in characteristic $p>0$, there is different behaviour; for example, $\mathscr{U}_{2, q}$ has 28 undulations (points where the tangent has 4 -point contact). When $g=4$, the curve $\mathscr{C}^{6}=\mathscr{F}^{3} \cap \mathscr{F}^{2}$, the intersection of a cubic and a quadric surface, has 60 stalls where the osculating plane meets the curve at four coincident points.

More generally, still with characteristic zero, if \mathscr{C} has genus $g \geq 1$ and $P \in \mathscr{C}$, there exist integers $n_{1}, n_{2}, \ldots, n_{g}$ such that no function has pole divisor precisely $n_{i} P$. Also $\left\{n_{1}, n_{2}, \ldots, n_{g}\right\}=$ $=\{1,2, \ldots, g\}$ for all but a finite number of points. We elaborate this idea and make it more precise in §§8-10.

6. FUNDAMENTAL DEFINITIONS IN ALGEBRAIC GEOMETRY

Let $\mathscr{C} A^{n}(K)$ be an irreducible non-singular algebraic curve defined over K, let $I\left(\varphi_{\varphi}\right) \subset K\left[X_{1}, \ldots, X_{n}\right]$ be the ideal of polynomials wich are zero at all points of $\mathscr{C}, \operatorname{let} \Gamma(\mathscr{C})=K=\left[X_{1}, \ldots, X_{n}\right] / I(\mathscr{C})$; and $K(\mathscr{C})$ be the quotient field of $\Gamma(\mathscr{C})$; then $K(\mathscr{C})$ is called the function field of \mathscr{C}. Also, for P in \mathscr{C} let $O_{P}=\{f / g \mid f, g \in \Gamma, g(P) \neq 0\}$, the local ring of \mathscr{C} at P. Then, by natural inclusions, $K \subset \Gamma(\mathscr{C}) \subset O_{\mathrm{P}}(\mathscr{C}) \quad \subset \mathrm{K}(\mathscr{C})$. Also O_{P} \{units\} $=M_{P}=\langle t\rangle$, the maximal ideal, and for any z in O_{P} there exist a unique unit u and a unique non-negative integer m such that $z=u t^{m}$; write $m=\operatorname{ord}_{p}(z)$. Hence, if $G \in K\left[X_{1}, \ldots, X_{n}\right]$ and g is the image of G in $\Gamma(\mathscr{O})$ with $G(P) \neq 0$, define ord $(G)=o r d_{P}(g)$. In particular, if. \mathscr{C} is a plane curve and $V(L)$ the tangent at P, then ord ${ }_{p}(L)$ gives the multiplicity of contact of the tangent with \mathscr{C}.

For the extension of these definitions to the projective case, see Fulton [3], p.182. This is the situation we now consider.

A divisor D on \mathscr{C} is $D=\sum_{P \in \mathscr{C}} n_{P} P, n_{P} \in \mathbf{Z}$, with $n_{P}=0$ for all but a finite number of points P; the degree of D is deg $D=\Sigma n_{P}$. Then D is effective if $n_{P} \geq 0$ for all P. For z in $K(\mathscr{C})$, define

$$
\begin{aligned}
\operatorname{div}(z) & =\operatorname{ord}_{P}(z) P \\
& =(z)_{0}-(z)_{\infty}
\end{aligned}
$$

where

$$
(z)_{0}=\underset{\operatorname{ord}(z)>0}{\Sigma} \quad \operatorname{ord}_{\mathrm{P}}(z) \mathrm{P}, \text { the divisor of zeros, }
$$

and

$$
(z)_{\infty}=\underset{\operatorname{ord}(z)<0}{\Sigma}-\operatorname{ord}_{p}(z) P, \text { the divisor of poles; }
$$

that is, $\operatorname{div}(z)$ is the difference of two effective divisors and deg $\operatorname{div}(z)=0$.

Given $D=\Sigma n_{P} P$, define

$$
L(D)=\left\{f \in K(\mathscr{C}) \mid \operatorname{ord}_{p}(f) \geq-n_{p}, \forall P\right\} ;
$$

that is, poles of f are no worse than n_{p}. In other words, $f \in L(D)$ if $f=0$ or if $\operatorname{div}(f)+D$ is effective.

The set $L(D)$ is a vector space and its dimension is denoted $\ell(D)$.

There is an important equivalence relation on the divisors given by $D \sim D^{\prime}$ if there exists g in $K(\mathscr{C})$ such that $D-D^{\prime}=\operatorname{div}(g)$.

