19. AN IMPROVEMENT ON THE BOUND FOR m'(2,q) WHEN q IS PRIME

THEOREM 19.1: (Voloch [20]). For a prime $p \ge 7$,

$$m'(2,p) \leq \frac{44}{45}p + \frac{8}{9}$$
.

Proof. A theorem of Segre (see [6], theorem 10.4.4) says that, for q odd with $q \ge 7$, we have $m'(2,q) \le q - \frac{1}{4}\sqrt{q} + \frac{7}{4}$ and we follow the structure of this proof.

Let \mathscr{K} be a complete k-arc with $k > \frac{44}{45}p + \frac{8}{9}$. Through each point P of \mathscr{K} there are t = p+2-k unisecants. The kt unisecants of \mathscr{K} belong to an algebraic envelope Δ_{2t} of class 2t, which has a simple component Γ_n with $n \leq 2t$. For t=1, the envelope Δ_2 is the dual of a conic, \mathscr{K} is a (q+1)-arc and so a conic. When t ≥ 2 , four cases are d stinguished.

(i) Γ_n is a regular (rational) linear component.

Here Γ_n is a pencil with vertex Q not in \mathcal{K} . Then $\mathcal{K} \cup \{Q\}$ is a (k+1)-arc and \mathcal{K} is not complete.

Here Γ_n is the dual of a conic \mathscr{C} , and \mathscr{K} is contained in \mathscr{C} , [6] theorem 10.4.3.

(iii) Γ_n is irregular.

Suppose that Γ_n has M simple lines and d double lines, and let N=M+d. Then, by [6] lemma 10.1.1, it follows that N $\leq n^2$. Also by the definition of Δ_{2t} and Γ_n , there are at least $\frac{1}{2}n$ distinct lines of Γ_n through P; so N $\geq \frac{1}{k}$ kn. Therefore $k \leq 2N/n \leq 2n \leq 4t =$

=
$$4(p+2-k)$$
. Thus $k \leq \frac{4}{5}(p+2) < \frac{44}{45}p + \frac{8}{9}$, a contradiction for $p \geq 5$.
(iv) $\Gamma_n \text{ is regular with } n \geq 3$.
Either $n=2t \leq \frac{1}{2}p$ or $t \geq \frac{1}{4}p$. When $t \geq \frac{1}{4}p$, then $k=p+2-t < \frac{3}{4}p+2 < \frac{44}{45}p + \frac{8}{9}$
for $p \geq 5$.

When
$$n \leq \frac{1}{2}p$$
, then

$$N \leq \frac{2n}{5} \{5(n-2)+p\}$$

for n \ge 5 by theorem 14.1, note (3); for n \ge 3 it follows from theorem 11.5 when we note that $n \le \frac{1}{2}p$ implies $v_i = i$ by theorem 11.4, corollary 1 (ii).

,

As in (iii), $N > \frac{1}{2}kn$. So

$$\frac{1}{2}kn \le N \le \frac{2n}{5}\{5(n-2) + p\}$$

$$k \le \frac{4}{5}\{5(n-2) + p\},$$

$$k \le \frac{4}{5}\{5(2t-2) + p\}.$$

Substituting t = p+2-k gives

$$k \leq \frac{4}{5} \{10(p+1-k)+p\},\$$

$$k \leq -\frac{4}{45} (11p + 10),$$

the required contradiction.

COROLLARY: For any prime $p \ge 311$,

. . .

$$\frac{1}{2}(p+[2\sqrt{p}]) \le m'(2,p) \le \frac{4}{45}$$
 (11p+10).

Notes: (1)
$$\frac{4}{45}$$
 (11p+10) \frac{1}{4}\sqrt{p} + $\frac{25}{16}$ for p > 47.
(2) $\frac{4}{45}$ (11p+10) \sqrt{p}+1 for p > 2017.

20. k-CAPS IN PG(n,q), $n \ge 3$.

A k-cap in PG(n,q) is a set of k points no 3 collinear. Let $m_2(n,q)$ be the maximum value that k can attain. From §19, m(2,q)= $m_2(2,q)$. For $n \ge 3$, the only values known are as follows:

$$m_2(3,q) = q^2 + 1, \quad q > 2;$$

 $m_2(d,2) = 2^d;$
 $m_2(4,3) = 20;$
 $m_2(5,3) = 56.$

See [8] for a survey on these and similar numbers. The sets corresponding to these values for $m_2(d,q)$ have been classified apart from(q^2+1)-caps for q even with $q \ge 16$.

As for the plane, let $m_2(n,q)$ be the size of the second largest complete k-cap. Then, from [9], chapter 18,

 $m'_2(3,2) = 5$, $m'_2(3,3) = 8$.

We now summarize the best known upper bounds for $m'_2(n,q)$ and $m_2(n,q)$.

THEOREM 20.1: ([7]) For q odd with $q \ge 67$,

$$m'_{2}(3,q) \leq q^{2} - \frac{1}{4}q\sqrt{q} + 2q.$$

THEOREM 20.2: ([10]) For q even with q > 2,