on X and D is any divisor, then

$$\&(D) = \deg D + 1 - g + \&(W-D).$$

8. THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible, non-singular, projective, algebraic curve of genus g defined over K but viewed as the set of points defined over \bar{K} , and let $f : X \neq \mathscr{C}c$ PG(n, \bar{K}) be a suitable rational map. Then \mathscr{C} is viewed as the set of branches of X.

Assume that & is not contained in a hyperplane. The degree d of $\mathscr C$ is the number of points of intersection of $\mathscr C$ with a generic hyperplane. For any hyperplane H, if n_{D} is the intersection multipli city of H and \mathscr{C} at P, then

 $\begin{array}{cccc} H \bullet \mathscr{C} &=& \sum & n_{P} & P \\ & & P \in \mathscr{C} \end{array} \end{array}$

is a <u>divisor</u> of degree $d = \Sigma n_p$. Also

 $\mathscr{D} = \{H, \mathscr{C} | H \text{ a hyperplane} \}$

is a linear system. In this case, $D \sim D'$ for any D,D' in ${\mathscr D}$. Hence \mathcal{D} is contained in the <u>complete</u> linear system $|D| = \{D' | D' \sim D\}$, where D is some element of ${\mathscr D}$.

A complete linear system defines an embedding f : X \mathcal{I} given bу

 $f(Q) = P(f_{Q}(Q), ..., f_{n}(Q))$

where $\{f_0, \dots, f_n\}$ is a basis of $L(D) = \{ge\bar{K}(X) | div(g) + D \ge 0\}$.

Given a linear system \mathscr{D} , the complete system containing \mathscr{D} has the same degree as \mathscr{D} and possibly larger dimension. Hence, although not necessary, it is simpler to consider complete linear systems, and this we do.

Let \mathscr{C} of degree d have associated complete linear system \mathscr{D} and let P be a fixed point of \mathscr{C} . Let \mathscr{D}_i be the set of hyperplanes passing through P with multiplicity at least i. Then

$$\mathcal{D}=\mathcal{D}_{0}\supset\mathcal{D}_{1}\supset\cdots\supset\mathcal{D}_{d}\supset\mathcal{D}_{d+1}=\emptyset.$$

Each \mathscr{D}_i is a projective space. If $\mathscr{D}_i \neq \mathscr{D}_{i+1}$, then \mathscr{D}_{i+1} has codimension one in \mathscr{D}_i . Such an i is a $(\mathscr{D}, \mathsf{P})$ -<u>order</u>. So the $(\mathscr{D}, \mathsf{P})$ -orders are j_0, \ldots, j_n , where

 $0 = j_0 < j_1 < j_2 < \cdots < j_n \le d.$

Note that $j_1 = 1$ if and only if P is non singular.

For example, let & be a plane cubic.

Then

$$(j_0, j_1, j_2) = \begin{cases} (0, 1, 2) & \text{if P is neither singular nor an inflexion,} \\ (0, 1, 3) & \text{if P is an inflexion,} \\ (0, 2, 3) & \text{if P is singular.} \end{cases}$$

Note that, as the points of *C* are viewed as branches, each branch has a unique tangent.

The <u>Hasse derivative</u>, satisfies the following properties:

(i)
$$D_{t}^{(i)}(\Sigma a_{j}t^{j}) = \Sigma a_{j}(_{i}^{j})t^{j-i};$$

(ii) $D_{t}^{(i)}(fg) = \int_{j=0}^{i} D_{t}^{(j)}f \cdot D_{t}^{(i-j)}g;$

(iii)
$$D_t^{(i)} D_t^{(j)} = \binom{i+j}{i} D_t^{(i+j)}$$
.

4

The unique hyperplane with intersection multiplicity $j_{\rm n}$ at P is the osculating hyperplane ${\rm H}_{\rm P}$ and has equation

det
$$\begin{bmatrix} x_0 & \cdots & x_n \\ (j_0) & (j_0) \\ D & f_0 & D & f_n \\ \vdots (j_{n-1}) & \vdots (j_{n-1}) \\ D & f_0 & D & f_n \end{bmatrix} = 0$$

For example, if \mathscr{C} is the twisted cubic in PG(3,K),

$$(f_0, f_1, f_2, f_3) = (1, t, t^2, t^3),$$

$$(j_0, j_1, j_2, j_3) = (0, 1, 2, 3).$$

The osculating hyperplane at $P(1,t,t^2,t^3)$ is

det
$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & t & t^2 & t^3 \\ 0 & 1 & 2t & 3t^2 \\ 0 & 0 & 1 & 3t \end{bmatrix} = 0;$$

that is,

$$t^{3}x_{0} - 3t^{2}x_{1} + 3tx_{2} - x_{3} = 0$$
.

The point P on \mathscr{C} is a <u>Weierstrass point</u>, W-point for-short, if $(j_0, j_1, \dots, j_n) \neq (0, 1, \dots, n)$.

- 14 -

Since \mathscr{D} is complete, the Riemann-Roch theorem gives that, if d>2g-2, then

(i)
$$n = d-g;$$

(ii) $\dim \mathcal{D}_i = d-g-i$ for $i \leq d - 2g + 1;$
(iii) $j_i = i$ for $i \leq d - 2g.$

Let $L_i = 0$ hyperplanes meeting \mathscr{C} at P with $n_P \ge j_i + 1$. Then L_i is dual to \mathscr{D}_i and

$$L_0 \subset L_1 \subset L_2 \subset \ldots \subset L_{n-1}$$
.

Also $L_0 = \{P\}$, the set L_1 is the tangent line at P, and L_{n-1} is

the osculating hyperplane at P.

The point P is a \mathscr{D} -osculation point if $j_n > n$, that is, there exists a hyperplane H such that $n_p > n$.

The integers j_i are characterized by the following result.

THEOREM 8.1 : (i) If j_0, \ldots, j_{i-1} are known, then j_i is the smallest integer r such that $D^{(r)}f(Q)$ is linearly independent of $\{D^{(j_0)}f(Q), \ldots, D^{(j_{i-1})}f(Q)\}$; the latter set spans L_{i-1} .

(ii) If $0 \leq r_0 < \dots < r_s$ are integers such that

 (r_0) (r_s) (r_s) $f(Q),...,D^{s}f(Q)$ are linearly independent, then $j_i \leq r_i$.