in characteristic p > 0, there is different behaviour; for example, $\mathscr{U}_{2,q}$ has 28 undulations (points where the tangent has 4-point contact). When g=4, the curve $\mathscr{C}^6 = \mathscr{F}^3 \cap \mathscr{F}^2$, the intersection of a cubic and a quadric surface, has 60 stalls where the osculating plane meets the curve at four coincident points.

More generally, still with characteristic zero, if $\mathscr C$ has genus $g \ge 1$ and P $\epsilon \mathscr{C}$, there exist integers n_1, n_2, \ldots, n_g such that no function has pole divisor precisely n_i^P . Also $\{n_1, n_2, \dots, n_g\} =$ ={1,2,...,g} for all but a finite number of points. We elaborate this idea and make it more precise in §§8-10.

6. FUNDAMENTAL DEFINITIONS IN ALGEBRAIC GEOMETRY

Let **«c**Aⁿ(K) be an irreducible non-singular algebraic curve defined over K, let I(%) c K[X₁,...,X_n] be the ideal of polynomials wich are zero at all points of \mathscr{C} , let $\Gamma(\mathscr{C}) = K = [X_1, \dots, X_n]/I(\mathscr{C});$ and $K(\mathscr{C})$ be the quotient field of $\Gamma(\mathscr{C})$; then $K(\mathscr{C})$ is called the <u>function field</u> of \mathscr{C} .Also, for P in $\mathcal{C}_{p} = \{f/g | f, g \in \Gamma, g(P) \neq 0\}, the <u>local ring</u> of <math>\mathcal{C}$ at P. Then, by natural inclusions, K c $\Gamma(\mathscr{C})$ c $O_p(\mathscr{C})$ c $K(\mathscr{C})$. Also $O_p \setminus \{\text{units}\}$ = M_p = <t>, the maximal ideal, and for any z in 0_p there exist a unique unit u and a unique non-negative integer m such that $z = ut^{m}$; write m=ord_p(z). Hence, if GeK[X₁,...,X_n] and g is the image of G in $\Gamma(\mathscr{C})$ with $G(P) \neq 0$, define $\operatorname{ord}_{P}(G) = \operatorname{ord}_{P}(g)$. In particular, if \mathscr{C} is a plane curve and V(L) the tangent at P, then $ord_{p}(L)$ gives the multiplicity of contact of the tangent with Ε.

For the extension of these definitions to the projective case, see Fulton [3], p.182. This is the situation we now consider.

A <u>divisor</u> D on \mathscr{C} is $D = \sum_{P \in \mathscr{C}} n_P P$, $n_P \in \mathbb{Z}$, with $n_P = 0$ for all but a finite number of points P; the <u>degree</u> of D is deg $D = \sum n_P$. Then D is <u>effective</u> if $n_P \ge 0$ for all P. For z in K(\mathscr{C}), define

,

where

$$(z)_{0} = \sum_{\text{ord}(z)>0} \operatorname{ord}_{P}(z)P$$
, the divisor of zeros

and

$$(z)_{\infty} = \sum_{\text{ord}(z) < 0} - \text{ord}_{p}(z)P$$
, the divisor of poles;

that is, div(z) is the difference of two effective divisors and deg div(z) = 0.

Given $D = \Sigma n_p P$, define

 $L(D) = \{f \in K(\mathscr{C}) \mid ord_{P}(f) \geq -n_{P}, \forall P\};$

that is, poles of f are no worse than n_p . In other words, feL(D) if f=0 or if div(f) + D is effective.

The set L(D) is a vector space and its dimension is denoted l(D).

There is an important equivalence relation on the divisors given by $D \sim D'$ if there exists g in $K(\mathscr{C})$ such that D-D'=div(g).