VIII. Piani di traslazione di ordine q², q pari, che hanno 2-sottogruppi di Baer di ordine maggiore di q^{1/2}.

Sia π un piano di traslazione di ordine $p^{2r}=q^2$, $q=p^r$, p un primo. Supponiamo che π abbia collineazioni di Baer di ordine p (nel complemento di traslazione).

Foulser [12] ha studiato questa situazione quando p > 2.

(8.1) Teorema (Foulser).

Sia B il gruppo che è generato dai p-elementi di Baer nel complemento di traslazione di un piano finito di traslazione π. Allora, per B si hanno le seguenti possibilita:

- (1) B é abeliano elementare,
- (2) Bèisomorfo a $SL(2,p^r)$ dove l'ordine di π è p^s e r|s,
 - 3) B è isomorfo a SL(2,5) e p=3.

Inoltre, se p > 3, tutti i sottopiani di Baer (corrispondenti) sono sulla stessa rete D di ordine $p^{S/2}+1$ e non si incrociano. Se p = 3 e se c'è un p-gruppo di Baer di ordine ≥ 9 i sottopiani di Baer sono sulla stessa rete D di ordine $p^{\Gamma/2}+1$ e non si incrociano.

Se p = 2, la situazione è differente. Per esempio, ci sono due piani di traslazione di ordine 16 che ammettono PSL(2,7) dove le involuzioni sono di Baer (i piani di LorimerRahilly e Johnson-Walker (si vedi [43])). Inoltre, il piano di ordine 16 di Dempwolff (si veda anche [43]) ammette SL(2,4) e i sottopiani di Baer che sono fissati da involuzioni non sono sulla stessa rete di ordine 4+1.

Eppure, per dimensione 2,

(8.2) Teorema (Johnson, Ostrom [48]).

Sia π un piano di traslazione \vee $q^2 = 2^{2r}$ con nucleo $K \cong GF(q)$. Sia $\mathscr G$ un gruppo di collineazioni nel complemento lineare e supponiamo che tutte le involuzioni siano di Baer. Se $\mathscr G$ non è risolubile allora c'è un sottogruppo di $\mathscr G$ che è isomorfo a $SL(2,2^s)$, s|r. Inoltre, se $\mathscr G$ è riducible allora ogni 2-sottogruppo di Sylow fissa un sottopiano di Baer (cioè, fissa ogni punto) e tutti i sottopiani di Baer sono sulla stessa rete $\mathscr D$ di ordine 2^r+1 e inoltre $\mathscr D$ è derivabile.

Recentemente, Dempwolff [9], 1982, ha studiato il problema di determinare i gruppi che sono generati da grandi 2-gruppi di Baer.

Cioè, sia $\mathscr G$ un sottogruppo nel complemento di traslazione di un piano di traslazione π di ordine pari $q^2=2^n$. Diciamo che un \underline{B} -gruppo in $\mathscr G$ è un qualunque 2-gruppo E dove $|E| \to \sqrt{q}$ e Fix(E) è un sottopiano di Baer. Allore, sia Σ il sistema dei B-gruppi in $\mathscr G$ con ordine massimo. Sia $\mathscr G^*=\langle \Sigma \rangle$.

Dempwolff [9] ha provato il seguente teorema:

(8.3) Teorema (Dempwolff).

Assumiamo che $\mathscr{G}^* \neq \langle 1 \rangle$. Sia N il sottogruppo generato dalle elazioni. Allora, abbiamo l'uno o l'altro, se n ≥ 4 .

- (i) n=4, $g^*\cong SL(3,2)$ e π deve essere uno dei piani di Lorimer-Rahilly o Johnson-Walker di ordine 16.
- (ii) $N \subseteq Z(g^*)$ e quindi N deve essere un gruppo di elazioni con asse singolo \mathcal{L} . Inoltre, sia $g^* = g^*/N$. Allora, per g^* abbiamo una delle seguenti possibilità:
- (a) $\mathscr{G}^{\bigstar}\cong SL(2,2^{\mathbf{S}})$ per $2^{\mathbf{S}}\geq |E|$ (E è un 2-gruppo di Baer di ordine massimo).
 - (b) g[∗] è un gruppo abeliano elementare.
- (c) $g^* \geq \overline{M}$ dove \overline{M} è un sottogruppo normale e abeliano elementare di ordine q e $g^*/\overline{M} \cong D_{2r}$ per r dispari. Se $N = \langle 1 \rangle$ allora g^* centralizza un sottopiano di ordine \sqrt{q} e se $N \neq \langle 1 \rangle$ allora g^* centralizza una sottoretta di \sqrt{q} punti.

(8.4) Definizione.

Sia π un piano di traslazione di ordine pari. Se π ammette un gruppo \mathscr{G}^* come in (8.3), diciamo che \mathscr{G}^* un gruppo di <u>Dempwolff</u>.

Possiamo provare:

(8.5) Teorema (Jha, Johnson [28]).

Sia π un piano di traslazione di ordine pari che ammetta un gruppo g^* di Dempwolff. (a) Se g^* non è risolubile allora π è un piano di Hall o un piano di ordine 16 (Lorimer-Rahilly, Johnson-Walker o Dempwolff). (b) Se g^* è risolubile e contiene un B-gruppo di ordine $\neq \sqrt{2q}$ allora g^* è un B-gruppo abeliano elementare.

Dimostrazione. Per questo teorema, si usa (4.3)(1). Se c'è un 2-gruppo B di Baer tale che |B| 2 2\sqrt{q} allora ogni gruppo di elazioni & ha ordine minore o eguale a 2.

Qui, daremo solo una traccia e solo per il caso (a) e per l'ordine > 16. Allora, per (8.3)(ii) si deve avere $N \subseteq Z(\mathscr{G}^*)$ e $\mathscr{G}^*/N \cong SL(2,2^S)$ per $2^S \ge |E|$ dove E è un 2-gruppo di Baer di ordine massimo e $|E| > \sqrt{q}$.

(8.6) Lemma.

$$\mathcal{G}^* = \mathbb{N} \cdot \mathbb{J}$$
 ove $\mathbb{J} \cong SL(2,2^s)$ e $2^s \geq |E| \Rightarrow \sqrt{q}$.

<u>Dimostrazione</u>. Si usa la teoria dei moltiplicatori di Schur (si veda [28] sezione 4 (result 1)) perché $N \subseteq Z(\mathscr{G}^*)$ e $N \in \mathbb{Z}$ abeliano. Sia $(\mathscr{G}^*)'$ il sottogruppo derivato di \mathscr{G}^* . Allora, $(\mathscr{G}^*) \cap N = \langle 1 \rangle$. Allora, $\mathscr{G}^* = (\mathscr{G}^*)' \cdot N$ e $(\mathscr{G}^*)' \cong SL(2,2^S)$.

(8.7) Lemma.

Ogni 2-sottogruppo di Sylow 4 di Jèun B-gruppo.

Dimostrazione Supponiamo che ciò sia falso. Allora, ci sono due B-gruppi in \mathcal{G} . Cioè, \mathcal{G} è abeliano elementare e contiene un B-gruppo E. Se $\sigma \in \mathcal{G}$ -E allora $Fix(\sigma)$ è un sottopiano di Baer. Ogni due involuzioni in \mathcal{G} si coniugano in J. Sia $\tau \in E$ tale che ci sia $h \in J$ con $\tau^h = \sigma$ e $h \in \mathcal{N}_{\mathsf{T}}(\mathcal{G})$.

Allora E^h fissa ogni punto di $Fix(\sigma)$. Ma, $E^h \cap E = \langle 1 \rangle$ perché E fissa ogni punto di un qualche sottopiano π_O e $\pi_O \neq Fix(\sigma)$ se |E| è massimo.

Quindi, $|\mathcal{G}| \ge |E|^2 \to (\sqrt{q})^2 = q$. Questo è una contraddizione per (7.8) perché se π è Desarguesiano allora π non ha gruppi di Baer di ordine $\to 2$.

(8.8) Lemma.

Se i sottopiani di Baer in Σ (si veda (8.3)) non si incrociano, allora sono sulla stessa rete N di ordine $2^\Gamma+1$. Allora, J fissa tutte le componenti di N.

Dimostrazione. (Si veda Foulser-Johnson [15].)

(8.9) Lemma.

J deve fissare una componente.

Dimostrazione. Per (8.8), si può assumere che i sottopiani di Baer si incrocino. Ma, J è generato da due 2-gruppi di Sylow e per (8.7), ogni 2-sottogruppo di Sylow è un B-gruppo

Allora, J deve fissare una componente \mathscr{L} .

(8.10) Lemma.

Sia $U \subseteq J$ di ordine 2^s-1 . Siano B_1, B_2 due 2-gruppi di Sylow che sono normalizzati da U. Per ogni gruppo B_i , c'è un sottopiano π_i di Baer tale che ogni punto di π_i è fissato da B_i . Inoltre, U agisce fedelmente su π_i , i=1,2.

Dimostrazione. Sia $g \in U$ un elemento che fissa ogni punto di π_1 . Allora, per un qualche elemento h, g^h fissa ogni punto di π_2 e quindi fissa π_2 . É chiaro che anche g^h è in U. Ma, $|\langle g \rangle| = |\langle g^h \rangle|$ e U è un gruppo ciclico. Quindi, $\langle g \rangle = \langle g^h \rangle$ cosicché g = 1 $(\pi_1 \neq \pi_2)$.

(8.11) Lemma.

U fissa due componenti di π_i , i = 1,2.

Dimostrazione. π_i è Desarguesiano per Foulser [13] perché $|B_i| \to \sqrt{q}$ e l'ordine di B_i è l'ordine del nucleo di π_i . U fissa $\mathscr L$ cosicché deve fissare ancheun'altra componente $\mathscr M$ di π_i perché $U \subseteq GL(2,q)$ per (8.10).

(8.12) Lemma.

 $J \cong SL(2,2^b).$

<u>Dimostrazione</u>. Se ciò non è vero, c'è un elemento g∈U

tale che |g| = u è un divisore p-primitivo di 2^s-1 dove $\sqrt{q} < 2^s < q$. Cioè, $2^s < q$ perché se $2^s \ge q$ si può usare (7.7) e (7.8) per mostrare che π è Desarguesiano. Ma, in questo caso $|B-gruppo| \le 2$.

U permuta i punti su $\mathcal{L} \cap \pi_i$ per i = 1,2 e $|\mathcal{L} \cap \pi_i^- \{0\}| = 2^r - 1$. Se $u | 2^r - 1$ allora, $u | 2^{(s,r)} - 1$ il che implica (s,r) = s. Ma, s > r/2 perché $\sqrt{q} < 2^s$ cosicché abbiamo una contraddizione.

Quindi, un elemento g di ordine u fissa alcuni punti $\neq 0$ su $\mathcal X$ e anche su $\mathcal M$ di π_i . π_i è Desarguesiano cosicché $\hat g = g \mid \mathcal X \in \operatorname{Aut}(\operatorname{GF}(2^r))$. Quindi, $u = \mid \hat g \mid \mid r$. Sia $\mathcal M_g$ un complemento di Maschke di $\operatorname{Fix}(\hat g)$ in $\operatorname{GF}(2^r)$ e $\mid \mathcal M_g \mid = 2^t$. $\hat g$ agisce regolarmente su $\operatorname{GF}(2^r) - \{0\}$ cosicché $u \mid 2^t - 1$. Ora, non è possibile che s > t e $u \mid 2^{(s,t)} - 1$ cosicché $(s,t) \geq s$. Allora, $s \mid t$, ossia sk = t. Ma, $r > t = sk \geq s > r/2$ cosicché 2s > r > t = sk. Quindi h = 1 e $s = t = \dim(\mathcal M_g)$ su $\operatorname{GF}(2)$.

Ora, s=r-1. Cioè, sia $\hat{h}\in Aut(GF(2^r))$ dove $|\hat{h}|=r/u=v$. Supponiamo $v\neq 1$. Allora, $Fix(\hat{h})$ è un \hat{g} -modulo e

$$Fix(\hat{h}) = (Fix(\hat{h})) \cap (Fix(\hat{g})) \oplus M_1$$

dove M₁ è un complemento di Maschke di Fix(g) su Fix(h).

 \hat{g} deve fissare Fix(\hat{h}) e M_1 allora permuta i punti di $M_1 - \{0\}$ semiregolarmente. Questo implica che u $|(M_1 - 1, 2^s - 1)$

cosicché $|M_1| \ge 2^s > 2^{r/2}$, il che non è possibile se $Fix(\hat{h}) \ne \langle 1 \rangle$ a meno che $|M_1| = 1$ e $Fix(\hat{h}) \subseteq Fix(\hat{g})$. In questo caso, $|\hat{h}| = r/u$, quindi, $Fix(\hat{h}) = GF(2^u)$ e $Fix(\hat{g})$ = $GF(2^{r-s})$ (perché $GF(2^r) = Fix \hat{g} \oplus M_g$, dim. $M_g = s$, e $Fix \hat{g}$ è un sottocampo di $GF(2^r)$). Eppure, u|r-s e u|r cosicché u|s.

Ma inoltre s=r-1 e $(r,r-1) \neq 1$. Allora, $Fix(\hat{h}) = \langle 1 \rangle$ e u=r, s=r-1, |g|=r.

Quindi, $g \mid \pi_i$ fissa un sottopiano $\pi_{0,i}$ di ordine 2 cosicché U deve fissare $\pi_{0,i}$ per i=1,2. Perciò, U fissa ogni punto di $\pi_{0,i}$.

Allora U è isomorfo a un sottogruppo di automorfismi di $GF(2^r)$ cosicché $|U| = 2^s - 1 | r = s + 1$, il che implica $2 \ge s > \sqrt{q}$ —una contradizione. Per finire la dimostrazione si deve studiare il gruppo $SL(2,2^b)$. Per questo si veda [28].

Questo teorema (8.5(a)) è vero anche per piani di ordine dispari:

(8.13) Teorema (Jha, Johnson [29]).

Sia π un piano di traslazione di ordine p^{2r} , p dispari. Supponiamo che ci siano due p-gruppi \mathfrak{B}_i , i=1,2 di ordine uguale o maggiore di $p^{r/2}$ ($|\mathfrak{B}_1|=|\mathfrak{B}_2| > p^{r/2}$) e ogni gruppo \mathfrak{B}_i fissi un sottopiano di Baer π_i , i=1,2. Allora, π è un piano di Hall e $(\mathfrak{B}_1,\mathfrak{B}_2)\cong SL(2,p^r)$.