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INTRODUCTION

These notes give an account of a series of lectures at the
University of Lecce as well as two at the University of Bari,

all during April 1986.

§§1-15 are based on the thesis [18], of J.-F.Voloch, apart
from some background remarks and classical interpolations. They
deal with the number of points on an algebraic curve over a finite
field. The main results of the thesis are also contained in [14],
§16 records some classical results on elliptic curves and §17,
following Voloch [19], proves the existence of complete k-arcs
for many values of k by taking half the points on an elliptic
curve. §§18-19 discusses the values of n(2,q), the size of the
smallest k-arc in PG(2,q), and m'(2,q), the size of the second
largest complete k-arc in PG(2,q), the main result of §19 follows
a proof of Segre using an improved bound for the number of points
on a curve from §§11 and 14. Finally, §20 summarizes the best,

known estimates for mz(d,q). the irrgest size of k-cap in PG(d,q).



2. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

Let ¥ be an algebraic curve defined over GF(q) of genus g,

and let N, be the number of points, rational over GF(q), on a

1
non-singular model of ¥ . Define Nq(g) = max Nl’ where € varies

over all curves of genus g. We recall the following bounds.

(i) Hasse-Weil: Nq(q) < q+1+2gq1/2
(ii) Serre: N, (8) < q+1+g[2ql/2]
(1i1)  Ihara: N, (8) < a+1 - 78 +{2(a+1/8)g°+(a*-a)g} '/’
(iv) Manin: Nz(Q) < 2g - o(g) as g >
N:(g) < 3g +0(g) as g~> =

(v) Drinfeld-Vladut: Nq(g) g(ql/z-l)+o(g) as g > @

I A

For a summary of results on Nq[g) and references, see [9] Appendix

Iv.

1/2

The estimates (i) and (ii) are good for g < %(q—q ), but

not for g>-%(q—q1X2).

One of the aims of these notes 1is to describe improvements
to (i), (ii), (iii). First, it is elementary that (ii) is sometimes
better than (i) and never worse.

1/2

Let m = [2q ]. Then 2qlf2 = m+e, where 0 <e <1, So

[2gq1/2] = [g(m+e)] = [gm+ge] = gm+[ge].

3. THE DEDUCTION OF SERRE'S AND IHARA'S RESULTS FROM THE RIEMANN

HYPOTHESIS.

(a) Serre's result



The Riemamn hypothesis states that if Ni is the number of points
of ¢ rational over GF(qi). then
SL(€) = &xp(zNi xifi)
= f(x)/{(1-x)(1-gx)}

where f(x) = 1+C1X+...+ng2g e Z|x] has inverse roots ERRRRL P

satisfying

(1) aidzg“i = ‘; L]

. 1/2
(i) [oyf =q /2,
So @.a., = q, whence a . = q/e,=0a, Thus, from the zeta function
ii 2g-1. i i
g -
N, =q+1- % (o + @), (3.1)
Since
) 58 gk L gk N
S I W B (3.2)

the elementary symmetric functions of the Ui are integers and

the Gi are algebraic integers.

As above, let m = [?ql/zj and let xi:m+1-ﬁi-ai, i=1,...,8.

(1) x>0

Let a; = c+d/:i, &i = c-d/-1. Then r2+d2r.q,whence c </q .
So a; + &1 = 2c < 2/q and [2/@]ﬂ>ai+&i; thus x,>0.

(2) The xi'are conjugate algebraic integers

To show that the elementary symmetric functions of the X; are

integers, it suffices to show that %xi is an integer for r=1,...,g



or that Z(ai+&i)r is an integer. However,
g(a.+ﬁqr=?m?#(rj ?aﬁ”l . +...+(5H) $a.ﬁﬁ”1+§ @t
i i i 1 i i Tt ii 1 i

g g

2 2 2g
- I%al, (T 5 ar-2,,ry. 2 THr-4
1 %ir(pa ¢ % T (aeT oty

which is an integer.

The <classical ~inequality on arithmetic and geometric means

gives
1 1/g
S Ixg 2 (Mx)™'& > 1

by (1) and (2). So Zx; > g, whence E(al.+_ai) < gm. Applying the
same argument with y, for x, with y, = m+l+0 + Gi gives

Le;+e) > -gm. Hence
|N1 - (q+1)] < gm, (3.3)

(b) Ihara's result

We use (3.1) and
|
2 -
N2 = q +1-2@, + © ). (3.4)
i
Sinceazﬂf =(a+&)2-2 S0
i 7Y it % 9,
+1-Z(a.+a.) = N; ¢« N, = 2+1+2 -2 (a . +a )2
q ity 1 =M 7 a 48 it%
- (2 - 2
However, gZ(ai+ ai) > {Z&H+ %)} . Thus

2

-1 - .2
Ny <a” + 1+ 2qg - g "{Z(a;+ ay)}

2 -1 2
= q"+1 + 2qg - g "(Ny-q-1)



and

NS - (2q+2-g)N +(a+1)*-(a®+1)g - 208 < 0,

from which the result follows.

- For g>-%[q—/a), Ihara's result is better than Serre's.

4, THE ESSENTIAL IDEA IN A PARTICULAR CASE

Let $ be as in §2, but consider it as a curve over K, the algebraic
closure of K = GF(g). Also suppose that ¥ is embedded in the

plane PG(2,K) and let ¢ be the Frobenius map given by

q QJ

- q
P(xo,xl,x2)¢ = P(xo,xl.xz

where P(xo,xl,xz) is the point of the plane with coordinate vector

(xo,xl,xz). Then

€= V(F)

= {P(xo,xl,xz) | F(xo,xl.xz) =0 }

for some form F in K[XO,XI.Xz}. Also €9 =% and the points of

¢ rational over GF(q) are exactly the fixed points of ¢ on &

For any non-singular point P=P(xo,x1,x2)' the tangent Tp at

P is



where f(x,y) = F(x,y,1).

Instead of looking at fixed points of ¢ , let us look at the
set of points such that Po € Tp. As P € Tp, this set contains

the GF(q)-rational points of & . Let

h= (x3-0f + (yI-y)fy.

Then
he = (@x971-1)fy + (x-x)fy + (Y9-y)fyy
- _ q_ q_
= -t + I0f s nf
and
- - q._ q_
hy fy + (x x)fxy + (y y)fyy.

So V(h) and V(f) have a common tangent at any GF(q)-rational point
of ¢ that is non-singular. So, if N is the number of GF(q)-rational
points of ¥ and the degree of f is d, then Bézout's theorem implies,

when f is not a component of h, that

(d+q-1)d = deg h deg f

{ ) ,
sum of the intersection numbers at

the points of V(f)nV(h)
> 2N.
Hence N < 7d(d+q-1).
Now, suppose that V(f) is a component of V(h), or equivalently

that h=0 as a function an V(f). Therefore

(-t /fy + (%-y) = 0,
(x4-0F - %y = o.



Differentiating gi.es

2
q_,y 47y _dy _ d q_,,
(x XJd2 ax Xy -y) =0
X
Remembering that 4 _ 9 + dy 0 we obtain that
R g dx ~ 9x = dx 9y © ‘
d2
(xq-x) —H% =0
dx
d2y -0
— = 0.
dx

, o dy - ,
Since T fx/fy, it follows that

2

a7y _ -2 -
i 7 Uy fya-20, 6 £, + £y 6,2},
42
THEOREM 4.1: If &3 # 0, that is, ¢ ¥s not all inflexions and
dx
¢ is odd, then N < J d(d+q-1).
Y
In fact kh% = 0 can zr’y occur when ¥ is a line or the characte
dx ‘
pl+l pr+1 :
ristic n < d,For example, when f =X +y +1, then € is all

intflexions. A particular case of this phenomenon is the Hermitian

Curve w?q<=vmfil+ = '-+xfﬁl

- 1

) when q is a square.

Since every curve of genus 3 can be embedded in the plane as
a non-singular quartic, we can see how theorem 4.1 compares with

Serre's bound for Nq(3) and its actual value,



q 3 5 7 9 11 13 17 19
2(q+3) 12 16 20 24 28 32 40 44
q+1+3[2/q] 13 18 | 23 28 30 35 42 44
N, (3) 10 16 20 28 28 32 40 44

Thus, for q odd with g < 19 and q # 3 or 9, the theorem gives

the best possible result. A curve achieving NQ(S) is @é 9°

5. WEIERSTRASS POINTS IN CHARACTERISTIC ZERO.

First consider the canonical curve €282 of genus g > 3 in

PG(g-1,L). The Weierstrass points, W-points for short, are the

points at which the osculating hyperplane has g coincident interse-

ctions. In this case, with w the number of W-points
w = g(g’-1).
In any case,
. 28+ 2 < W o< g(g®1)
with the lower bounded achieved only for hyperelliptic curves.

A curve of genus g> 1 is hyperelliptic if it has a linear series

% (a 2-sheeted covering) on it; for example, a plane quartic

Y
with a double point. It has equation

y? = £(x)

with genus g = [ %(d—l)] where d = deg f.

Consider the case g=3 of the canonical curve ‘?4, a non-singular

plane quartic. The W-points are the 24 inflexions. We note that



in characteristic p> 0, there is different behaviour; for example,

@é q has 28 undulations (points where the tangent has 4-point
contact). When g=4, the curve €0 - 73 fﬁiﬁz, the intersection

of a cubic and a quadric surface, has 60 stalls where the osculating

plane meets the curve at four coincident points.

More generally, still with characteristic zero, if ¢ has genus
g > 1 and P e €, there exist integers NpsNpse..sny such that no
function has pple divisor precisely niP. Also {nl,nz,...,ng} =
={1,2,...,g} for all but a finite number of points. We elaborate

this idea and make it more precise in §§8-10.

6. FUNDAMENTAL DEFINITIONS IN ALGEBRAIC GEOMETRY

Let %cAn(K) be an irreducible non-singular algebraic curve defined
over K, let I(g) ¢ K[Xl,...,Xﬁ] be the ideal of polynomials wich are
zero at all points of 4, let F(%)=K=[X1,...,Xﬁlﬂ(%j; and K(¥) be the

guotient field of T {¥); then K(¢g) is called the function field of ®.Also,for P in

€ et OP = {f/g|f,geT ,g(P)#0 }, the local ring of ¢ at P. Then,

by natural inclusions, K ¢ T(¥) c 0p(%¥) c K(¥). Also OP\{units}
= MP = <t>, the maximal ideal, and for any z in Op there exist
a unique unit u and a unique non-negative integer m such that
z = ut™; write m=ord,(z). Hence, if GeK[Xl,....Xn] and g is the
image of G in I'(¢) with G(P) # 0, define ordP(G)=0rdP(g). In
particular, if .4 is a plane curve and V(L) the tangent at P, then

ordP(L) gives the multiplicity of contact of the tangent with

% .



For the extension of these definitions to the projective case,

see Fulton [3], p.182. This is the situation we now consider.

A divisor D on ¥ 1is D =3 nPP, nPEZ, with nP=O for all but
Pe¥

a finite number of points P; the degree of D is deg D=Enp. Then

D is effective if np > 0 for all P. For z in K(¥), define

div(z) = ordp(z)P

= (2)0 - (Z)m »
where
(z)O = z ordp(z)P, the divisor of zeros,
ord(z)>0
and
(z), = z - ord_(z)P, the divisor of poles;
ord(z) <0 p

that is, div(z) 1is the difference of two effective divisors and

1]

deg div(z) 0.

In,P, define

Given D p

L(D) = {feK(%)|ordP(f) > - np, YP}
that is, poles of f are no worse than Np. In other words, feL(D)
if f=0 or if div(f) + D is effective.

The set L(D) is a vector space and its dimension i< denoted

2(D).

There 1is an important equivalence relation on the divisors

given by D~ D' if there exists g in K(¥) such that D-D'=div(g).



7. THE CANONICAL SERIES

Let ¢ be an irreducible curve in PG(2,K) where K is the algebraic
closure of K and let X be a non-singular model of € vth ¥:X » 4
birational. Points of X are places or branches of ¥ . A place
Q is centred at P if QY = P. Let rg = my (%), the multiplicity
of ¥ at P, where ¥ has only ordinary singular points. If 4'=V(G)
is any other plane curve such that div(G)-E is effective, where
E = EX(rQ-l)Q. then €' is an adjoint of €; essentially, ¢' passes
m-1 %imes through any point of ¥ of multiplicity m. If degé=d

and deg¥¢' = d-3, then €' is a special adjoint of €. In this case,

div(G) - E is a canonical divisor. The canonical series, consisting

of all canonical divisors, is therefore cut out by all the special

adjoints of &. The series 1is a Yg

-1 . . . .
2g-2 of (projective) dimension

g-1 and order 2g-2. For example,

6

€% = V(z%xy(x-y) (x+y)+x°

+y0)
is a sextic with an ordinary quadruple point at P(0,0,1) and no

other singularity. 'So
1 1
g = 7(6~1)(6—2) -5 4(4-1) = 4

The special adjoints are cubics with a triple point at P(0,0,1),
that is ¢triples of lines through the point. A special adjoint

has equation V[(x—l]y}(x-kyy}(x—AEy}) and has freedom 3. It meets

o ( _ L, . : .
¢’ in 6.3-4.,3=6 points other than P(0,0,1). Hence the special

3
adjoints cut cut & v,, as expected,



on X and D is any divisor, then

2(D) = deg D + 1 - g + 4 (W-D).

8.THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible, non-singular, projective, algebraic
curve of genus g defined over K but viewed as the set of points
defined over K, and let f : X +%c PG(n,K) be a suitable rational

map. Then ¥ is viewed as the set of branches of X.

Assume that ¥ is not contained in a hyperplane. The degree
d of € is the number of points of intersection of ¢ with a generic
hyperplane. For any hyperplane H, if np is the intersection multipli

city of H and € at P, then

He ¥ = ¢ Np P
Pe®
is a divisor of degree d = an. Also

2={H.6|H a hyperplane}

is a linear system. In this case, D~D' for any D,D' in % . Hence

% is contained in the complete linear system |D| = {D'|D'~ D},

where D is some element of @ .

A complete linear system defines an embedding f : X *% given
by
£(Q) = P(£,(Q),...,f (Q))
where {fo,...,fn } is a basis of

L(D) = {gekK(X)|div(g) + D > 0}



Given a linear system <% , the complete system containing € has
the same degree as 2 and possibly larger dimension. Hence, although
not necessary, it is simpler to consider complete linear systems,

and this we do.

Let ¢ of degree d have associated complete linear system %
and let P be a fixed point of ¢ . Let Q% be the set of hyperplanes

passing through P with multiplicity at least i. Then

_@=905@13.--3@d39d+1 = @-

Each QE is a projective space. If 9} # 9D

R then 91+1 has codi-

mension one in @i. Such an 1 is a (#,P)-order. So the (2,P)-orders

are Jo""'jn’ where

0 = jo <j1 <j2<...<jn < d.

Note that jl = 1 if and only if P is non singular.
For example, let € be a plane cubic.

Then

(jo'jl’jZ) =( (0,1,2) if P is neither singular nor an inflexion,
(0,1,3) if P is an inflexion,

(0,4.3) if P is singular.

Note that, as the points of ¥ are viewed as branches, each branch

has a unique tangent.

The Hasse derivative, satisfies the following properties:

1]

: (i) . Jypd-i,
(1) Dt (Z Fijt, ) Zaj(i)t '

[ ne o

(ii) Dgi) (fg) = %, DEj)f : DEi_”g;



(1i1) p{1) p{3) = Aty pUd*)

The wunique hyperplane with intersection multiplicity

P is the osculating hyperplane Hp and has equation

X5 *n
(i,) (i,)
det D fo D fn -
-(J._q) (i _q)
p n17¢ p -l
0 n

For example, if ¥ is the twisted cubic in PG(3,K),

~ 2 .3
(fo’f1$f2‘f3) - (ltt$t ’t )»
(Jgsdqrigedg) = (0,1,2,3).
. 2 .3, .
The osculating hyperplane at P(l,t,t”,t”) is
X0 X1 X2 X3
det 1 t t2 t3
0 1 2t 3t
| 0 0 1 3t
that is,
3 L2 ~
t xo - 3t X4 + 3tx2 - Xg = 0.

The point P on ¥ 1is a Weierstrdass point, W-point

L (Jgdqeeeeady) # (0.1,...0m).

at

for-short,



Since % 1is complete, the Riemann-Roch theorem gives that, if

d>2g-2, then
(i) n = d-g;
(ii) dim QE = d-g-i for i < d - 2g + 1;
(iii) ji =1 for i < d - 2g.

Let Li =1  hyperplanes meeting ¢ at P with np 1_ji+1. Then

Li-is dual to 9% and

n-1°

Also L, = {P?}, the set Ly is the tangent line at P, and Loy is

the osculating hyperplane at P.

The point P is a %-osculation point if jn>n, that is, there

exists a hyperplane H such that np>n.
The integers ji are characterized by the following result.

THEOREM 8.1 : (i) If jo""“ji—l are known, then ji is the
|

smallest integer r such that D(r)f(Q) is linearly independent

(3;.1)

(Jj.)
of {D ° f(Q),....D f(Q)}; the latter set spans L. -

(ii)If 0 < r,< .. <rg are integers such that

(r.)) (r.)
p © f(Q@,...,D s f(Q) are linearly independent, then jiiri'



9. THE GENERALIZED WRONSKIAN

Consider the generalized Wronskian

(¢) (¢.)
0 0
D fO eeo D fn
W = det . .
(]n) (%n)
D f .. D f
L 0 n

Here the derivations are taken with respect to a separating varia-

ble t (dt is the image of t under the map d : K(®)~ QK ; see Fulton
[3] p. 203).

The € are required to satisfy the conditions:

i = € <g_< < g€
(1) 0 0 1 LI L]

n
(ii) W # 03
(i1ij given 50.....81_1, then Ei is chosen as small as possible
(e) )

such that D f,...,5 * f are linearly independent.

Then

(iv) the Ei are the (9,P)-orders at a general point P;

(r;)
(v) & < r; for any r_< ...<r_with det (D £) # 0

i i

(vi) €,

i £ 3 for any P in ¢ ;

1

(vii) the Ei are called the @-orders of €.

The divisor



n
R = div(W) + (gei) div(dt) + (n+1) %epP,

where dt 1is the differential of t and ep = -min ordpfi, is the
i

il

ramification divisor of % and depends only on 2 . Putting R

= erP, we have

deg R = er = (2g-2)«‘:€i + (n+1)d.

n
THEOREM 9.1: rp > igo(ji-gi) with equality ‘if and only if det
= = -] i
C#0 (mod p), where C (cis) and Cis ( e;)
COROLLARY: (i) R is effective,
(ii) rp = 0 if and only if ji=€i for 0<i<n.

The points P where rp=0 are called %-ordinary; the others

are called ¢@-Weierstrass. The number rp is the weight of P. When

2 is the canonical series, the @-Weierstrass points are simply

[
the Weierstrass points. This coincides with the classical definition.

When Ei =i, 0 < i < n, then 2 is classical. Next, the estimate

€ is improved.

i 235
THEOREM 9.2: (i) Let P on ¥ have (9,P)-orders jo....,j and

suppose that det C'Z 0 (mod p), where C'= (c!

(r)) (r.)

then D ° f,...,D "' f are linearly independent and ¢, < ..

(ii) If 0 (j;-ijMi-s) # O (mod p), then 2 is

n
classical and r_ = I (j



n
(iii) If p > d or p=0, then rp = %(ji_i) for all
P in €.

(iv) If € is a P-order and p is an integer with

(E) # 0 (mod p), then ¥ is also a D-order,

(v) If € is a 2 -order and e<p,then 0,1,..., €-1

are also D-orders.

Entering into this theorem is the classical result of Lucas.

m

) _ _ m
LEMMA 9.3: Let A—ao+a1p+...+amp and B~b0+b1p+...+bnp

be p-

adic expansions of A and B with respect to the prime p; that is,

0 < ai, bi < p-1. Then

A
(1) () =CDCH... ™(mod p);
B b

A

(ii) () # 0 (mod p) if and only if a. > bi’ all i;
B

1

A Zagp’
Proof: (1+x)" =(1+x)

a -

a a m

m
= (1+x) °(1+xP) 1L exP)

Now, the result follows by comparing the coefficient of xB on

both sides.



10. CONSTRUCTION OF SOME LINEAR SYSTEMS

LEMMA 10.1: Let |D| be a complete, non-special linear system

and let j be the (|D|,P)-orders, where n=dim|D|. Then

O,...,jn
the (|D+P|,P)-orders are 0, jo +1,...,jn+1.

THEOREM 10.2: If .|D| is a complete, non-special, classical,
linear system and |[D'| is a complete, base-point-free, linear

system, then |[D+D'| is classical.

Let Peg and let jo,...,jn be the (2,P)-orders for %2 canonical.

Then j0+1= al,...,jg_1+1= (% are the Weierstrass gaps at P; that

is, there does not exist f in K(%), regular outside P, such that

ordp(f)=—ai.
THEOREM 10.3: Let Pe¥ and let ul""’ag be the Weierstrass
gap sequence at P. If the linear system 2= |dP| for some positive

integer d, then the (2,P)-orders are ‘{0.1,....d}\{d—di| o, < d i,

THEOREM 10.4: With P and tﬁ,....t% as above, let V be a canonical
divisor, s > 2 an integer, and %= |V+sP|. Then the (2,P)-orders
are

.= 1 for i=0,1,...,s5-2,
= g-140 i =
ig-p = s-1+7%. for i 1,...,8

THEOREM 10.5: Let P in & be an ordinary point for the canonical
linear system |V| and assume that |V| is classical. Then, for

any n such that 0 < n < g-1, the linear system %= |V-nP| is a

g-1-n

classical YZg—Z-n without base points, and P is Z2-ordinary.

An important result an linear series is also worth noting.



THEOREM 10.6: The generic curve of genus g has a YS if and

only if

d > H%T g+n.

11. THE ESSENTIAL CONSTRUCTION

Given the curve ¢ with its linear system of hyperplanes and with
N the number of its GF(q)-rational points, consider the set

#={P|Pgpc Hp} ; compare §4 for the plane. So PeF &

R SO £4 l
o} n
(i.) (j,)
4] o -
det t o Dt fr1 = 0
(J ) (J )
n-1 n-1
i Dt f0 .o Dt fn-

To give an outline first, take the classical case in which
ji=i. So, let

W'=det

(n-1) (n-1)
D fooee D f

If W' # 0, then W is a function of degree



- 20. -

n(n-1)(g-1) + d(q+n)
and the rational points are n-fold zeros of W'. Hence
N < (n-1)(g-1) + d(q+n)/n.

Since % is complete, d < n+g: hence

2z
Fal

< (n-1)(g-1)+(n+g)(g+n)/n
=q+ 1+ g(n +q/n).

This has minimum value for n = vq, in which case

N<qg+ 1+ 2g/q

More carefully, let

q q -
£
(vy) © (V)
Wt(v.f) = det Dt fo ceeean Dt fn
I
(v__1) (v__1)
n-1 n-1
Dt f0 Dt fn N

where t is a separating variable on € and v=(v ...,V ;) with
- O L n_lI

THEOREM 11.1: (i) There exist integers VorerosVo_o1o such that

0< vy <oy, and W _(v,f) # 0.



- 21 -

(ii) If v are chosen successively

T 2

so that v; 1Is as small as possible to ensure the linear independence

of D °f,...,0 ' f, then there exists an integer n, with

0 <n, < n such that

where 80,...,€n are the 9-orders: that is

(V |--00V_)=(E |c-cg€ - |E |o|||€ )c
0 n-1 0 n, 1 n0+1 n

(iii) If v'=(vé,....vﬁ_1) and Ht(v',f) # 0, then

v, <v! for all i.

i i
The integers v; are the Frobenius @-orders. They amrd S depend

only on %, where

S

div(wt(v.f))+div(dt] Zvi+(q+n)E.

deg S (2g-2) Evi + (q+n)d.

THEOREM 11.2: If v < q is a Frobenius @-order, then each non-
negative integer u such that (}) % 0 (mod p) is a Frobenius

%Y-order. In particular, if Vi <P, then vy = j for j < 1.

THEOREM 11.3: (i) If P is a GF(q)-rational point of &« ,then



with equality if and only if det C 2 0 (mod p), where

C = (cir) and Cip = ( ) , i,r=1,...,n.

(ii) If Pe¥ but not GF(q)-rational, then

n-1

If, det C' = 0 (mod p), the inequality is strict, where
C' = (c!.) and c!_ = (ji_l ) r=1 n
ir ir Vr—l ] k] r ]

THEOREM 11.4: Let P be a GF(q)-rational point of ¢ . If

0 < m< e <my 4 and det C" # 0 (mod p), then vi < omy for all i,
where C'" = (c;r) and
cl = (Jl--]l) , i, r=1,...,n.
ir
Mr-1

COROLLARY 1: (i) If P is a GF(q)-rational point of ¢, then

v < ji+1_ji for i=0,.f.,n-1 and mp(S) > njl.

(i) If (a) 1¢;&cq (Ip))/(r-1)70 (mod p),

or (b) jiijr (mod p) for i#r, or (c) p > d, then vi=i for i=0,...,n-1

1]
and mp(S) =n + i51(31—1).

COROLLARY 2: 1If V4 # €i for some i<n, then each GF(q)-rational
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point of ¢ a 92-Weierstrass point.

COROLLARY 3: If ® has some GF(gq)-rational point, then vi£;+d—n.

all i. If also 92 is complete, then vi=i for i <d - 2g.

THEOREM 11.5: (THE MAIN RESULT) Let X be an irreducible, non-
singular, projective, algebraic curve of genus g defined over
K = GF(q) with N rational points. If there exists on X a linear

system ‘Yg without. base points, and with order sequence €gre1Ep

and Frobenius order sequence v_,...,v _;, then

o

1

n-
g vi+(q+n)d}.

1
N < = {(2g-2)

If also Vi = ei for i< n, then
n-1
EnN + % aP +.%|bpl < (23-2) 2 ei + (Cl"'n)d.

where P is a K-rational point of X, where P'eX but not K-rational

and where

ap = i#nUsm€)e by = 33,050 )

with jo....,jn the (2,P)-orders.

COROLLARY: |N-(q+1)| < 2g”q.

THEOREM 11.6: If X is non-singular, p>g>3 with q=ph, and the

canonical system is classical, then

N < 2q + g(g-1).



- 24 -

Notes: (1) If p > 2g-1, then the canonical system is classical.
(2) This gives a better bound than Sg = q+l1 + g[Z/h] when

IVa-g|</g+1.

THEOREM 11.7: If X is non-singular and not hyperelliptic, with

%(p+3) > g > 3, then
2g-3
N < (*85)a + g(a-2).

Note : This is better than Sg when
va - BER e( (g-2) (g-g- 11}/ (e-1).

THEOREM 11.8: If X is non-singular with classical canonical

system and a K-rational point, then
N < (g-n-2)(g-1)+(2g-n-2)(q+g-n-1)(g-n-1) "

for 0 < n< g - 1.

12. ELLIPTIC CURVES

The number of elements of a 72 on a curve of genus g with n+l
coincident points, that is P-Weierstrass points, is (n+1)(d+ng-n).
When g=1, this number is d(n+l). If 2 consists of all curves of
degree r and € is a plane non-singular cubic, then n=%r(r+3).

d = 3r. The condition for a y'g to exist is, from Theorem 10.6,
that d > n/(n+1)+n. So this only allows Yé and Yg' whence d=n+1

and the number of %-Weierstrass points is (n+1)2. From the Riemann-

Roch theorem, as every series is non-special on ¢ , a complete
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series YE satisfies d = n+1.

For n=2, the PD-Weierstrass points are the 9 inflexions. For
n=5, they are the 9 inflexions (repeated) plus the 27 sextactic
points (6-fold contact points of conics = points of contact of

tangents through the inflexions).

The above holds ‘for the complex numbers; for finite fields,

the result is the following.

THEOREM 12.1: (i) If p %(n+1), the S@—W—poihts have multiplicity
one .
(ii) If pkl(n+1). pk+1‘r(n+1) with k > 1, then
one of the following holds:
(a) € 1is ordinary and there are (nfl)z/pk@-w-
points with multiplicity pk;

(b) ¥ 1is supersingular and there are (n+1)2/pZk

2 - W-points with multiplicity p2k.

THEOREM 12.2: If'¥ is elliptic with origin O and @2 is a complete

linear system on ¢, then

(i) 2 is classical;
(ii) % is Frobenius classical except perhaps when 2= |(/q+1)0];

(iii) |(/q+1)0| is Frobenius classical if and only if N« Gfﬁ+l)2.

13. HYPERELLIPTIC CURVES

As in §5, if p#2, then ¥ has homogeneous equation yzzd"2=zdf(x/z)

with g=[3(d-1)]. Llet g > 1 and let P,,...,P_ be the ramification

points of the double cover (= double points of the Y% on ¥);



then n=2(g+l) from the formula beginning §12. When d is even,
they are the points with y=0; when d is odd, they are these plus

P(0,1,0). Let n, be the number of K-rational Pi.

THEOREM 13.1: Let % be hyperelliptic with a complete Y% =
|[D| and n,n as above. If there is a positive integer n, such

that [(n;+g)D| is Frobenius classical, then
-1 3
IN-(q+1)} < g(2n;+g)+(2ny+g) “{g(a-n_)-g”-gl}.

Note: If p > 2(n1+g), then the hypothesis is fulfilled.

COROLLARY: Let p > 5 with p=cz+1 or p=c2+c+1 for some positive

integer ¢ and let ¥ be hyperelliptic with g>1 over GF(p). Then

IN-(p+1)| < g[2/p] - 1.

14. PLANE CURVES

Let € be a non-singular, plane curve of degree d over K=GF(q):
then g = %(d—l)(d—Z). Let D be a divisor cut out by a line, which

can be taken as z=0.

Let x,y be affine coordinates. The monomials xiyj, i,j>0, i+jcm
span L(mD) and are linearly independent for m< d. Hence dim|mD|=
= %m(m+3) for m < d. Also, mD is a special divisor for m < d-3.

Thus |mD| is cut out by all curves of degree m.

THEOREM 14.1: Let ¥ be a plane curve of degree d and let D be
a divisor cut out by a line. If m is a positive integer with

m <d - 3 such that |mD| is Frobenius classical, then

N < %(m2+3m-2)(g-1)+2d(m+3fl{q+%m(m+3)},
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Proof. Put (i) sm(m+3) for n, (ii) (d-1)(d-2) for g,

(iii) md for d, (iv) i for Vi in theorem 11.5.

Notes: (1) When m<p/d, then |mD| is Frobeinius classical.

(2) For m=1, we have that 4 < d < p implies that
N 1
< 7d(d+q-1).
as in theorem 4.1,
(3)For m=2, we have that 5 < d < %p implies that
N < —29(5(d-2)+q} ,

which is required in theorem 19.1.

Let f(x,y) be homogeneous of degree d with f(x,1) having distinct

roots in K. A Thue curve is given by

Ea : f(x,y) = 29,

It is non-singular.

THEOREM 14.2: Let D be a divisor cut out by a line on Gﬁ' If

m is a positive integer such that |mD| is Frobenius classical,
then

1
N < (n-1)(g-1) + H{md(q+n)-d Am'doBJ ,
where n is the dimension of |mD|;
1
7m(m+3) form<d - 3

dm - g for m>d - 3 ,
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1

g = 7(d-1)(d-2),

d = number of K-rational roots of f(x,1),

—m(m-1)14(d-m-1) (m+4) +(m-2) (n-5)} for m<d-3

~7 (d-1)(d-2)(d-3) (d+4) for m>d - 3,

dm - %m(m+3) form<d -3

m g for m>d - 3.

Note: When m < p/d, then |mD| is Frobenius classical.

A Fermat curve is a special case of a Thue curve given by

5% : axd 4 byd - o4

with a,b € K\{0}.
THEOREM 14.3: For &; with the same conditions as above,
1
N < (n-1)(g-1) + H{md(q+n)-3d A -dq Bm}-

with n.,._&;,Am,]E':“1 as above, but d1 is the number of points of fd

with xyz = 0.

15. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

In Table 1, we give the value of Nq(g) or the best, known
bound for g<5 and q<49 arising from results of Serre [12],[13]
and the preceding sections. Also included in the table is the

bound Sy = q+1+g[2/q]; see §2.



TABLE 1

The maximum number points on an algebraic curve

11
13
16
17
19
23
25
27
29
31
32
37
41
43
47
49

[2/4a

o o

10
10
10
11
11
12
13
13
13
14

—

q

10
13
14
16
18
21
25
26
28
33
36
38
40
43
44
50
54
57
61
64

(1)

N, (2) S
6 7
8 10

10 13

12 14
7 18

18 19

20 22

24 24

26 28

33 33

32 34

36 36

42 42

16 46

48 48

50 50

52 54

53 55

60 62

66 68

68 70

74 74

78 78

2

N, (3)

7
10
14
16
20
24
28
28
32
38
40
44

<48
56

92

S

13
17
18
23
24
28
30
35
41
42
44
51
56
58
60
65
66
74
81
83
87
92

3

N, (4

8

12
15
18

24-25

26-30
52-34
36-38

Sy

11

16

21

22
28
29
34
36

49
50
52
60
66
68
70
76
17
86
94
96
100

106

N, (5) Sg
9 13
<15 19
<18 25
<22 26
<29 33
<32 34
<36 40
<40 42
<45 49
57

<54 58
<58 60
<66 69
76

78

<78 80
<82 87
88

<94 98
<102 107
<106 109
113

120




16. ELLIPTIC CURVES: FUNDAMENTAL ASPECTS.

The theory of elliptic curves over an arbitrary field K offers
an appealing mixture of geometric and algebraic arguments. Let
¢$be a non-singular cubic in PG(2,q). For the projective classifi-
cation when K = GF(q), see [6] Chapter 11. Although ¢ may have

no inflexion, wup to isomorphism it may be assumed to have
one, 0.

THEOREM 16.1: If ¢, €' are cubic curves in PG(Z,K) such that

9 8

Co. S > "o . -
the divisors ¥. €' = i=1Pi and ¢-€¢ igl Pi + Q, then Q Pg.

Proof. (Outline) Through Pl.....P8 there is a pencil # of cubic
curves to which ¢, €', €' belong. Any curve of ¥ has the form
V(F+)1G) and so contains V(F) N V(G). By Bézout's theorem |V(F)NV(G)|=9.
Hence =P .
Q 9
For a detailed proof, see [3], Chapter 5.

Theorem 16.1 is known as the theorem of the nine associated points.

It has numerous corollaries of which we give a variety before the

important theorem 16.7.
THEOREM 16.2: Any two inflexions of ¢ are collinear with a third.

Proof. Let PI,P2 be inflexions of € with corresponding tangents
21,22. Let % = P,P, meet ¢ again at P;, and let 13 be the tangent
at P3 mecting ¥ again at Q. Then

€. %, = 3P



Hence

+ 3P, + 2P3 + Q

2

By the previous theorem, Q = P.; so P3 is an inflexion.

THEOREM 16.3. If P, and Ql are any two points of € , the cross-

1
ratio of the four tangents through Pl is the same as the cross-

ratio of the four tangents through Q].

Proof. Let PlQ1 meet ¥ again at Rl' Let r be a tangent to
through R1 with point of contact R2=R3. Let Pl P2 P3 be any line

with P,,P, on ¥ . Let R,P, meet ¥ again at Q2 and let

1 23 2°2
RSPS meet 6 again at Q3. We use the previous theorem to show that

through P

Ql,Qz,Q3 are collinear.

Write g; = P,R.Q,, i=1,2,3; let p=P,P,P;, r=R4R,, q=Q;Q,S

with S the third point of Q on ¥.

3

Then %}Elizis = iFél(Pl.+Qi+Ri)

3
€. prq = iél (P1+Ri) + Q1+Q2+S.

Again by theorem 16.1, S = 03. When Pz and P3 coincide, so do
Q, and Q5. So there is an algebraic bijection T from the pencil
% through P, and the pencil G through Q; in which the tangents
correspond. Hence 1 is projective and the cross-ratios of the

tangents are equal.



THEOREM 16.4, (Pascal's Theorem)

If P1Q2P301P203 is A4 hexdagon inscribed in a conic % ,then the

intersections of opposite sides, that is RI’RZ’RS' are collinear.

Proof. The two sets of three lines

PIQZ)(PSQl){PzQS) And (lez)(QSPl)(QZPS)



are cubics through the nine points Pi’Qi'Ri’ i=1,2,3; there isan
irreducible cubic ¥ in the pencil they determine. Also in the
pencil is the cubic consisting of # and the line R3R2. So, by
theorem 16.1, this cubic contains the ninth point Rl’ which cannot

lie on 2 So RSRZRI is a line.

THEOREM 16.5: Let be the sides of a complete quadri

10t byt

lateral in an affine plane and let Ci be the circumcircle of the

triangle obtained by deleting Qi. Then ClﬂCzﬂC ﬂC4 = {P}.

3

Proof.

There is a pencil of cubics through the vertices of the quadrila-
teral and the two circular points at infinity. The four cubics
Ci+ Ei' i=1,2,3,4, contain these eight points and therefore the
ninth associated point P. As each Qi contains three of the eight

initial points, it does not contain P. Hence P lies on each Ci.

Now we show that an elliptic curve ¥ 1is an abelian group. As

above we take 0O as an inflexion.



Definition: For P,Q on ¥, let %.PQ=P+Q+R and let %.0R=0+R+S;
define S = P+Q.

LEMMA 16.6: (i) On ¥, the points O0,P,-P are collinear.

(ii) P,Q,R are collinear on ¢ if and only if P+Q+R=0.

THEOREM 16.7: Under the additive operation, € is an abelian

group.

Proof. The only non-trivial property to verify is the associati-

ve law.

Apart from & , consider the two cubics consisting of three lines

given by the rows and columns of the array



_p _p

Pl P 11 12
P2+P3 PZ—P3 0

X P3 P1+P2

Again, by theorem 16.1, X lies on both these cubics. So,
X = —Pl—(P2+P3) = —(P1+P2)-P3: hence, if Y is the third point
of € on OX, then

Y = P1+(P2+P3) = (P1+P2)+P3.

Note: ¥ has been drawn as y2=[x—a)(x—b)(x—c) with a<b<c, but the

point of inflexion natural to this picture is at infinity,

THEOREM 16.8: (Waterhouse [21]). For any integer N=q+l-t with
|[t| < 2/q, there exists an elliptic cubic in PG(2,q), g= ph, with
precisely N rational points if and only if one of the following

conditions on t and q is satisfied:

(i) (t,p) =1

(ii) t =0 h odd or p# 1 (mod 4)
(iii) t = i/a h even and p # 1 (mod 3)
(iv) t =+ 2,4 h even

(v) t = +/2q h odd and p = 2

(vi) t = +/3q h odd and p = 3

q + [2/q] if p divides [2,4],
h is odd and h > 3;

COROLLARY :

=z
O
~
ek
Nt
1l

q+1+[2/q] otherwise.



17. k-ARCS ON ELLIPTIC CURVES

As in §16, the curve % is a non-singular cubic in PG(2,q) with

inflexion O.

THEOREM 17.1: (zirilli [22]) If |%| = 2k, then there exists

a k-arc K on%.

Proof. Since ¥ 1is an abelian group, the fundamental theorem

says that % 1is a direct product of cyclic groups of prime power

order. By taking a subgroup of order 21“_1 in a component of order
2", we obtain a subgroup G of ¥ of index 2. Let K = % \G. Let
Pl.P2 € K. Then —PleK and P2=—P1+Q for some Q in G. Hence P1+P2=Q

and P1+P2—Q=O. Since -Q is in G, no three points of K are collinear.
The remainder of §17 follows Voloch [19].

The object is now to show that ¥ can be chosen to be complete.

First we construct ¥ in a different way.
Let UO = P(1,0,0), UI:P(O,I,O). U2=P(0,0,1).

Also, with K=GF(q). let K_=GF(q)~{0} and KZ={t|teK }.

Now, let € in PG(2,q), q odd, have equation

2. .3 2 2 3
Yy Z = X +a2xz+a1xz +aOZ.

Also suppose it is non-singular with 2k points. The point U1 is
an inflexion and we take this as the zero of ¥ as an abelian group.
Since |¢| is even, so ¥ has an element of order 2, which necessa-
rily is a point of contact of a tangent through Ul. Choose the
tangent as x=0 and the point of contact as UZ’ Thus aO:O and

% has equation
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yzz = x3+a2xzz+a1xzz. (17.1)
. ) 2
Define 0 : €~ KOfKO by
U,0 = K2 ;s U0 = a K2 P(x,y,1)0 = sz for x#0
1 O Ll 2 1 09 L) L] 0 -
. 2 B 2
Write K /KJ = {1,v[v7=1}.

LEMMA 17.2: 0 is a homomorphism,
Proof. If P = P(x,y,1), then -P=P(x,-y,1).

So PO = (-P)€ , this also holds for Ul and U Hence, if P1+P2+P3=0,

2l
then P-1+P2=-P3 and (P1+P2)9 = (—P3)9 = P39== 1/(P39). If it is

shown that (PIO)(PZB)(P36)=1, then (P1+P2)0 = (Ple)(Pze).

Let Pi = P(xi,yi,l), i=1,2,3. Since P1+P2+P3=0. SO pl’PZ’P3
are collinear, whence there exist m and c¢ in K such that Y {=MX;+C,
i=1,2,3. So

(mx+c)? - (x7+a,xP+a x)=(x-x) (x,-%) (x5-X) .
{

Thus x;X,x5 = c? and so (P,0)(P,0) (P50) = L.

If (Pl.PZJ = (Ul’PZ)' then (P1+P2)G = P28 = (Ple)(PZO). If
(Pl,Pz) = (Pl’UZJ and P1 = P(xl,yl,l), then P1+U2=P(x2,y2,1) with
X{Xy=ag.

Hence (P1+U2)O = x2=a1/x1

- xi(al/xl) = xja; = (P,0)(U,0).

So the homomorphism is established in all cases.
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LEMMA 17.3: @0 is surjective for q > 7.

Proof. Since P(bxZ2,y,1)0 = bx’ = b, it suffices to find a point

Q on &' = V(F(bxz,y,z)) where ¢ = V(F(x,y,z)). So €' has equation

2 4

y224 = (bxz)3 + az(bxz)zz + al(bxz)z

However, we require Q not on V(xz). But V(z)rﬁ%”={th_} and
V(X) ng' = {Ul'Uz}' If we put y = tx, we see that &' 1is also
elliptic and so has at least (/—q-l)2 points. Since th—l)2 > 2

for q > 7, there exists the required point Q.
LEMMA 17.4: % =¢$\ker©® 1is a k-arc.

Proof. Let G = ker©® . Then, from the previous two lemmas,
G<¥ with Ef: G] =2, Then, if PeG, PO = 1; if PeK, PO =v . Suppose

P,,P,,P

1°F5:P3 in ¥ are collinear. So P1+P2+P3 = (0, whence (P1+P2+P3)O=OG.

So (PIOJ(PZOJ(P3G) = 1, whence v3=1, whence v = 1, a contradiction.
This lemma just repeats lemma 17.1 using the homomorphism O .

THEOREM 17.5: ¥ is complete for q » 311.

Proof. Let P ePG(2,q) \x". It must be shown that JE”U{P0 } s
not a (k+l)-arc. There are three cases: (a) P eg X, (bJP0=P(xO.y0.l),
(c) P0 = P(l.yO.O).

Case (a). There are at most four ‘tangents through Po with point
of contact Q in X. Since k = %l%ﬁ > %(/ﬁ-l)2>4, there exists Q
in X which is not such a point of contact. So 2Q # - P, and

Q # - (P_+Q). Also -(P_+Q) e X, as otherwise QeG = €\XH. So P.+Q,

-(P,+Q) are distinct collinear points of s ul Po}'
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Case (b). Let %' be the elliptic curve with affine equation

y2 = vixt e vlanxt 4 ovag (17.2)
Define the following functions on %':
U=wvx", Z=xy, A= (yO-Z)/(xo-U),

_ a2 _ a2
B =A —ay, C = 2AZ a, 2A7U,

)
1!

(U-B)% + a(c+BU - U?).

Then there exists a double cover
vy Qs €'
defined by wz = D; that is, for any point P(x,y,1l) of %', there

are two points P(x,y,W,1) of 2 . Now, let P(x,y,W,1) be a rational

point of 2. Then, from the equation for €',

whence

+ aZU + alU . (17.3)

Hence
(1) P = P(U,Z,1) X
(2) PPn has equation y-Z = A(x-U);
(3) PP_ meets % 1is two points other than P whose x-coordinates
satisfy
3 g

x“ - (B-U)x - (C+BU-U®) = 0 (17.4

The last follows by substitution from (2)



{ Z+A(X—U)}2 = x3+azx2+alx.

Then, from (17.3),
(U3+a2U2+alU) - (xj+a2x2+alx)

v 27A(x-U) + A2(x-1)? = 0.

Cancelling x-U gives (17.4).
Now, let € n PPO = {P,Q,R}. The discriminant of (17.4) is
(B-U)2 + 4(C+BU-U%) = D = wZ.
So Q and R are rational points of % . Since P,Q,R are collinear
(P®(QB)(RO) = 1. As Pest, so Po =v , whence (QO)(R@)=v. So one
of Q a nd R, say Q, is in ¥. Hence, if P#Q, there are three collinear

points P,PO,Q of;YlJ{PO}.

it remains to examine the condition that P#Q. There are at
most six tangents to @ through P_ ([6] p.252). So, if P=Q or P=R,
there are at most six choices for P, hence 12 choices for (x,y)
and 24 choices for P(x,y,W,1) on 2. As |¢'Nn V(x)|<2 and |€NV(z)|=0,
so |2nNV(x)] < 4 and |2N0NV(z)|=0. So we require that £ has at least

24+4+1 = 29 rational points.
By the Hurwitz formula ([5] p.301 or [3] p.215),

2g(P)-2 = 2{ 2g(¥')-2} + deg E (17.5)

= deg E.

Hzre, E is the ramification divisor (cf. §9) and



deg E = # points of ramification

I

# points with D = 0

# points such that Q and R have

the same x-coordinate .

If Q = P(xl,yl,l) and R = P(xl,yz,l), then Yo=Yy if Y;

1

= - y,. then Q.,R,U are collinear. So either Q=R or Q=-R. If Q
-R, then P = U1 and this gives at most two points on €', If
Q=R, then PP0 is a tangent to ¥ at Q. Hence there are at most
six choices for P and hence at most 12 such points on ¥'. Hence

2g(2) -2 <12 + 2 = 14, whence g(9) < 8. Thus by the corollary
to theorem 11.5,

|9| > q+1 - 16/q
So, when q+1-16/q > 29, we obtain the desired contradiction; this
occurs for q > 311.

Case (c¢). This is similar to case (b). Here, among the functions

on ', one takes A = Yo -

Notes: (1) The result certainly holds for some but not all k with
q <311.
(2) A similar technique can be applied for q even. Here

% 1is taken in the form

(y2+xy)z = x3+a1xzz+a033.

Instead of 0 as above, we define 0 : € - K/C0 where C0={LEK|T(L)=O}

and T(t) = t+t2+...tQ/2; here C0 in the set of elements of category

(= trace) zero. Take P(x,y,1)0 = xCO. Then X is complete for q>256.



COROLLARY : In PG(2,q) there exists a complete k-arc with k=%(q+1—t)
for every t satisfying 16.8 when either (a) q is odd, 4>311, t
is evens;or (b) gis even, @>256, t is odd.
18. k-ARCS IN PG(2,q).

Let X be a complete k-arc in PG(2,q); that is,.# has no three
points collinear and is not contained in a (k+l)-arc. We define

three constants m(2,q), n(2,q), m'(2,q).

m(2,q) max k = ¥q+2, g even
’q+1. g odd,

min k.

n(2,q)
If m(2,q) # n(2,q),
m'(2,q) = second largest k;

if m(2,q) = n(2,q), let m'(2,q) = m(2,q). So, if a k-arc has
k >m'(2,q), then it is contained in an m(2,q)-arc. For q odd,
every (g+l)-arc is a conic. For q even, the (q+2)-arcs have been

classified for q < 16; see [4], [6].
The value of n(2,q) seems to be a difficult problem. By elementa
ry considerations ([ 6] p.205),
n(2,q) >~v2q.
Constructions have been given for complete k-arcs with  k having

the following values (up to an added constant):

qQ , see [6], §9.4;

q . [1]:

L= |



l -
74 llll
2q9/10 , q large, |15];
1 S
cq , ¢ < 3, q large |16 ;

These examples all 1lie an rational curves, namely conics or sin-
gular cubics: to be precise the k-arcs of order %q have one point

off a conic. The examples of §17 are the only other ones known.
Conjecture: For each k such that
n(2,q) <k <m'(2,q9),
these exists a complete k-arc in PG(2,q).

In fact, although the conjecture 1is true for q < 13, it 1is

probably more realistic to ask for the smallest value of q for

which the conjecture is false.

In Table 2, we give m, m' and n for q < 13.

Upper bounds for m'(2,q) are as follows:

- 2 )
m'(2,q) <q - %/q + —l—g , q odd, [17]:

Zh [6], theorem 10.3.3.

L]

L}

m'(2,9) <q-Yq+1 , q

g -/a+1 . q=2"",[2].

m'(2,q)
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19. AN IMPROVEMENT ON THE BOUND FOR m'(2,q) WHEN q IS PRIME

THEOREM 19.1: (Voloch [20]). For a prime p > 7,

' 44 8
m'(2,p) < 45P * g

Proof. A theorem of Segre (see [6], theorem 10.4.4) says that,
for q odd with q > 7, we have m'(2,q) < q - %/E'+ % and we follow
the structure of this proof.

Let o be a complete k-arc with k > %%p+%. Through each point

P of X there are t = p+2-k unisecants. The kt unisecants of X
belong to an algebraic envelope &Zt of class 2t, which has a simple
component T ~with n < 2t. For t=1, the envelope 4, is the dual
of a conic,X is a (q+l)-arc and so a conic. When t > 2, four cases

are d stinguished.

(i) Fn is a regular (rational) linear component.

Here T~ is a pencil with vertex Q not in X. Then XU{Q} is

a (k+l)-arc and ¥ is not complete.

(ii) Ih is regular of class two.

Here I‘n is the dual of a conic ¥ , and ¥ is contained in

¢, [6] theorem 10.4.3.
(iii) T is irregular.

Suppose that Fn_ has M simple 1lines and d double lines, and
let N=M+d. Then, by [6] lemma 10.1.1, it follows that N < n?.

Also by the definition of 32t and Pn, there are at least %n

kn. Therefore k<2N/n<2n<4t=

==

distinct lines of T through P; so N >
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= 4(p+2-k). Thus k < %{p+z) <%%p + g, a contradiction for p>5.

(iv) In is regular with n > 3.

. 1 1 1 3 44 8
- < > > = - = - 4=
Either n=2t 7P Or t”7p. When t 7 P> then k=p+2-t < 4p+2<45p+9

for p > 5.
1
When n < 5p, then
N < —221{5(n-2)+p}

for n > 5 by theorem 14.1, note (3); for n > 3 it follows from
theorem 11.5 when we note that p < %p implies vy = i by theorem

~11.4, corollary 1 (ii).

As in (iii), N > Zkn. So

2
%kn <N < gn{S(n-Z )+ pl,

k < +{5(n-2)+p},
4
k < $45(2t-2)+p} .

Substituting t = p+2-k gives

k < ={10(p+1-k)+p} ,

vl

k < —ig (11p + 10),

the required contradiction.
COROLLARY: For any prime p > 311,

F+[2/p])< m' (2,p) < —4= (11p+10).
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Notes: (1) —ig (11p+10) <p - %/ﬁ + %% for p > 47.

(2) is (11p+10) <p -/ P+l for p > 2017.

20. k-CAPS IN PG(n,q), n > 3.

A k-cap in PG(n,q) is a set of k points no 3 collinear. Let
m2(n,q) be the maximum value that k can attain. From §19, m(2,q)=

= mz(z.q). For n > 3, the only values known are as follows:
2 .
m,(3,q9) = q"+1, qQ>2;

_ »d.
mz(d,Z)— 2 N

I

m2[4.3) 203

56.

mZ(S.S)

See [8] for a survey on these and similar numbers. The sets corre-
sponding to these values for mz(d,q) have been classified apart

from(q2+1)—caps for q even with q > 16.

As for the plane,! let mz(n,q).be the size of the second largest

complete k-cap. Then, from [9], chapter 18,
my(3,2) = 5 » m5(3,3) = 8.
We now summarize the best known upper bounds for mé(n.q) and mz(n,q).

THEOREM 20.1: ([7]) For q odd with q > 67,

. 2 1
my(3,9) <q” - 749 + 2q.

THEOREM 20.2: ([10]) For q even with q> 2,
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2 1
my(3.9) < q° - 39 - 3/q + 2.

This gives that mé(3,4) < 15.
THEOREM 20.3: ([}0]) mé{3,4) = 14.

In fact, a complete 1l4-cap in PG(3,4) is projectively unique
and is obtained as follows.

Let ™ be a PG(2;2) in PG(3,4), let P be a point not in T ,
and let T be a PG(3,2) containing P and n. Each of the seven lines
icghing Pto a point of 7 contains three points in 1n and two points
-~t in 7. The 14 points on the lines through P not in I form the

desired cap.

THEOREM 20.4: ([7]) For q odd, q > 121, n > 4,

- -3/2 -2
mz(n,q) <qn L %qn 37 + 3qn .
THEOREM 20.5: ([10]) For even, q>4, n>4,
1 n-2 5 n-3

n- 1
my(n,q) < g - 39 + 54
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