19. AN IMPROVEMENT ON THE BOUND FOR m' $(2, q)$ WHEN q IS PRIME

THEOREM 19.1: (Voloch [20]). For a prime $p \geq 7$,

$$
m^{\prime}(2, p) \leq \frac{44}{45} p+\frac{8}{9} .
$$

Proof. A theorem of Segre (see [6], theorem 10.4.4) says that, for q odd with $q \geq 7$, we have $m^{\prime}(2, q) \leq q-\frac{1}{4} \sqrt{q}+\frac{7}{4}$ and we follow the structure of this proof.

Let \mathscr{K} be a complete k-arc with $k>\frac{44}{45} \mathrm{p}+\frac{8}{9}$. Through each point P of \mathscr{K} there are $\mathrm{t}=\mathrm{p}+2-\mathrm{k}$ unisecants. The kt unisecants of \mathscr{K} belong to an algebraic envelope $\Delta_{2 t}$ of class $2 t$, which has a simple component Γ_{n} with $n \leq 2 t$. For $t=1$, the envelope Δ_{2} is the dual of a conic, \mathscr{K} is a $(q+1)-\operatorname{arc}$ and so a conic. When $t \geq 2$, four cases are d stinguished.
(i) Γ_{n} is a regular (rational) linear component.

Here Γ_{n} is a pencil with vertex Q not in \mathscr{K}. Then $\mathscr{K} \cup\{Q\}$ is a $(\mathrm{k}+1)-\operatorname{arc}$ and \mathscr{K} is not complete.
(ii) Γ_{n} is regular of class two.

Here Γ_{n} is the dual of a conic \mathscr{C}, and \mathscr{K} is contained in \mathscr{C}, [6] theorem 10.4.3.
(iii) Γ_{n} is irregular.

Suppose that Γ_{n} has M simple lines and d double lines, and let $\mathrm{N}=\mathrm{M}+\mathrm{d}$. Then, by $[6]$ lemma 10.1 .1 , it follows that $\mathrm{N} \leq \mathrm{n}^{2}$. Also by the definition of $\quad \Delta_{2 t}$ and Γ_{n}, there are at least $\frac{1}{2} n$ distinct lines of r_{n} through P; so $N \geq \frac{1}{k} k n$. Therefore $k \leq 2 N / n \leq 2 n \leq 4 t=$
$=4(p+2-k)$. Thus $k \leq \frac{4}{5}(p+2)<\frac{44}{45} p+\frac{8}{9}$, a contradiction for $p \geq 5$.
(iv) Γ_{n} is regular with $n \geq 3$.

Either $\mathrm{n}=2 \mathrm{t} \leq \frac{1}{2} \mathrm{p}$ or $\mathrm{t}>\frac{1}{4} \mathrm{p}$. When $\mathrm{t}>\frac{1}{4} \mathrm{p}$, then $\mathrm{k}=\mathrm{p}+2-\mathrm{t}<\frac{3}{4} \mathrm{p}+2<\frac{44}{45} \mathrm{p}+\frac{8}{9}$ for $p \geq 5$.

When $\mathrm{n} \leq \frac{1}{2} \mathrm{p}$, then

$$
N \leq \frac{2 n}{5}\{5(n-2)+p\}
$$

for $n \geq 5$ by theorem 14.1, note (3); for $n \geq 3$ it follows from theorem 11.5 when we note that $n \leq \frac{1}{2} p$ implies $v_{i}=i$ by theorem 11.4 , corollary 1 (ii).

As in (iii), $N \geq \frac{1}{2} k n$. So

$$
\begin{aligned}
\frac{1}{2} \mathrm{kn} & \leq \mathrm{N} \leq \frac{2 \mathrm{n}}{5}\{5(\mathrm{n}-2)+\mathrm{p}\}, \\
\mathrm{k} & \leq \frac{4}{5}\{5(\mathrm{n}-2)+\mathrm{p}\}, \\
\mathrm{k} & \leq \frac{4}{5}\{5(2 \mathrm{t}-2)+\mathrm{p}\} .
\end{aligned}
$$

Substituting $\mathrm{t}=\mathrm{p}+2-\mathrm{k}$ gives

$$
\begin{aligned}
& k \leq \frac{4}{5}\{10(p+1-k)+p\} \\
& k \leq \frac{4}{45}(11 p+10)
\end{aligned}
$$

the required contradiction.
COROLLARY: For any prime $\mathrm{p} \geq 311$,

$$
\frac{1}{2}(p+[2 \sqrt{p}]) \leq m^{\prime}(2, p) \leq \frac{4}{45}(11 p+10)
$$

Notes: (1) $\frac{4}{45}(11 p+10)<p-\frac{1}{4} \sqrt{p}+\frac{25}{16}$ for $p \geq 47$.
(2) $\frac{4}{45}(11 p+10)<p-\sqrt{p}+1$ for $p \geq 2017$.
20. $k-C A P S \operatorname{IN} \operatorname{PG}(n, q), n \geq 3$.

A k-cap in $P G(n, q)$ is a set of k points no 3 collinear. Let $m_{2}(n, q)$ be the maximum value that k can attain. From $\S 19, m(2, q)=$ $=m_{2}(2, q)$. For $n \geq 3$, the only values known are as follows:

$$
\begin{aligned}
& m_{2}(3, q)=q^{2}+1, \quad q>2 \\
& m_{2}(d, 2)=2^{d} \\
& m_{2}(4,3)=20 ; \\
& m_{2}(5,3)=56 .
\end{aligned}
$$

See [8] for a survey on these and similar numbers. The sets corresponding to these values for $m_{2}(d, q)$ have been classified apart from $\left(q^{2}+1\right)$-caps for q even with $q \geq 16$.

As for the plane, let $m_{2}(n, q)$ be the size of the second largest complete k-cap. Then, from [9], chapter 18 ,

$$
m_{2}^{\prime}(3,2)=5 \quad, m_{2}^{\prime}(3,3)=8 .
$$

We now summarize the best known upper bounds for $m_{2}^{\prime}(n, q)$ and $m_{2}(n, q)$.
THEOREM 20.1: ([7]) For q odd with $q \geq 67$,

$$
m_{2}^{\prime}(3, q) \leq q^{2}-\frac{1}{4} q \sqrt{q}+2 q .
$$

THEOREM 20.2: ([10]) For q even with $q>2$,

