then $n=2(g+1)$ from the formula beginning §12. When d is even, they are the points with $y=0$; when d is odd, they are these plus $P(0,1,0)$. Let n_{o} be the number of K-rational P_{i}.

THEOREM 13.1: Let \mathscr{C} be hyperelliptic with a complete $\gamma_{2}^{1}=$ $|D|$ and n, n_{o} as above. If there is a positive integer n_{1} such that $\left|\left(n_{1}+g\right) D\right|$ is Frobenius classical, then

$$
|N-(q+1)| \leq g\left(2 n_{1}+g\right)+\left(2 n_{1}+g\right)^{-1}\left\{g\left(q-n_{o}\right)-g^{3}-g\right\} .
$$

Note: If $p \geq 2\left(n_{1}+g\right)$, then the hypothesis is fulfilled.
COROLLARY: Let $p \geq 5$ with $p=c^{2}+1$ or $p=c^{2}+c+1$ for some positive integer c and let \mathscr{C} be hyperelliptic with $g>1$ over $G F(p)$. Then

$$
|N-(p+1)| \leq g[2 \sqrt{p}]-1 .
$$

14. PLANE CURVES

Let \mathscr{C} be a non-singular, plane curve of degree d over $K=G F(q)$; then $g=\frac{1}{2}(d-1)(d-2)$. Let D be a divisor cut out by a line, which can be taken as $\mathrm{z}=0$.

Let x, y be affine coordinates. The monomials $x^{i} y^{j}, i, j \geq 0, i+j \leq m$ span $L(m D)$ and are linearly independent for $m<d$. Hence dim|mD|= $=\frac{1}{2} m(m+3)$ for $m<d$. Also, $m D$ is a special divisor for $m \leq d-3$. Thus $\mid m D$ is cut out by all curves of degree m.

THEOREM 14.1: Let \mathscr{C} be a plane curve of degree d and let D be a divisor cut out by a line. If m is a positive integer with $\mathrm{m} \leq \mathrm{d}-3$ such that $|\mathrm{mD}|$ is Frobenius classical, then

$$
N \leq \frac{1}{2}\left(m^{2}+3 m-2\right)(g-1)+2 d(m+3)^{-1}\left\{q+\frac{1}{2} m(m+3)\right\} .
$$

Proof. Put (i) $\frac{1}{2} m(m+3)$ for n, (ii) $\frac{1}{2}(d-1)(d-2)$ for g, (iii) md for $d,(i v)$ for v_{i}, in theorem 11.5 .

Notes: (1) When $m \leq p / d$, then $|m D|$ is Frobeinius classical.
(2) For $m=1$, we have that $4 \leq d \leq p$ implies that

$$
\mathrm{N} \leq \frac{1}{2} \mathrm{~d}(\mathrm{~d}+\mathrm{q}-1),
$$

as in theorem 4.1.
(3) For $m=2$, we have that $5 \leq d \leq \frac{1}{2}$ p implies that

$$
\mathrm{N} \leq \frac{2 \mathrm{~d}}{5}\{5(\mathrm{~d}-2)+\mathrm{q}\},
$$

which is required in theorem 19.1.

Let $f(x, y)$ be homogeneous of degree d with $f(x, 1)$ having distinct roots in \bar{K}. A Thue curve is given by

$$
\mathscr{C}_{d}: f(x, y)=z^{d} .
$$

It is non-singular.
THEOREM 14.2: Let D be a divisor cut out by a line on \mathscr{C}_{d}. If m is a positive integer such that $|m D|$ is Frobenius classical, then

$$
N \leq(n-1)(g-1)+\frac{1}{n}\left\{m d(q+n)-d A_{m}-d_{o} B_{m}\right\},
$$

where n is the dimension of $|m D|$;

$$
n= \begin{cases}\frac{1}{2} m(m+3) & \text { for } m \leq d-3 \\ d m-g & \text { for } m>d-3\end{cases}
$$

$$
\begin{aligned}
& g=\frac{1}{2}(d-1)(d-2), \\
& d_{0}=\text { number of } K \text {-rational roots of } f(x, 1), \\
& A_{m}= \begin{cases}\frac{1}{24} m(m-1)\{4(d-m-1)(m+4)+(m-2)(m-5)\} & \text { for } m \leq d-3 \\
\frac{1}{24}(d-1)(d-2)(d-3)(d+4) & \text { for } m>d-3,\end{cases} \\
& B_{m}= \begin{cases}d m-\frac{1}{2} m(m+3) & \text { for } m \leq d-3 \\
g & \text { for } m>d-3 .\end{cases}
\end{aligned}
$$

Note: When $m \leq p / d$, then $|m D|$ is Frobenius classical.
A Fermat curve is a special case of a Thue curve given by

$$
\bar{m}_{d}: a x^{d}+b y^{d}=z^{d}
$$

with $a, b \in K \backslash\{0\}$.

THEOREM 14.3: For \mathscr{F}_{d} with the same conditions as above,

$$
N \leq(n-1)(g-1)+\frac{1}{n}\left\{m d(q+n)-3 d A_{m}-d_{1} B_{m}\right\} .
$$

with n, g, A_{m}, B_{m} as above, but d_{1} is the number of points of \mathscr{F}_{d} with $x y z=0$.

15. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

In Table 1 , we give the value of $N_{q}(g)$ or the best, known bound for $\mathrm{g} \leq 5$ and $\mathrm{q} \leq 49$ arising from results of Serre [12], [13] and the preceding sections. Also included in the table is the bound $\mathrm{S}_{\mathrm{g}}=\mathrm{q}+1+\mathrm{g}[2 \sqrt{\mathrm{q}}]$; see $\S 2$.

