17. k-ARCS ON ELLIPTIC CURVES

As in §16, the curve % is a non-singular cubic in PG(2,q) with

inflexion O.

2k, then there exists

I

THEOREM 17.1: (Zirilli [22]) If |¥]

A k-arc K oné.

Proof. Since % 1is an abelian group, the fundamental theorem

says that ¥ 1is a direct product of cyclic groups of prime power

1

order. By taking a subgroup of order 27 in a component of order

2, we obtain a subgroup G of ¥ of index 2. Let K = % \G. Let

PI‘PE e K. Then -PIEK and P2=-P1

and P1+P2—Q=0* Since -Q is in G, no three points of K are collinear.

+Q for some Q in G. Hence P,+P,=Q

The remainder of §17 follows Voloch [19].

The object is now to show that ¥ can be chosen to be complete.

First we construct X in a different way.
Let Uu = P(1,0,0), Ul:P(G,l,D). U2=P(D,U,1).

Also, with K=GF(q), let K_=GF(q)~{0} and K§={t2ftEKD}_

Now, let € in PG(2,q), g odd, have equation

yzz = x3 + azxzz + alxzz + anz3.

Also suppose it 1is non-singular with 2k points. The point [H_ is
an inflexion and we take this as the zero of € as an abelian group.
Since |¢| is even, so ¥ has an element of order 2, which necessa-
rily is a point of contact of a tangent through i{l. Choose the
tangent as x=0 and the point of contact as UZ‘ Thus a{}:{} and

% has equation
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yzz = x3+azx22+alxzz. (17.1)
Define © : € > K /KZ by
o’ "o
U.0 = K2 ; U0 = a K%, P(x,y,1)® = xK° for x#0
1 o 2 170’ *4e 0 ’
Write K /K2 = {1,v|v?=1}
o' 0 ’ )

LEMMA 17.2: © is a homomorphism.
Proof. If P = P(x,y,1), then -P=P(x,-y,1).

So P00 = (-P)© , this also holds for U, and U Hence, if P1+P2+P3:0,

1 2°

then P‘-1+P2=-P3 (_PS)B = P39== lf(P39). If it 1is

shown that (Ple)(Pze)(P38)=1, then (P1+P2)8 = (P163(P25)'

and (P1+P2)6

Let Pi = P(xi,yi,l}, i=1,2,3. Since P1+P2+P3:CL SO Pl’PZ’PS

are collinear, whence there exist m and ¢ in K such that y{=MX;+C,

i=1,2,3. So

(mx+c)? - (x3+a2x2+alx}=(xl-x](xz-x)(x3-x).
|

2
Thus X X, Xgz = C and so (PlB)(PZB)(PSBJ = 1.

If (PI.PZJ = (Ul’PZ)’ then (P1+P2)E} B PzE} - (PIE})[Pze). If

(Pl,Pz) = (Pl’UZ) and Pl = P[xl,yl,l), then P1+U2=P(x2,y2,1) w1;h
X{X,=ag.
Hence (P1+U2)e = x2=alXx1

2
= xl(al/xlj = Xqa4 = (Plﬂ)(UZB).

So the homomorphism is established in all cases.



LEMMA 17.3: 0 is surjective for q > 7.

Proof. Since P(bxz,y,l)e = bx" = b, it suffices to find a point

Q on &' = V{F(bxz,y,z)) where ¢ = V(F(x,v,z)). So €' has eqguation

y224 = (bx2)3 + az(bxz)zz2 + al(bszzd.

However, we require Q not on V(xz). But V(z)rﬁ%”={lh_} and
V(x) ng' = {UI'UZ}‘ If we put y = tx, we see that @' 1is also
elliptic and so has at least hfﬁ-l)z points. Since tyﬁQ—l)zz}Z

for q > 7, there exists the required point Q.

LEMMA 17.4: X% =¢é\ker©® 1is a k-arc.

Proof. Let G = ker©® . Then, from the previous two lemmas,

1; if PeK, PO =v . Suppose

G<¥¢ with [¢: G] = 2. Then, if PeG, P®

P.,P,,P

12799 P4 in ) are collinear. So P1+P2+P3 = (0, whence (P1+P2+P3)8=08.

So (PIGJ(PZGJ(PSB) = 1, whence u3=1, whence v = 1, a contradiction.

This lemma just repeats lemma 17.1 using the homomorphism O,

THEOREM 17.5: ¥ is complete for q > 311.

Proof. Let PﬂePG(Z,q) N . It must be shown that J(U{Iﬂ}} is
not a (k+l)-arc. There are three cases: (a) P eg\.X, (bJPD=P(xﬂ.YD.1J.
(c) PD = P(l.yD.O)*

Case (a). There are at most four tangents through Pn with point

%|%j > %(/ﬁ-l)%;d, there exists (

"

of contact Q in . Since k
in X which is not such a point of contact. So 2Q # - P_ and
Q0 # - (P +Q). Also - (P_+Q) e X, as otherwise QeGC = ¥€\X., So P_.Q,

-(P_+Q) are distinct collinear points of w uU{ Pn}.
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Case (b). Let %' be the elliptic curve with affine equation

ye = vt e vlax® 4 ey (17.2)

Define the following functions on %':

vx?, Z = xy, A= (y,-2)/(x_-U),
a2 _ Yy
B = A A5, C = 2AZ a, 2A°U,

u

1

D = (U-B)? + 4(C+BU - U%).

Then there exists a double cover
¥y 9 > €'

defined by w2 = D; that is, for any point P(x,y,1) of €', there

are two points P(x,y,W,1) of 2 . Now, let P(x,y,W,1) be a rational

point of %. Then, from the equation for &',

xzyz = u3x6 + u2a2x4 + ualxz,

whence

7% = U + a U% + a.U . (17.3)

Hence
(1) P = P(U,Z,1) €4 ;
(2) PPH has equation y-Z = A(x-U);

(3) PP“ meets % 1is two points other than P whose x-coordinates
satisfy

7

x“ - (B-U)x - (C+BU-U") = 0O (17.4

The last follows by substitution from (2) in (17.1), ftor we havé€



{ Z+A(K—U)}2 = x3+azx2+alx.
Then, from (17.3),

=

3 2 : 5 2
(U +HZU +alL) - (X +a,X +alx)

¢ 2ZA(x-U) + A%(x-U)? = 0.

Cancelling x-U gives (17.4).
Now, let # NPP_ = {P,Q,R}. The discriminant of (17.4) is
(B-U)? + 4(C+BU-U®) = D = W-.
So Q and R are rational points of % . Since P,Q,R are collinear
(PO®(QO)(RG) = 1. As PeX, so P06 =v , whence (QO0)(RO)=v. So one

of Q a nd R, say Q, is in ¥. Hence, if P#Q, there are three collinear

points P,P_,Q nftX”U{PZJ.

it remains to examine the conditioen that P#Q. There are at
most six tangents to @ through P_ ([6] p.252). So, if P=Q or P=R,
there are at most six choices for P, hence 12 choices for (x,Y)
and 24 choices for P(x,y,W,1) on 2. As |¢'n V(x)|<2 and |¢NV(z)|=0,
so |9NV(x)| < 4 and |9NV(z)|=0. So we require that £ has at least

24+4+1 = 29 rational points.

By the Hurwitz formula ([5] p.301 or [3] p.215),

)

2g(9Y) -2 2{ 2g(¥')-2} + deg E (17.5)

deg E.

Here, E is the ramification divisor (cf. §9) and



deg E = # points of ramification

"

# points with D = 0

# points such that Q and R have

the same x-coordinate .

[f Q = P(xy,y;,1) and R = P(x;,y,,1), then y,=+y;; if y,

= - yi, then Q,R,U1 are collinear. So either Q=R or Q=-R, If Q =
-R, then P = U1 and this gives at most two points on €', If
Q=R, then [”11 is a tangent to ¥ at Q. Hence there are at most
six choices for P and hence at most 12 such points on ¥'. Hence

2g(2) -2 < 12 + 2 = 14, whence g(2) < 8. Thus by the corollary

to theorem 11.5,
19| > q+1 - 16/q

So, when q+1-16/q > 29, we obtain the desired contradiction; this

occurs ftfor q > 311.

Case (c¢). This is similar to case (b). Here, among the functions

on €', one takes A = Yo

Notes: (1) The result certainly holds for some but not all k with

q <311.

(2) A similar technique can be applied for q even. Here

¢ 1s taken in the form
2 U3 2
(y"+xy)z = X ta,xz +a z

Instead of 0 as above, we define 0 : & - Kan where Cn={tEK|T(t)=U}

and T(t) = t+t2+...thz; here Cn in the set of elements of category

(= trace) zero. Take P(x,y,1)0 = an. Then X is complete for q>256.



COROLLARY : In PG(2,q) there exists a complete k-arc with k:%{q+1—t)
for every t satisfying 16.8 when either (a) q 1is odd, >311, t
is even;or (b) qis even, q>256, t is odd.
18. k-ARCS IN PG(2,q).

Let A be a complete k-arc in PG(2,q); that is, * has no three
points collinear and 1is not contained in a (k+l)-arc. We define

three constants m(2,q), n(2,q), m'(2,q).

m(2,q) max k = ¥q+2, qQ even

Pq+1, q odd,

min k.

n(2,q)
If m(2,q) # n(2,q),

m'(2,q) = second largest k;

if m(2,q) = n(2,q), let m'(2,q) = m(2,q). So, if a k-arc has
k >m'(2,q), then it is contained in an m(2,q)-arc. For q odd,
every (q+l)-arc is a conic. For q even, the (q+2)-arcs have been

classified for q < 16; see [4], [6].

The value of n(2,q) seems to be a difficult problem. By elementa

ry considerations ([ 61 p.205),
n(2,q) > ~7v 2q.
Constructions have been given for complete k-arcs with k having

the following values (up to an added constant):

qQ , see [6], §9.4;

q , (1]

R S



