on X and D is any divisor, then

$$
\ell(D)=\operatorname{deg} D+1-g+\ell(W-D) .
$$

8.THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible, non-singular, projective, algebraic curve of genus g defined over K but viewed as the set of points defined over \bar{K}, and let $f: X \rightarrow \mathscr{C} c P G(n, \bar{K})$ be a suitable rational map. Then \mathscr{C} is viewed as the set of branches of X.

Assume that \mathscr{C} is not contained in a hyperplane. The degree d of \mathscr{C} is the number of points of intersection of \mathscr{C} with a generic hyperplane. For any hyperplane H, if n_{p} is the intersection multiplí city of H and \mathscr{C} at P, then

$$
\mathrm{H} \cdot \mathscr{C}=\sum_{\mathrm{P} \in \mathscr{C}} \mathrm{n}_{\mathrm{P}} \mathrm{P}
$$

is a divisor of degree $d=\Sigma n_{P}$. Also

$$
\mathscr{D}=\{\mathrm{H} . \mathscr{C} \mid \mathrm{H} \text { a hyperplane }\}
$$

is a linear system. In this case, $D \sim D^{\prime}$ for any D, D^{\prime} in \mathbb{Q}. Hence Q is contained in the complete linear system $|D|=\left\{D^{\prime} \mid D^{\prime} \sim D\right\}$, Where D is some element of \mathscr{D}.

A complete linear system defines an embedding $\mathrm{f}: \mathrm{X} \rightarrow{ }^{\prime} \mathrm{C}$ given by

$$
f(Q)=P\left(f_{o}(Q), \ldots, f_{n}(Q)\right)
$$

where $\left\{f_{o}, \ldots, f_{n}\right\}$ is a basis of

$$
L(D)=\{g \in \bar{K}(X) \mid \operatorname{div}(g)+D \geq 0\} .
$$

Given a linear system $\mathscr{\mathscr { V }}$, the complete system containing \mathscr{Q} has the same degree as \mathscr{D} and possibly larger dimension. Hence, although not necessary, it is simpler to consider complete linear systems, and this we do.

Let \mathscr{C} of degree d have associated complete linear system $\mathscr{L}_{\mathbb{D}}$ and let P be a fixed point of \mathscr{C}. Let \mathscr{D}_{i} be the set of hyperplanes passing through P with multiplicity at least i. Then

$$
\mathscr{D}=\mathscr{D}_{\mathrm{o}} \supset \mathscr{D}_{1} \supset \ldots \mathscr{D}_{\mathrm{d}} \supset \mathscr{D}_{\mathrm{d}+1}=\emptyset .
$$

Each \mathscr{R}_{i} is a projective space. If $\mathscr{X}_{i} \neq \mathscr{D}_{i+1}$, then \mathscr{D}_{i+1} has codimension one in \mathscr{D}_{i}. Such an i is a (\mathscr{D}, P) -order. So the $(\mathscr{D}, \mathrm{P})$-orders are j_{o}, \ldots, j_{n}, where

$$
0=j_{0}<j_{1}<j_{2}<\cdots<j_{n} \leq d .
$$

Note that $j_{1}=1$ if and only if P is non singular.
For example, let \mathscr{C} be a plane cubic.
Then

$$
\left(j_{0}, j_{1}, j_{2}\right)= \begin{cases}(0,1,2) & \text { if } P \text { is neither singular nor an inflexion, } \\ (0,1,3) & \text { if } P \text { is an inflexion, } \\ (0,2,3) & \text { if } P \text { is singular. }\end{cases}
$$

Note that, as the points of \mathscr{C} are viewed as branches, each branch has a unique tangent.

The Hasse derivative, satisfies the following properties:
(i) $D_{t}^{(i)}\left(\Sigma a_{j}{ }^{i}{ }^{j}\right)=\Sigma a_{j}\binom{j}{i} t^{j-i}$;
(ii) $D_{t}^{(i)}(f g)=\sum_{j=0}^{i} D_{t}^{(j)} f \cdot D_{t}^{(i-j)} g$;
(iii) $D_{t}^{(i)} D_{t}^{(j)}=\binom{i+j}{i} D_{t}^{(i+j)}$.

The unique hyperplane with intersection multiplicity j_{n} at P is the osculating hyperplane H_{P} and has equation

$$
\operatorname{det}\left[\begin{array}{cll}
x_{0} & \cdots & x_{n} \\
D^{\left(j_{0}\right)} & & f_{0} \\
\left.f_{0}\right)_{f_{n}} \\
D^{\left(j_{n-1}\right)} & f_{f_{0}} & D^{\left(j_{n-1}\right)} f_{n}
\end{array}\right]=0
$$

For example, if \mathscr{C} is the twisted cubic in $\operatorname{PG}(3, K)$,

$$
\begin{aligned}
& \left(f_{0}, f_{1}, f_{2}, f_{3}\right)=\left(1, t, t^{2}, t^{3}\right), \\
& \left(j_{0}, j_{1}, j_{2}, j_{3}\right)=(0,1,2,3)
\end{aligned}
$$

The osculating hyperplane at $P\left(1, t, t^{2}, t^{3}\right)$ is

$$
\operatorname{det}\left[\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2} \\
0 & 0 & 1 & 3 t
\end{array}\right]=0 ;
$$

that is,

$$
t^{3} x_{0}-3 t^{2} x_{1}+3 t x_{2}-x_{3}=0
$$

The point P on \mathscr{C} is a Weierstrass point, W-point for-short, if $\left(j_{0}, j_{1}, \ldots, j_{n}\right) \neq(0,1, \ldots, n)$.

Since \mathscr{D} is complete, the Riemann-Roch theorem gives that, if $d>2 g-2$, then
(i) $\mathrm{n}=\mathrm{d}-\mathrm{g}$;
(ii) $\operatorname{dim} \mathscr{D}_{\mathrm{i}}=\mathrm{d}-\mathrm{g}-\mathrm{i}$ for $\mathrm{i} \leq \mathrm{d}-2 \mathrm{~g}+1$;
(iii) $j_{i}=i \quad$ for $i \leq d-2 g$.

Let $L_{i}=\cap$ hyperplanes meeting \mathscr{C} at P with $n_{P} \geq j_{i}+1$. Then L_{i} is dual to \mathscr{D}_{i} and

$$
\mathrm{L}_{\mathrm{o}} \subset \mathrm{~L}_{1} \subset \mathrm{~L}_{2} \subset \ldots \subset \mathrm{~L}_{\mathrm{n}-1}
$$

Also $L_{o}=\{P\}$, the set L_{1} is the tangent line at P, and L_{n-1} is the osculating hyperplane at P.

The point P is a \mathscr{D}-osculation point if $j_{n}>n$, that is, there exists a hyperplane H such that $n_{p}>n$.

The integers j_{i} are characterized by the following result.
THEOREM 8.1 : (i) If j_{0}, \ldots, j_{i-1} are known, then j_{i} is the smallest integer r such that $D^{(r)} f(Q)$ is linearly independent of $\left\{D^{\left(j_{o}\right)} f(Q), \ldots, D^{\left(j_{i-1}\right)} f(Q)\right\}$; the latter set spans L_{i-1}.
(ii)If $0 \leq r_{o}<\cdots<r_{s}$ are integers such that
$D^{\left(r_{o}\right)} f_{(Q), \ldots, D}^{\left(r_{S}\right)}{ }_{f(Q)}$ are linearly independent, then $j_{i \leq r} r_{i}$.

