then n=2(g+1) from the formula beginning §12. When d is even, they are the points with y=0; when d is odd, they are these plus P(0,1,0). Let n_o be the number of K-rational P_i.

THEOREM 13.1: Let \mathscr{C} be hyperelliptic with a complete $\gamma_2^1 = |D|$ and n, n_0 as above. If there is a positive integer n_1 such that $|(n_1+g)D|$ is Frobenius classical, then

$$|N-(q+1)| \leq g(2n_1+g)+(2n_1+g)^{-1}\{g(q-n_0)-g^3-g\}.$$

Note: If $p \ge 2(n_1+g)$, then the hypothesis is fulfilled.

COROLLARY: Let $p \ge 5$ with $p=c^2+1$ or $p=c^2+c+1$ for some positive integer c and let \mathscr{C} be hyperelliptic with g>1 over GF(p). Then

 $|N-(p+1)| \le g[2\sqrt{p}] - 1.$

14. PLANE CURVES

-

Let \mathscr{C} be a non-singular, plane curve of degree d over K=GF(q); then $g = \frac{1}{2}(d-1)(d-2)$. Let D be a divisor cut out by a line, which can be taken as z=0.

Let x,y be affine coordinates. The monomials $x^{i}y^{j}$, $i, j \ge 0$, $i+j \le m$ span L(mD) and are linearly independent for m < d. Hence dim $|mD| = \frac{1}{2}m(m+3)$ for m < d. Also, mD is a special divisor for m \le d-3. Thus |mD| is cut out by all curves of degree m.

THEOREM 14.1: Let \mathscr{C} be a plane curve of degree d and let D be a divisor cut out by a line. If m is a positive integer with m \leq d - 3 such that |mD| is Frobenius classical, then

$$N \leq \frac{1}{2}(m^2 + 3m - 2)(g - 1) + 2d(m + 3)^{-1}\{q + \frac{1}{2}m(m + 3)\}.$$

Proof. Put (i) $\frac{1}{2}m(m+3)$ for n, (ii) $\frac{1}{2}(d-1)(d-2)$ for g, (iii) md for d, (iv) i for v_i, in theorem 11.5.

Notes: (1) When $m \le p/d$, then |mD| is Frobeinius classical. (2) For m=1, we have that $4 \le d \le p$ implies that

 $N \leq \frac{1}{2}d(d+q-1),$

as in theorem 4.1.

(3)For m=2, we have that $5 \le d \le \frac{1}{2}p$ implies that $N \le \frac{2d}{5}\{5(d-2)+q\}$,

which is required in theorem 19.1.

Let f(x,y) be homogeneous of degree d with f(x,1) having distinct

roots in \overline{K} . A Thue curve is given by

$$\mathcal{C}_{d}$$
 : f(x,y) = z^d.

It is non-singular.

THEOREM 14.2: Let D be a divisor cut out by a line on \mathcal{C}_d . If m is a positive integer such that |mD| is Frobenius classical, then

$$N \leq (n-1)(g-1) + \frac{1}{n} \{md(q+n) - dA_m - d_0B_m\}$$
,

where n is the dimension of |mD|;

$$n = \begin{cases} \frac{1}{2}m(m+3) \text{ for } m \leq d - 3 \\ \\ dm - g \text{ for } m > d - 3 \end{cases},$$

$$g = \frac{1}{2}(d-1)(d-2),$$

$$d_{o} = \text{number of K-rational roots of } f(x,1),$$

$$A_{m} = \begin{cases} \frac{1}{24}m(m-1)\{4(d-m-1)(m+4)+(m-2)(m-5)\} \text{ for } m \leq d-3 \\ \frac{1}{24}(d-1)(d-2)(d-3)(d+4) & \text{for } m > d-3, \end{cases}$$

$$B_{m} = \begin{cases} dm - \frac{1}{2}m(m+3) & \text{for } m \leq d-3 \\ g & \text{for } m > d-3. \end{cases}$$

Note: When $m \leq p/d$, then |mD| is Frobenius classical.

A Fermat curve is a special case of a Thue curve given by

$$\mathcal{F}_{d}$$
 : ax^{d} + by^{d} = z^{d}

with a, b $\in K \setminus \{0\}$.

THEOREM 14.3: For \mathscr{F}_d with the same conditions as above,

$$N \leq (n-1)(g-1) + \frac{1}{n} \{md(q+n) - 3d A_m - d_1 B_m\}$$

with n,g,A_m,B_m as above, but d_1 is the number of points of \mathscr{F}_d with xyz = 0.

15. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

In Table 1, we give the value of $N_q(g)$ or the best, known bound for $g \le 5$ and $q \le 49$ arising from results of Serre [12],[13] and the preceding sections. Also included in the table is the bound $S_g = q+1+g[2\sqrt{q}]$; see §2.