2 (ii) all lines distinct from B thrcugh p have the same size a,
and so we deauce from Corollary 7.2. (iii) that x and y have the same degree.

This implies that all points outside B have the same degree r.

Now let C and D be two lines distinct from B and intersecting in a point
z € B. If z = p, we already know that C and D have the same size. If z # p, let
A (resp. A') be a line through p, distinct from B and intersecting C (resp. D).
Then, by Lemma 7.2 and Corcllary 7.2 (i), we get
rg = (a-b)(c+10) tr-r,
and
= (a-b)(d+i ) +r - r,

Since a # b, these equalities imply ¢ = d.

Lemma 7.4. If every point of S has degree » 4, then io =0

Proof. As we have seen at the beginning, we may assume that S contains two lines
A and B having distinct sizes a and b respectively and intersecting in a point .
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Moreover, by Corollary 7.2 (ii), we may also assume that all Tines distinct
from B and containing the point p have size a.

Suppose first that every line intersecting B and not passing through p
has size # a. Then, if b > 2, any point x ¢ B is on at least two lines of
size # a. Therefore, by Corollary 7.2 (ii), A(x) = <x,p> is the only line
through x having size a. From Lemma 7.3 (ii), we deduce that any two lines
distinct from A(x) and concurrent with A(x) have the same size. Since p has
degree > 4 and p € A(x), this contradicts the fact that B is the only line
of size b containing p. This shows at the same time that b = 2 (let B = {p,q})
and that any point x € B is on at least two lines of size a. Since by hypothesis,
the size ¢(x) of the line C(x) = <x,q> is distinct from a, we deduce from
Corollary 7.2 (ii) that C(x) is the only line of size c(x) containing x. There-
fore, by Lemma 7.3 (i), any point y € C(x) has degree

Since B is the only line of size # a containing p, we have
v-1 = (rp—l)(a-]) + (b-1) ,
and since C(y) is the only line of size # a containing y, we have
v-1 = (ry~1)(a-1) + (c(y)-1) .
Since b = 2, these three equations imply that
c(y) =b =2,
from which we deduce that all lines containing q have size 2, all other lines
of S having size a. Therefore S - {q} is a Steiner system S(2,a,v-1) with point
degree r' = (v-2)/{a-1).
Let C # B be a line of S passing through q. If u is a point of A outside B U C,

then 10(u,B,C) = r'-1; but if v is a point outside A U B U C, then
io(v,B,C) = r'-2, and so condition (I0) is not satisfied, a contradiction.

Suppose now that there is a line intersecting B, not passing through p
and having size a. Then, by Lemma 7.3 (ii), there is a bisecant C of A and B
having size a. Lemma 7.2 applied to the triple (A,B,C) yields

ry - rg = (amb)(ati ) + v - g (1)

where r = *Anc is, by Lemma 7.3 (i), the common degree of the points outside 8.
On the other hand, let A' be a Tine distinct from A and B and passing through
A n B. Lemma 7.2 applied to the triple (A,B,A") yields

6
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ry - Ty = (a-b)(atiy) (2)

(1) and (2) together give
F = Ygnc (3)

Since A' and B are concurrent with A and have different sizes, Lemma 7.3
(ii) implies that every point x € A distinct from p is on at least r-1 lines
of size a, so that

v-1 = (r-1)(a-1) + c-1 (4)

where ¢ = a or is the size of the unique line of size # a passing through x. On
the other hand, we know by Lemma 7.3 (ii). that all lines distinct from B and
passing through B n C have size a, so that

v-1 = ( 1)(a-1) + b-1 (5)

"BnC ~
(3), (4) and (5) together imply b = c¢. Therefore a # ¢ and (4) shows that every
point outside B is on exactly one line of size b, all the other lines having
size a. Either the 1lines of size b are pairwise disjoint or they are concurrent
in a point y € B. We shall successively consider these two possibilities.

If the Tines of size b are pairwise disjocint, then by Lemma 7.3 (i), all
points of S have the same degree r.Lemma 7.2 applied to the triple (A,B,A') yields

r(a-b) = (a-b)(a+io) s

and 50, since a # b, we get r = a + i , which means that for any point x outside
A, every line through x which is disjoint from A is also disjoint from every
line intersecting A and not passing through x. Therefore every line through x
intersects A and io = 0.

If the lines of size b are concurrent in a point y € B, then, by Lemma 7.3
(1) all points distinct from y have the same degree r. Lemma 7.2, applied to
the triple (A,B,B'), where B' # B is a line of size b intersectingA, yields

ar- (b-T)r - ry = (a-b)(b+10) +r - ry

and so, since a # b, we get r = b + 10.

Thus, every line through a point outside B intersects B and 1U = 1,

We will now end easily the proof of Theorem 7. Indeed we have seen in
Lemmas 7.1 and 7.4 that io = 0, which means that S contains nc Tine disjoint
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from two intersecting lines. Therefore, for any line L, every point outside L
is on at most one line disjoint from L, in other words, S is a semi-affine
plane. Since we know (I6) that the finite semi-affine planes are, besides the
finite affine planes and the (possibly degenerate) finite projective planes,
the finite punctured projective planes and the finite affine planeswith one
point at infinity, and since each of these planes satisfies condition (10),
Theorem 7 is proved.

10. LINEAR SPACES SATISFYING CONDITION (IDj.

We shall end this chapter with the study of finite linear spaces satis-
fying condition (ID), that is (JP, 1,2,1; 3,4,4) according to our conventions
in section 2. Actually (ID) can be expressed in a simpler way (in terms of

Tines only) :

(ID) thgre is a non—negative integer & such that for any two intersecting lines

L and L', there are exactly & lines disjoint from L U L'.
E .‘f J J

Using the work done in section 9, we shall prove the following

Theorem8[26]The finite non-trivial linear spaces saticfying condition
(ID) are exactly the finite semi-affine planes and the Stetner systems
S(2,k,v) with k < v |

Proof. Let A and B be two intersecting lines of a finite non-trivial linear
space S, and let §(A,B) denote the number of lines disjoint from both A and
B. The proof is based on the following counting argument

[£] = (rp=a+1) + (rg=b+1) - (rpqg + (a-1)(b-1)) +& (A,B) (1)

where the first (resp. second) term on the right hand side counts the number
of lines having a non-empty intersection with A (resp. B) and the third term
counts the number of lines having a non-empty intersection with both A and B.

We immediately deduce from (1) that all Steiner systems S(2,k,v) satisfy
condition (ID), since all terms different from §(A,B) are independent of the
choice of the two intersecting lines A and B. Moreover, 1t 1s obvious from
their definition that the semi-affine planes are exactly the non-trivial linear
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spaces satisfying condition (ID) with § = 0. Therefore, it remains only to
prove that if S is a finite non-trivial linear space satisfying condition

(ID) and containing two lines of different sizes, then necessarily é = 0.

We shall prove this in the following lemmas, which are similar to those of
section 9.

Lemma 8.1. If S contains a point X of degree < 3, then § = 0.

Proof. Let A and B be two lines intersecting in x. If § # 0, then there is
a line C disjoint from A U B, so that ry 4, a contradiction.
In the following lemmas, we assume that every point of S has degree > 4.

Lemma 8.2. If C intersects A and B, then
Fa - g = (37D)C + Tpnc - Ygng
In particular, if A,B,C are concurrent, then

rp - Tg = (a-b)c.

Proof. Since A and C intersect, (1) yields
[£] = (rp-a+l) + (re-c+l) - (rp e+ (a=T)(c-1))+ ¢ (2)
Since B and C intersect, we have similarly

[£] = (rg=b+1) + (re=c+l) = (rgae + (b=1)(c-1)) + & (3)

By subtracting (2) from (3), the lemma is proved.

Corollary 8.2. Identical to Corollary 7.2, both in statement and proof (it
suffices to replace "Lemma 7.2" by "Lemma 8.2").

Lemma 8.3. ldentical to Lemma 7.3, both in statement and proof.
Lemma 8.4. If all points of S have degree > 4, then & = 0.

Proof. Since it is very similar to that of Lemma 7.4, we shall only indicate
what has to be changed. At the end of the second paragraph, we conclude that

S'" =S - {q} is a Steiner system S(2,a,v-1) with point degree r' = (v-2)/(a-1).
Then &(B,C) is the number of Tines in S' which are disjoint from A N B and

An C, and §(B,A) is the number of lines in S' which are disjocint from A. There-
fore, if b' = (v=-1)(v-2)/a(a-1) denotes the total number of lines in $', we have

§(B,C) = b' - 2r' + 1
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and

§(B,A) = b' - ar' + a-l

Since §(B,C) = 6(B,A) = § and r' > 1, we conclude that a = 2, so that all
lines of S have the same size, a contradiction.

The third paragraph of the proof of Lemma 7.4 remains valid here, if

L

10“ in (1) and (2).

In the fourth paragraph, we suppose that the lines of size b are pair-
wise disjoint, so that, by Lemma 8.3 (i), all points of S have the same degree
Then, Lemma 8.2 applied to the triple (A,B,A') yields

we replace "Lemma 7.2" by "Lemma 8.2" and if we delete

r(a-b) = (a-b)a ,

and so, since a # b, we get r = a. This means that, for any point x outside A,
every line through x intersects A. Therefore § = 0.

Finally, in the fifth paragraph, we suppose that the lines of size b
are concurrent in a point y € B, and so, by Lemma 8.3 (i), all points distinct
from y have the same degree r. Lemma 8.2, applied to the triple (A,B,B'),
where B' # B is a line of size b intersecting A, yields

ar-(b-1)r-r = (a- - .

(b-1) v (a=b)b + r ry
Therefore, since a # b, we get r = b, which means that for any point x outside
B, all lines through x intersect B, and so § = 0. This ends the proof.
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CHAPTER III. SOME REGULARITY CONDITIONS IN FINITE PLANAR SPACES.

1. INTRODUCTION.

The generalized projective spaces of dimension > 2 (endowed with all their
planes) may be defined as the non-trivial planar spaces S satisfying the follo-
wing condition :

(z) for every pair of planes nm and ' intersecting in a line and for every point
X ¢ I U n' such that there is a line through x intersecting nm and n' in two dis-
tinct points, every line through x intersecting 1 intersects n'.

Indeed, let L and L' be two lines intersecting in some point x and let A and A'
be two lines not passing through x and intersecting each of the Tines L and L'.
Suppose that A and A' are disjoint. Since S is a non-trivial planar space, there
is a point y outside <L,L'>. The planes n = <y,L> and « = <y,A> intersect in a
line. The Tine L' intersects the planes 1 and o in two distinct points and
contains a third point x' € L' n A'. Therefore, by condition (%), every line
passing through x' and intersecting I intersects a«. In particular, the line A'
which intersects L < I intersects a. Hence A', which is contained in <L,L'>,
intersects A = a N <L,L'>,a contradiction.Hence Pasch's axiom is satisfied.

In particular, the 3-dimensional generalized projective spaces are the
non-trivial planar spaces satisfying
(1) for every pair of planes I and n' intersecting in a line, every line inter-
secting I intersects I'.

Indeed, any non-trivial planar space S satisfying condition (I) satisfies also
condition (%), and so is a generalized projective space; moreover, since S is
necessarily the smallest linear subspace containing two planes intersecting in
a line, § is 3-dimensional.

Note that the condition obtained from (I) by deleting the words "inter-
secting in a line", though apparently stronger than (I) is equivalent to (I).

Two problems arise now in a natural way : is it possible to classify the
non-trivial planar spaces which satisfy the condition obtained from (I) by
replacing "intersecting in a Tine" by "intersecting in a point" (resp. by
“having an empty intersection"”) ? This is the subject of the following two

theorems, concerning finite planar spaces.
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points would allow us to rule out the rather uninteresting cases (c¢) and (d),
and to shorten the proof a little bit.

Proof of the theorem

The proof is divided into a series of lemmas. The planar space PG(4,1)
obviously satisfies the hypotheses and we shall always assume in what follows
that S # PG(4,1)

Lemma 9.1. If each of the two planes N' and N" intersects a third plane N in
exactly one point, then 1 N NI' =1 N 0" =10' n 0",

Proof. Suppose first that 1 n ' = {x'} and 1 n 1" = {x"} where the points x'

and x" are distinct. By condition (II), every line of n' passing through x'
intersects m" in a point, and so ' n 0" is a line L. Condition (II), applied

to the pair of planes {n,n'} (resp. {n,n"}), shows that any 1ine of n" (resp.

n') intersecting L passes through x" (resp. x'), which implies that n' = L u (x'}
and 1" =L u {x"}. If there is a point x ¢ 1 u L, the Tine <x,x"> must intersect
n' = Lu {x'}, a contradiction. Therefore S = 1 u L.

Let y be a point of L and let A be a line of n passing through x" and
distinct from <x',x">. Since m n n" = {x"}, the lines A and L are not coplianar
and the plane o = <y,A> intersects n' in the point y only. By condition (II),
any line of 1 intersecting A (hence «) must intersect n', and so must contain
x'; it follows that n = AU {x'}. Similarly, n = B u {x"} for any line B of 11
passing through x' and distinct from <x',x">. Therefore nm contains only three
points x, x' and x". If L has at least three points y, y' and y", then the line
{x',y"} intersects the plane {x", x', y'} but not the plane {x", X, y}, and
condition (II) is not satisfied. Therefore L has size 2 and S = PG(4,1) contra-
dicting the initial assumption.

This proves that x' = x". By condition (II), any line of n' intersecting
n' n n" must intersect 1, which implies that n' n 1" = {x'}.

A maximal set of planes having the property that any two of them inter-
sect in the point x only will be called a direction of planes with top x. It
follows from Lemma 9.1. that any plane 1 belongs to at most one direction,
denoted by dir n. The top of dir m will also be called the top of m and a top
in S.

Corollary 9.1. If dir Nl contains at least three planes with top X, then all
the lines passing through X and belonging to a plane of dir 1 have the same

size.
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Proof. If M, n' and n" are three distinct planes of dir nn and if L (resp. L')
is a line of 1 (resp. n') passing through x, Lemma 9.1. implies that the plane
<L,L'> intersects n" in a line L". By condition (II), any line intersecting L"
and L (resp. L" and L') in two distinct points must intersect L' (resp. L),
and so L and L' have the same size. The corollary follows easily.

Lemma 9.2. For any point X of S, the residue Sx of x 18 one of the following
(1) a projective plane (possibly degenerate)

(i1) a punctured projective plane

(ii1) an affine plane with one point at infinity

(iv) an affine plane.

Preef. Two planes of S intersect in x (and in x only) iff the corresponding

lines of Sx are disjoint. Therefore Lemma 9.1. implies that if L and L' are

two disjoint lines in Sx’ any line of Sx intersecting L in one point must also

intersect L' in one point. In other words, the linear space Sx is a semi-affine

plane. Since S is assumed to be finite, Sx is finite and we know by (16 ) that

Sx is either an affine plane, or an affine plane with one point at infinity,

or a punctured projective plane, or a (possibly degenerate) projective plane.
The finiteness assumption is essential here : indeed, Dembowski has cons-

tructed infinite semi-affine planes which are not of the four types described

above [[30] .

Note that Sx is always an affino-projective plane, except if Sx is a degenerate

projective plane. Note also that Sx is a (possibly degenerate) projective plane

iff x is.not a top in S.

Corollary $8.2. If Sx 18 an affino-projective plane of order k, then X has
degree k in every plane with top X.

Proof. 1t suffices to observe that a plane with top x corresponds to a line
of Sx having at least one disjoint line in Sx’ that is a line of size k in Sx.

Lemma 9.3. If S comtains a point X such that Sx is a degenerate projective

plane, then S is of type (c).

Proof. The hypothesis implies that S is the union of a plane I and of a line
A intersecting n in x. Let z be a point on A, distinct from x. Since S =1 U A,
every line passing through z intersects 1. Therefore the plane 1 is isomorphic
to Sz and, by Lemma 9.2 , I is a semi-affine plane.

Suppose that there are two points z and z', distinct from x, on the line
A. The plane 1 contains two intersecting lines L and L' not passing through x
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(except if m is a degenerate projective plane in which all lines through x
have size 2, but in this case S is a 3-dimensional generalized projective
space and condition (II') is not satisfied). If n contains either a point
yéLUL" U {x} oraline L" intersecting L' but not L, then the planes
<L,z> and <L',z'> intersect in the point L n L' only, and either the line
<y,z'> or the line L" intersects <L',z'> but not <L,z>, in contradiction
with (I1). Therefore the semi-affine plane n has no such point y and no

such Tine L", and so 1 is necessarily a degenerate projective plane with 4
points, in which x is of degree 2. Denote by B the line of size 3 in 1 and
by x' the point of degree 3 in n. Then S = <A,B> U {x'} and Sx. is isomorphic
to <A,B>. It follows that <A,B> is an affine plane of order 2 with the point
x at infinity, and so S is of type (c).

Therefore we may assume that A is a line {x,z} of size 2. Then S = 1 U {z}
and all Tines through z have size 2. If 1 is a (possibly degenerate) projec-
tive plane, then S is a 3-dimensional generalized projective space and condi-
tion (II') is not satisfied. Therefore the semi-affine plane 1 is either a
punctured projective plane, or an affine plane with one point at infinity,
or an affine plane, and the Lemma is proved.

From now on, we shall always assume that there is no point x € S such
that Sx is a degenerate projective plane.

Lemma 9.4. If S contains a point X such that SX 18 an afftine plane o order k
with ene point at infinity, then S is obtained from PG(3,k) by deleting an

affino-prejective plane which 1s neither projective nor punctured projzcetive.

Proof. Denote by L_ the line of S corresponding to the point at infinity of
Sx, by y any point of L_ distinct from x, and by 1 any plane passing through x
and not containing Lm. S is the union of L, and of all planes of dir . There-
fore any line through y intersects at least one (hence every) plane of dir 1,
and so we define an isomorphism between Sy and I by mapping any line passing
through y onto its point of intersection with M. Therefore I is a semi-affine
plane (distinct from a degenerate projective plane). By Corollary 9.2 , x has
degree k in M, and so either N has order k-1 or T is an affine plane of order
k with the point x at infinity.

If T is a projective plane of order k-1, then all lines of S distinct
from L_ and passing through x have size k. Let T_ be a plane of S containing
L, and let H: denote the linear space induced on n_ - (L_ - (x}) by the linear
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structure of n_. Since I intersects every plane of dir I in a line through x
and since every line of N_ not passing through x intersects each of the k
planes of dir I in a point, all the lines of the linear space n: have size k.
The degree of x in n: is k & |dir n|, and so n: is a projective plane. On the
other hand, the lines of n_ passing through y induce pairwise disjoint lines
in 1%, a contradiction.

If the semi-affine plane I has order k-1 and is not a projective plane,
then 1 contains a line L of size k-1 not passing through x. Let My = <Ly>
where y # x is a point of L_. The intersections of m with the planes of dir 1
form a partition a; of my - {y} into k lines of size k-1 = [L[. On the other
hand, the lines of ny passing through y define a partition By of My - {y}
into k-1 lines of size k. Let L' ¢ 4, U.4, be a line of ny. By condition (II),
L' intersects each of the lines of 4,, which is impossible since L' ¢ Ap.

Therefore every plane n containing x but not L_ is an affine plane of
order k with the point x at infinity. Since any line of § distinct from L_
is either contained in some plane of dir n or intersects every plane of dir n
in a point, the lines of S distinct from L_ have size k+] or k according as
they intersect L_ or not. Moreover, the planes of S containing x have exactly
kz points outside L_ and the planes not containing x intersect the planes of
dir 1 in k pairwise disjoint lines of size k. Therefore, in the planar space
of k3 points induced on S-L_, all lines have k points and all planes have k?
points. In other words, S-L_ is a planar space of k3 points in which all
planes are affine planes of order k. If k=2, S-L_ is the unique Steiner system
5(3,4,8), that is the affine space AG(3,2). If k=3, S-L_ is the unique Hall
triple system of 27 points [36], that is the affine space AG(3,3). If k > 4,
then by (I5) , S-L_ is the affine space AG(3,k).

It follows that S is obtained from an affine space AG(3,k) by adding a
line at infinity L_ to a direction of parallel planes. Using the classical
process of completion by points at infinity we conclude easily that S is
obtained by deleting from PG(3,k) an affino-projective plane (which is neither
projective nor punctured projective since L_ contains at least 2 points).

Corollary 9.4. (i) If S contains a point X such that Sx 16 an affine plane
with one point at infinity, then for any top ¥ in S, Sy 18 also an affine
plane with one point at infinity.

(i1) If S contains a point x such that Sx 18 an affine plane,

then X tg the only top in S.

- 79 -



I11.7

Proof. (i) is an immediate consequence of Lemma 9.4. In order to prove (ii),
suppose on the contrary that there is a top y # x in S. By (i), Sy is not an
affine plane with one point at infinity, and so, by Lemma 9.2., Sy is either
an affine plane or a punctured projective plane. In both cases, the line <x,y
is contained in a plane 1m with top y. On the other hand, there is in Sx a line
disjoint from the line My of Sx corresponding to m, and so n is a plane with
top x. Therefore I has two distinct tops x and y, in contradiction with Lemma
9.1.

Lemma 9.5. If S contains a point X such that Sx 18 a punctured projective plan
of order k or an affine plane of order k, then every plane N with top X is an
affine plane of order k with the point x at infinity.

Proof. Let ' # 1 be a plane of dir I and let y # x be a point of n'. By condi-
tion. (II), all the lines passing through y and disjoint from I are included ir
m'. Therefore if we map each line of S passing through y and intersecting I
onto its point of intersection with I, we define an isomorphism between I and
the linear space induced by S.y on Sy - (n} - Ly) where n} is the Tine of Sy
corresppnding to the plane 5’ and Ly is the point of Sy corresponding to the
line L = <x,y>. Thanks to Corollary 9.4., we know that Sy is either a projec-
tive plane or a punctured projective plane. If |dir | > 2, then all lines of
n passing through x have the same size by Corollary 9.1. If |dir | = 2, thensx
must be an affine plane of order 2 and Corollary 9.4. implies that Sy is a pre-
Jjective plane. Therefore, in any case, n is an affine plane with the point x
at infinity and, by Corollary 9.2., the order of 1 is k.

Lemma 9.6. If S contains a point X such that Sx i8 an affine plane of order Kk,
then S i8 obtained from PG(3,k) by deleting a punctured projective plane of
ordar K.

Proof. By Lemma 9.5. and condition (II), the lines of S have k+1 or k points
according as they contain x or not, and the planes of S have k2+1 or k2 points
according as they contain x or not. Therefore S - {x} is a planar space of k3
points in which all lines have k points and all planes have k2 points. By the
same arguments as in the proof of Lemma 9.4., we conclude that S - {x} is an
affine space AG(3,k) and that S is obtained from the projective space PG(3,k)
by deleting a punctured projective plane of order k.
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affine planes of order 3 or planes of 13 points consisting of three concurrent
lines of size 5 (all the other lines having size 3). We denote by Sﬁ the linear
space obtained from SH by replacing every line of size 5 by 10 lines of size 2.
Let F9 be the affine plane induced on Sﬁ by a plane intersecting Sﬁ in 9 points
and Tet x be a point of Sﬁ - F9 which is on at least one line of size 3 inter-
secting Fg. The smallest linear subspace of SH containing_F9 and x has exactly
18 points and is a Fischer space, denoted by F18‘ SIB is the planar space
induced by PG(3,4) on the set of points of Fig-

In order to define Sg¢, Tet H' be a Hermitian quadric in PG(3,4) having
exactly one singular point s (for instance, the quadric of equation
Xy + Xy + zz = 0). The planar space induced on H' by PG(3,4) has lines of size
3 or 5, and its planes are either affine planes of order 3 not passing through
s or planes of 13 points consisting of 3 lines of size 5 concurrent in s (all
the other lines having size 3). 536 is the planar space induced by PG(3,4) on
H' - {s} and F36 is obtained from 536 by replacing every line of size 4 by 6
lines of size 2.

We still need a notation for five small spaces satisfying (III) and (III').
The space K; is obtained from PG(2,2) by taking as points the points of PG(2,2),
as lines the pairs of points and as planes the lines of PG(2,2) and their com-
plements. The planar space of 6 points in which all 1ines have size 2 and which
contains 0, 1, 2 or 3 planes of 4 points (all the other planes having 3 points)
will be denoted by Kg, K%, KE and Kg . It is easy to check that these spaces

are uniquely determined by the above properties.

Statement of the theorem.

We shall first prove two fundamental Temmas. In what follows, S denotes
always a finite planar space satisfying (III) and (III').

Lemma 10.1. For any plane T of S and for any point X € S - 1, there is at
most one plane passing through X and disjoint from I.

Proof. Suppose on. the contrary that x is on two distinct planes n' and 1"
disjoint from . Let L be a line passing through x, contained in n' but not

in 1". Since L intersects 1", condition (III) implies that L must intersect 1,
a contradiction.

A maximal set of pairwise disjoint planes will be called a direction of
planes, provided there are at least two planes in it. By Lemma 10.1, a plane In
either intersects any other plane or is in exactly one direction, denoted by

dir 1.
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We can now state our main result :

Theorem 10 [25] If S is a finite planar space such that
(II1) for any two disjoint planes N and N', every line intersecting Nl intersects
1'[!
and (I11') there are at least two disjoint planes
then one of the following occurs :
(a) S is obtained from PG(3,k) by deleting a line,
(b) S s obtained from PG(3,k) by deleting an affino-projective (but not affine)
plane of order Kk,
(¢) S= S36 »
() S = Sg »
(e) S is a space S, of 7 points lying on 3 concurrent lines of size 3, all the
other lines having size 2, in which the planes either have only 3 points or
are unions of two lines of size 3,
vl 0 1 2 3
(f) S = K75 Kgs Kgs Kg or Kpo s
(g) S has only one direction of planes and s-S® contains at least four non-

eoplanar points.

We do not know whether there is a finite planar space of type (g).

The proof will be divided into three main parts : we shall first handle
some small exceptional spaces (types (e) and (f)), then we shall classify the
spaces having at least two directions of planes (types (b) and (c)) and finally
we shall examine the spaces having exactly one direction of planes (types (a),

(d) and (g)).

3.1. Small exceptional spaces

Lemma 10.3. If S contains two disjoint planes 1 and T’ such that S = 1 U n',
then S 18 the union of any two disjoint planes (in particular, every direction

has exactly two planes).

Proof. Suppose on the contrary that M and Hi are two disjoint p1ane§ of S

such that there is a point x ¢ my v ni. We may assume without loss of generality
that x € n. Then for any point y € My N n', the line <x,y> has size 2, and so
<X,y> is disjoint from ni, in contradiction with (III).

Proposition 10.1. If S contains twe disjoint planes T and ' such that S =1 U II',

then S1is the affine space AG(3,2), K;, Kes Ké, Kg or Kg :
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1.3) Suppose finally that n N, is a point t and that ni n Hé is a point
= %o
ni nn, = Y are lines. Suppose that X has at least three points x,x',x"

and let y,y' be two points of Y. If there is a transversal plane

z. Then Mys Hi, My, né are degenerate projective planes and MmN

I = {X,y,z} not containing t, then the planes <x',y',t> and <x",y',t> must
intersect m by Lemma 10.3, and so {x',y',z,t} and {x",y',z,t} are
distinct planes, a contradiction since they have three non-collinear
points in common. Therefore, any transversal plane contains t and
<X,Y,2>= <X,Z,t> = <x,z,y'>, a contradiction. This shows that X (and
similarly Y) has size 2. Hence S has exactly 6 points and all lines
have size 2. Since the union of two disjoint planes contains at least

6 points, S will automatically be the union of any two disjoint planes.
It isa trivial exercise to check that there are exactly 4 non-isomorphic
planar spaces of 6 points in which all lines have size 2 and which
satisfy conditions (III) and (III') (they have respectively 0, 1, 2 or
3 planes of 4 points).

2) In order to complete the proof, it remains to show that the case where S
has only one pair of disjoint planes 1 and ' such that S =1 U ' leads to
a contradiction.

Suppose first that I and ' are two projective planes (possibly degenerate).
If there is a plane intersecting T in a line A and ' in a Tine A", let a € 1I-A
and a' € M'-A'. The planes <A,a'> = A U {a'} and <A',a> = A' U {al} are disjoint,
a contradiction. Hence there is no plane intersecting both I and 1" in a line.
Let L (resp. L') be a 1ine of T (resp. ') and let x € n-L, x' € n'-L". The
planes <L,x'> = L U {x'} and <L',x> = L' U {x} are disjoint, a contradiction.

Therefore we may assume that 1 contains two disjoint lines A and B. If
there is a plane a containing A and intersecting 1' in only one point x', then
every plane B # II containing B must intersect «, and so must contain x', a
contradiction because two such planes 81 and 82 would have three non-collinear
points in common. Therefore the planes SRR # I containing A intersect '
by F
containing B intersect 1' in lines By, ..., B& partitioning M'. Since 7 and '

in lines Ai, ey Aﬁ partitioning T'. Similarly, the planes s oo

are the only two disjoint planes of S, any line A% intersectseach line Bj, and
so there is no line in ' which is coplanar with A and also coplanar with B.
For the same reason, there is no line in Il which is coplanar with Ai and alsc
coplanar with Aé, a contradiction since A is coplanar with AE and with Aé.

From now on, we shall assume that S is not the union of two disjoint planes.
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Proposition 10.2. If there is a plane 1 § dir N, intersecting 1, in only one
point X, them S = 37.

Proof. Let Hi # My be any other plane of dir my- By .Lemma 10.2, 51 is contained
in My v n] (which implies that dir My = {0y n] }), and so 1 is a degenerate
projective plane. Let y be a point outside My v n1 (hence outside 11). By condi-
tion (III), the line <x,y> intersects ni in a point x' ¢ L' =1 n Hi’ and, by:
Lemma 10.2, the plane <L',y> intersects Iy in a line L not containing 'x. Thus
the plane 1’
10.2.1. If there is a line L" disjoint from n u ', then Lemma 10.2 implies

that the planes through L" which are not disjoint from 5 intersect 51 in disjoint
lines, which is impossible since 1 is a degenerate projective plane. Therefore
all lines passing through y intersect n or n', and so, by (III), intersect 1

and 1'.

<x',L> is disjoint from 7 and is isomorphic to 5 by Corollary

If L contains at least three points u, v, w, let u' = L' n <u,y>,

vi = L' n<v,y>, w' = L' N <w,y>. The planes o = <x,u,w'> and o' = <x',u',v>
are two disjoint planes of 3 points and the line <v,v'> intersects o' but not
a, S0 that condition (III) is not satisfied. Therefore the lines L and L' have
size 2 and y is on exactly 3 lines.

If the line <x,y> contains a fourth point x", then the planes <L',x"s> and
<L',x> = I have a 1ine in common and are both disjoint from n' = <L,x'>, con-
-tradicting Lemma 10.1. The same argument shows that the 3 lines passing through
y have size 3, and so S = 57.

From now on, we shall assume that S # S7 so that, by Proposition 10.2,
any plane not belonging to a direction dir 1 intersects all planes of dir 1
in a line.

3.2. Suppose that there are at least two directions of p1anes dir Iy and dir M.

By Lemma 10. 2 and Corollary 10.2.2, the set of lines n1 n H%, where
Hl € dir L and Hz € dir Mys is a partition of s* and will be denoted by

§(my N 1,).

Lemma 10.4. If a plane N intersects a line of 6(H1 n HE) in a single point,
then N intersects every line of G(HI n HZ) in a single point and * =105
is an affine plane of order k = [dir Iy| = [dir m,].

Proof. The intersections of the planes of dir My (resp. dir 1,) with 1% define
a partition 81 (resp. 52) of 1* into lines of S. Note that & # 85 otherwise
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™ would not intersect a line of a(n] n nz) in a single point. If L* s any
line of 1* not in 8 (resp. not in 52) condition (III) implies that L* inter-
sects every line of 8y (resp. 62) There is a line of 81 which is not in P
since this Tine must intersect every line of 8os 6 and 89 have no line in
common Therefore, if L is any line of 8 (i = 1,2) and if L* is any line

of m® not in 64 U 85, we have

Lyl = |8 = ¥ = 1871 = L,|
and so all lines of n* have the same size
k= |8;] = [dir ny| = [8,] = [dir |
Moreover,

] = Jsy] -] =

x

and so 1" is an affine plane of order k.

Since every plane of dir m, is partitioned into k = |dir M| Tines of
6(H 2), since n* intersects such a plane in a line of size k and since
i* contains no Tine of s(n] n 1,) (because §; N §, = P), we conclude that n*

intersects every line of G(n] n nz) in a single point.

The planes of S (or S*) intersecting every line of d(ﬁ1 N m,) will be
called transversal and those containing a line of S(H] n HZ) will be called
non-transversal. Note that any plane of S is either transversal or non-trans-
versa1. For any triple of non-coplanar lines L, L', L" € 6(n] N 1n,), the
product |L|.|L'|.|L"| counts the total number of transversal planes in S.

It follows that all lines of.é(n] n Hz) have the same size &. Since I (resp.
,) is partitioned into k Tines of size 4 by its intersections with the planes
of dir T, (resp. dir n]), we have

Iyl = m,l = ke (1)

|dir m,| . |myf = k%2

and |S¥|

Lemma 10.5. S = S* 18 a linear subspace of S, and any transversal plane T of S
has at most k-1 points outside s*,

Proof. By condition (III), any line intersecting a plane of dir i intersects
every plane of dir my- It follows that, for any point x € 1-1*, the set of

all lines passing through x and intersecting 1* determines a partition of n*
into lines, i.e. a parallel class in the affineplane n*. Therefore, if x and
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y are any two points of s-s*, the line <X,y> must be disjoint from s*. This
proves that s-s* is a linear subspace of S. Since there are k+1 parallel
classes in n* and since at least two (induced by dir.n1 and dir 1,) are also
classes of pairwise disjoint lines in I, there are at most k-1 points in n-n*.
Note that the planes of S are not necessarily the smallest linear sub-
spaces containing three non-collinear points. On the contrary, if x, y, 2
are non-collinear points in s-s%, it follows from Lemma 10.2 that the plane
<X,y,z> of S intersects s* in a plane of %,

Proposition 10.3. If =k, then S is obtained from a 3-dimensional projective
space PG(3,k) by deleting an affino-projective (but not affine) plane of order
k.

Proof. If 2=k, then s* is a planar space of k3 points ih which all lines have
k points and all planes have k2 points, hence s* is the 3-dimensional affine
space AG(3,k). Indeed, by (I 5 ) if k = 2, s® is the unique Steiner system
5(3,4,8), that is the affine space AG(3,2); if k = 3, s* is the unique Hall
triple system of 27 points, that is the affine space AG(3,3); if k » 4, s*

is the affine space AG(3,k).

On the other hand, if the linear subspace S - s* contains three non-
collinear points x, y, z, then the planes containing <x,y> and those containing
<X,z> induce two distinct partitions of the affine space s* into classes of
parallel planes, but these partitions have the plane <x,y,z> N s* in common,
a contradiction. Therefore S - S* is either empty, or a point, or a line of
size at most k-1, and the lemma is proved.

From now on, we shall assume g # k, so that any transversal plane 1 inter-
sects all the other planes of S (otherwise I would belong to a direction dir T
of planes of S with |dir ]| = 2 and, by appTying'to dir 1 and dir 1 the argu-
ments used in the proof of Lemma 10.4, we would get ¢ = k).

Lemma 10.6. For every transversal plane N, the number of planes of S whose
intersection with N 18 disjoint from s* {8 a constant ¢ independent from 1,
and

(2-1)[28 + 2 +1 = (K& + k) - K2(2-K)]

(9]
1]

i

(a=1)[b" + v'(g+1-k) - £ r'l
xen-n* X

where y' (resp. b') denotes the number of points (resp. the number of lines)

of the linear subspace n-n* and r; denotes the degree of x in n-rn*.
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Proof. Since every non-transversal plane intersects m* in a line, any plane

of S whose intersection with 1 is disjoint from s¥ is necessarily a trans-
versal plane. The total nimber of transversal planes distinct from 1 is 23~1.
The number of transversal planes intersecting m™ in one line (resp. one point)
is (k2+k)(2-1) (resp. kz(z-l)(z-k)), since any line (resp. any point) of ™ ds
in exactly 2-1 (resp. 22-1) transversal planes distinct from n. Hence the number
of planes of S intersecting I outside s* is equal to

c= (e-N)(22 + 2+ 1) - (K& +K) - KE(2k)]

which is clearly independent of the choice of the transversal plane 1.

Let L be a line of n-m* (if there is one). Since the planes containing L
intersect I in pairwise disjoint lines, the number of planes intersecting I
in L is &=1. Therefore the number of planes intersecting n in a line outside
™ is equal to (2-1)b'.

Now let x be a point of n-n* (if there is one). Any plane of S disjoint
from n* intersects My in a line disjoint from I n m, and, for any line A of m,
disjoint from I N s the plane <A,x> is disjoint from it (otherwise it would
intersect T in a line intersecting T N My @ contradiction). Hence the number
of planes through x which are disjoint from m* is equal to the number of lines
of H1 which are disjoint from I N H], that is (2-1)(%+1-k). Therefore the
number of planes whose intersection with 1 is the point x is equal to
(2—1)(£+1-k-r;). It follows that

¢ = (2-1)(b' + v'(2+1-k) - r')

xen-n* X
Corollary 10.6. If some transversal plane N contains at least one line of

S - S*, then every transversal plane of S contains at least one line of S = s%,

Proof. Let x, y € n-1*. We have seen that the number of planes of S passing
through x (resp. y) and disjoint from m* is equal to (2-1)(2+1-k), and that
the number of planes of S intersecting ® in the line <x,y> is 2-1. Therefore

c 2 2(2=1)(a+T=k) = (2=1) > (2+1)(2+1-k)

since 2 > k. The existence of a transversal plane of S contained in s* or
having a single point outside s* would imply ¢ = 0 or ¢ = (2+1)(2+1-k), a

contradiction.
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Lemma 10.7. Any non—-transversal plane H? of S belongs to a unique partition
dir H? of s into non-tramsversal planes. The set of all planes of S whose
intersections with S are the planes of dir H? will be called the pseudo-

.. . A
direetion dir Hi‘

Proof. Let 1™ be a transversal plane of s*. 1f n? € dir s the lemma is obvious.
If n? g dir s n? is partitioned by its intersections with the planes of

dir IIl into k lines belonging to 6(n] n nz). Since all these lines intersect

n*, N m* is a line of n*. On the other hand, every line of m® §s in a

unique plane containing a line of ds(I[.l n Hz), that is in a unique non-trans-
versal plane. Therefore n? belongs to a partition of s* into k pairwise dis-
joint non-transversal planes, each of which contains one of the k parallels

to n? n 1™ in the affine plane n*. Such a partition is clearly unique.

Proposition 10.1. If 3 # k, then S = S* = Sqg -

Proof. Suppose on the contrary that S - s* is non-empty. A point x € S - s*
cannot belong to two non-transversal planes Iy and nj whose pseudo-directions
are distinct, because m; N nj is a line of d(n1 n nz) included in S* .
On the other hand, any line through x intersecting s* is contained in a unique
non-transversal plane. Therefore x belongs to the planes of exactly one pseudo-
direction dir* - We shall say that x and dir* n; are assoctated. Obviously,
all the points of S - s* associated with a given pseudo-direction are collinear.
Suppose first that all points of S - S* are associated with the same pseudo-
direction dir* - Then the points of S - s* are collinear (this includes the
case where |S - S*| = 1), and so there is a transversal plane I having exactly
one point outside s*. Hence, by Lemma 10.6, ¢ = (2-1)(2+1-k). Since k # 2+
(because ¢ # 0), there is a line A of m disjoint from 1 n M- The number of
transversal planes through A is |n1|/k = ¢ and the number of transversal planes
through A intersecting m in a line is k-1. Therefore, since any two transversal
planes have a non-empty intersection, the number of transversal planes through
A intersecting 1 in exactly one point is £-(k-1). By counting in two ways the
number of pairs (y,x) where y is a point of  and a = <y,A> we get

2

KE+ 1 =k+ (k-1)k + 2 = k + 1

which implies ¢ = k, a contradiction.
This proves that S - s* contains two points associated with distinct
pseudo-directions. If all the points of a line Li of S - S* are associated

X

with a pseudo-direction dir Mss let x be a point of S - s* associated with
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another pseudo-direction dir* nj' Then Li is the intersection of the plane
<XsLy> with each plane of dir® ;- Since the planes of dir* n; induce a
partition of S*, the_p]ane <x,Li> must be disjoint from X , a contradiction.
Therefore any pseudo-direction of planes is associated with at most one point
outside S*. Since there are k+1 pseudo-directions and since dir'nI and dir )
are not associated with any point of S - S*, we have |S - S’| ¢ k-1. Since

s - S* contains at least one line (all of whose points are associated with
distinct pseudo-directions), there is a transversal plane having at least one
line outside S*. Therefore, by Corollary 10.6, every transversal plane has at
least one line outside SX. It follows that the number n of pairs (m,L), where
n is a transversal plane and L a line of n-n*, is not less than the number ¢
of transversal planes and is equal to ¢ times the number of lines in S - %,
that is

23 < n g a(k-1)(k-2)/2 (3)

On the other hand, the degree g+1 of a point in My cannot be less than the
size k of some of the Tines of Iy, and so 2% > (k-1)°, contradicting (3).

0 and, using Lemma 10.6, we get

u

We have proved that S = s*. Therefore ¢

¢ = (K2 -1 5 (k-1) KT =I)/2
Obviously, k = 2 is excluded and, for k > 3
(k-2)2 < K2 - 2k - 3 < (k-1)°
shows that k2 - 2k - 3 is not a perfect square. Therefore k = 3 and ¢ = 4.
Thus every transversal plane is an affine plane of order 3 and every
non-transversal plane consists of 3 pairwise disjoint lines of size 4, all
the other lines having size 3. If we replace each line of size 4 by 6 lines
of size 2, we get a linear space F of 36 points consisting of lines of sizes
2 and 3 and in which the smallest linear subspaces containing three non-collinear
points are degenerate projective ;ﬂanes of '3 points, punctured projective
planes of order 2 or affine planes of order 3, and so F is a Fischer space
of 36 points. Let dir My = {ys ni, n$} and Tef F6 be a linear subspace of
6 points of F contained in the plane mh of S. If X € ni, x is joined to every
point of F6 by a line of size 3, and ‘the smallest lineal” subspace of F contain-
ing x and F6 has obviously at least 6 points in each of the planes s ni and n?.
Buekenhout [10] has proved that a Fischer space having at least 18 points and
generated by a plane o isomorphic to F6 and by a point joined by a line of
size 3 to at least one point of a is necessarily either Fig OF Fag- Since x
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is joined to every point of F6 by a line of size 3, a situation which does

not occur in F18’ F is isomorphic to F36' There is a unique way to construct

9 mutually disjoint lines of size 4 from the lines of size 2 of F36 and to
provide this new linear space with planes isomorphic to those of S. The planar
space 536 constructed in this way from F36 has the required properties.

3.3. Suppose that S contains only one direction A of planes

The planes of A will be called A-planes, the Tines contained in a A-plane
will be called A-lines, and the lines intersecting all a-planes will be called
transversal lines (by condition (III), a line intersecting a aA-plane must
intersect all a-planes).

Lemma 10.8. Every A-line L contained in a A-plane 1l belongs to at least one
partition of I into lines which are coplanar with the same line of a A-plane
n' # m.

Proof. Let n' # I be a A-plane and let L' be a 1ine of n' coplanar with L. The
set of intersections of I with the planes passing through L' (and distinct
from n') is clearly a partition of m into lines, and L belongs to this parti-
tion.

Since we have assumed that S is not the union of two disjoint planes, all
a-planes are isomorphic by Corollary 10.2.1. Let v' denote the number of points
of any A-plane.

Lemma 10.9. If S = S%, then

(i) all transversal lines have stze & = |A| > 3

(i1) any two coplanar A-lines contained in two distinet A-planes have the same
size

(i11) the number P_ of planes containing a b-line L is 1T+ v'/|L|.

Proof. S = s* s partitioned by the A-planes. Moreover, |4]| > 3 because S is

not the union of two disjoint planes. This proves (i).

(i1) is a consequence of (i) and of Lemma 10.2.

Let T be a 8-plane not containing L. The planes not belonging to 4 and containing
L intersect 1 in lines of size |[L| by (ii). This proves (iii).

Lemma 10.10. If S = Si, then any two disjoint A-lines contained in the same
A-plane N have the same size.
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Proof. Suppose on the contrary that nm contains two disjoint lines A of size

a and B of size b with a > b. Let o be a plane intersecting nm in A. Any line

C of « distinct from A and coplanar with B is disjoint from A, hence C is a
sa-line and, by Lemma 10.9, C has size a (because C is coplanar with A) and C
has size b (because C is coplanar with B), a contradiction. Therefore A is the
only line of a coplanar with B, and so any plane containing B and distinct
from m intersects o in exactly one point. This, together with Lemma 10.9,
implies that

-1=v'/b=a(z-1) (4)

]

Pg

By Lemmas 10.8 and 10.9, n contains at least one line B' disjoint from B
and having size b. Let g8 # m be a plane containing B and let n be the number
of lines of g which are distinct from B and coplanar with B' (such a Tine
being necessarily a a-line, 0 < n < 2-1). Moreover, since a plane containing
B' must intersect g in a line or in a point, we have

pgt = 1 =Vv'/b=n +b(s-1-n) (5)
(4) and (5) yield
a(e=1) + n(b-1) = b(2-1) wherenzx> 0,

contradicting the assumption a > b.
Propesition 10.5. If S = s* contains two a-lines of different sizes, then S = 518'

Proof%$g > b be two sizes of a-lines and Tet 1 be a A-plane. Since all a-planes
are isomorphic, I contains a line of size a and a Tine of size b. By Lemmas
10.8 and 10.9, there is a partition of 1 into lines of size a and a partition
of 1 into lines of size b. Since a > b, any line L of n which does not belong
to any of these two partitions is necessarily disjoint from at least one line
of size b in the second partition, and so L has size b by Lemma 10.10. Moreover,
by Lemma 10.10 again, in the plane 1, every line of size b must intersect every
line of size a. Therefore 1 contains exactly v' = ab points, and every point of
m is on exactly one a-line of size a, on exactly a a-lines of size b and has
degree r' = a+] in n. It follows that the a-lines of size a partition S and are
pairwise coplanar.

Let A be a line of size a in . By Lemma 10.9, the number PA of planes
containing A is given by

Pp = 1 +v'/a = 1+b
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Let L be a transversal line disjoint from A. Each of the 2 points of L is on
a unique A-line of size a and the union of these 2 lines is a plane A.

Since & is the only direction of planes in S, every plane containing A inter-
sects the .plane A and this intersection is necessarily a A-line of size a.
Thus every plane containing A intersects the line L, and so

Py = 1+v'/a=1+b = ¢ (6)

Let x be a point of 1 and let a (resp. g) be a plane containing x and
intersecting m in a line A (resp. B) of size a (resp. b). We shall count the
number n(x,a) (resp. n(x,g8)) of planes intersecting o (resp. g) in the point
x only. Let ' # 1 be a A-plane and let A' =1' na, B' =1' N g. Since any
plane intersecting o in the point x only intersects n' in a line disjoint
from A' and since all lines of n' which are disjoint from A' have size a
and are coplanar with A, we have

n(x,a) = 0 (7)

On the other hand, the number of planes (distinct from n) containing B is
v'/b = a, the number of planes intersecting g in a transversal line passing
through x is |[B'|(r'~1) = ba, and the total number planes (distinct from n)
passing through x is equal to the number a2+b of Tines in n'. Therefore

n(x,8) = a2 +b-ba-a (8)

Since any plane of S belongs to 4 or is a (resp. g) or intersects o« (resp.
g) in a a-T1ine or intersects « (resp. 8) in a transversal line or intersects
a (resp. g8) in a single point, the total number p of planes of S is given
respectively by
2
(

la] + 1 + |al(v'/a-1) + a%(r'-1) + |a|n(x,a)

o
[}

n

[a] + 1+ ja[(v'/b-1) + bz(r'—1) + |8|n(x,8)
from which it follows, by (7) and (8), that

3

2(b-1) + a3 = g(a-1) + b%

a + bz(a2 +b=-ab - a)
Using (6), we get, after simplification by a-b # 0 and a-1 # 0 ,
b2 = a+] (9)

Let B" be a line of nn' disjoint from B'. The number of planes containing B" is
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T+v'/b=1+a =m + b(e-m) (10)

where 1 < m g ¢ denotes the number of lines of g which are coplanar with B"
By (6), (9) and (10), we get

m(b-1) = b

and som=b=2,a=2=23and |S| = 18.

Therefore every transversal line has size 3, every a-plane is the union of
two disjoint lines of size 3 and the planes not belonging to A are punctured
projective planes of order 2 or affine planes of order 3 according as thedir
A-lines have size 2 or 3. This implies that the linear space S is a Fischer
space of 18 points. Moreover, it is easy to check that the smallest linear
subspace of S containing a punctured projective plane n of order 2 and a
point x ¢ n joined to a point of n by a Tine of size 3 is S itself. Buekenhout
~[10] has proved that a Fischer space of 18 points having this property is
necessarily isomorphic to F18‘ Moreover, there is a unique way to provide
F18 with pldnes isomorphic to those of S. The planar space 518 constructed
in this way from F]B has the required properties.

Proposition 10.6. If S = s* and 1f all b-lines have the same gize a, then S is
obtatned from PG(3,a) by deleting a line.

Proof. Any a-plane 11 is a Steiner system S(2,a,v'). Thus, if we denote by b’
the number of lines of n and by r' the degree of any point in 1, we have

vi = r'(a-1) + 1 (1)

and

b' = v'r'/a (12)

Let o be a plane not belonging to A and let x € o. Counting in the same way

as in Lemma 10.14 the number n(x,a) of planes of S intersecting « in the

point x only, we have
n(x,a) = b' - a(r'-1) - v'/a (13)
and so the total number p of planes of S is
p=2a¥1+g(v/a-1)+ az(r'-l) + awn(x,a) (14)

On the other hand, every plane not belonging to a intersects m in a line and
every line of 1 is contained in exactly v'/a planes not belonging to a, so
that
p=2g+b'v/a (15)
- 96 -



[II.24

Let A" 'be a line of Il disjoint from A = 1 N a. The number of planes containing
A' is given by

1+v'/a=n+ a(e-n) (16)
where 1 < n < ¢ is the number of lines of a which are coplanar with A'.

Using (11), (16) becomes

r' = (Ra2

-a-1)/(a-1) - na (17)

which implies a-1[2-2 > 0

and so a-1 € 2-2,

On the other hand, the degree a+1 of a point in a cannot be less than the size

¢ of a transversal line, and so
a-ﬂ;g
These two inequalities imply that

g = a+l (18)
and (17) becomes
rt = a% - (n-2)a+l (19)

From (13), (14), (15), (11), (12) and (18), we deduce, after some straight-
forward computation,
2

(r'=1)(r'-a=1)(r' - a° -a) =0
and so
r' =1, a+l or a2+a
r' =1 1is clearly impossible and r' = a2+a contradicts (19). Therefore
r' = a+] and the a-planes are affine planes of order a. The planes not

belonging to A have exactly ga = a(a+1) points and are punctured projective
planes of order a. It is now a simple matter to deduce that S is obtained
fram PG(3,a) by deleting one line.

Proposition 10.7. If S # S*, then S - S* contains at least four nor.-coplanar

points.

Proof. Suppose on the contrary that S - s* is contained in a plane a.

Consider first the case where |a| = 2. Let 1 and 11' be the two a-planes.
Since any plane which is not in A intersects both 1 and 1' in a line, A= na
and A' = 1I' n o are two A-lines. The planes (distinct from 1) containing A
determine a partition of n' into lines. If this partition contains two lines
A" and A"' distinct from A', then A U A" and A U A" are two planes of S because
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every point of S - s* is in the plane «. Let x € n-A. The plane <x,A"'s must
intersect the plane A u A", but this is impossible since A and A"' are coplanar.
Therefore ' = A' U B', where B' is a line of n' disjoint from A' and A U B' is
a plane of S. Similarly 1 = A U B, where B is a line of 1 disjoint from A and

AR* Uy B is a plane of S. The planes A U B' and A' U B are disjoint, contradicting
the assumption that 1 and n' are the only disjoint planes in S.

Suppose now that |a| = ¢ > 3. Let Xys Xo be any two points of a a-plane 1.
If n' and 1" are two a-planes distinct from 1 and if x? is a point of 1", the
lines passing through xg and intersecting N determine, by Corollary 10.2.1, an
isomorphism @ from m onto nn'. Let xi = wl(x1) and let xg be the point of inter-
section of the line *X2=x3> with the plane n1". The lines passing through XE and
intersecting n' determine an isomorphism 0, from ' onto n. Since ©) o 0 is an
automorphism of n mapping Xy on X5, all points of 1 have the same degree r'.

Let A=1n « and let 2 be a plane containing A, distinct from 1 and a.
Lemma 10.2 implies that any two coplanar A-lines contained in two distinct
As-planes have the same size. Therefore, for any point x € o® = o n S* and for
any point y € g,

n(x,a) = b' - a(r'-1) - v'/a = n(y,B) (20)

where a = |A| and v' (resp. b') is the number of points (resp. of lines) in a
A-plane. Counting_in two ways the number p of planes in S, we get
2(7"-

p = o+l + 2(v'/a-1) + a 1) + |g|n(y,8)

2l + g(vi/a-1) + a’(r'-1) +la®|n(xs0) + T _n(zsa) +. £ , (p -1)
- * x ‘'L
Z€a~a Llea-a
where PL denotes the number of planes containing the line L. Using (20) and
the fact that ia*! = |g| = 2a, this implies
L n(z,a) + I x (pL-I) =0

ZCa-a* lca-o

Since n(z,a) 2 0 and PL -1 2 1 for every line L a-aX, we conclude that

n(z,z) = 0 for every point z € a-o® and that there is no Tine contaiped in

a-aX. On the other hand, by Lemma 10.8, there is a line B of 1 disjoint from

A. If z € a—q*, the plane <B,z> is disjoint from A, thus also from a*. There-
fore, either <B,z> intersects o in the point z only and n(z,a) # 0, or <B,z>
intersects o in a line contained in a-o™. In both cases, we have a contradiction.
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