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§§1-1S are based on the thesis [18], of J.-F.Voloch, apart

from some background remarks and classical interpolations. They

deal with the number of points 00 ao algebraic curve over a finite

field. The main results of the· thesis are a150 contained in [14J,

§16 records some classical results 00 elliptic curves and §17,

following Voloch [19]. proves the existence of complete k-arcs

for many values of k by taking half the points 00 ao elliptic

curve. §§lB-19 discusses the values of n(l,q), the size of the

smallest k-arc in PG(Z,q). and m' (2.q). the size of the second

largest complete k-arc in PG(2,q). the main resuIt of §19 follows

a proof of Segre using an improved bound for the number of points

on a curve from §§11 and 14. FinE.illy. §ZO summarizes the best.

Known psrjmates for ffiZ(d,q), the l;'rgest size of k-cap in PG(d,q).
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2. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

Let 'C be an algebraic curve defined aver GF(q) of g"~nus g,

and let N1 be the number

non-singular model of '€

aver alI curves of genus g.

of points. ratianal aver GF(q).

Def ine Nq (g) = max N1 • where '(j

We recaI l the following bounds.

on ii

varies

(i) Ha55e-Weil:

"Cii) Serre:

(iii) Ihara:

'/2Nq(q) < q+l+2gq-

Nq(g) < q+l+g[2q l/2]

Nq(g) < q+l - ig +{2(q+l/8)g2+(q2_ q)g}l/2

(iv) Manin: N2 (q) < 2g - a(g) a5

N
3

(g) < 3g + a(g) a5 g ~

(v) Drinfeld-Vladut:

For a summary of resul ts on Nq (g) Rnd refElrences. see [9J Appendix

IV.

The estimates (i) and (ii) é;l.re

nat far g > i(q_ql/2).

gaad far g < ~(q_ql/2). but

One af the aims af these notes i5 ta describe improvements

ta ( i) • ( i i) • (iii).· First. it i5 elementary thaC ( i i ) i5 sometimes

better than ( i ) and never worse.

Let m = [2q l/2J . Then 2ql/2 = m+€ • where O <€ < 1. So

[2gql/2] = [g(m+EJ] = [gm+g<] = gm+ [g<].

3. THE DEDUCTION OF SERRE'S AND IHARA'S RESULTS FROM THE RIEMANN

HYPOTHESIS.

(a) Serre's result



z

The RiernRrul hypoth~sis StRt~S thRt if N
j

1s the number of points

of <t rrl.tionRl OVt'f GF(qi). tlH~n

: f(x)/ {(l-x)(l-qx))

whert: f(x) :: 1+C 1 x+ ... +Q
g x

2g eli>] hRS inVE:fSe roots al'" .,02g

satisfying

(i) a. et Z .:: tj ,
l g-1

( i i )

So et. Ci. =
l l

Since

-
q, whenCf~ a

Z
.:: q/a.= a.

g-1. l 1

~g "k k
" " : q + l - Nk •1=1 i

Thus. from the zeta funetion

(3. l)

(3 • 2 )

thE: elemE::ntary symmetric functions of thE:

the ai are RlgebrRic integers.

a,
l

are integers lind

As "bov". let m : [ 2q l/2J end Id x."'ffi+l-<:r ._a ..
l l l

i=~, ... ,g.

( I ) x. > O
l

Le t a i : c+drl.

So ai + ai 2e ~ 2/ii

ai :: c-dn.. ThE:n c
2

+d
2

,:: q. whence c ~ICI

end 12I<i]+I>a, +;;,; thus x,' >0.
. l l

(2) The Xi are conjugate algebraic integers

To show that the elementary symmetric functions of the Xi are

integers, it suffices to show thRt {xI 1s an intagar for r=I •...• g
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~ (a i + à i) r =~ 3 i r + ( I) ~ ai r - l Ci i + ••• + ( I) ~ et i ai r - 1+~ ii ~

which is an integer.

The classical inequality on arithmetic and geometrie means

gives

.! E x. > (ITx.) 1/ g > l
g l l -

by (l) and (2). So Ex i ~ g. whence ECai+"i) < gm. Applying the

same argument with Yi for xi with Yi

Eb.+-a.) > -gm. Hence
l l -

INI - (q+l) I < gm.

(b) lhara's resu1t

We use (3.1) and
l

= m+l+Cl:.+ Q. gives
l l

( 3 • 3 )

2 2N2 = q +l-E (ai ( 3 • 4 )

However, gE(a.+ -)2> {E'a.+-a.)}2. Thus
l ai - '<1 l

2 -l 2
= q +1 + 2qg - g (N

1
-q-1)
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and

from which the result follows.

·Far g>~(q-;q). Ihara's result is better thF..n Serre's.

4. THE ESSENTIAL IDEA IN A PARTICULAR CASE

Let<fbe as in §2. but consider it as a curve aver R. the algebraic

closure of K = GF(q), AIso suppose that 'C is embedded in the

pIane PG(2,K) and Iet ~ be the Frobenius map given by

where P(x o ,x 1 ,x 2) is the point of the piane with coordinate vector

(x o ,x
l

,x
2
). Then

'6= V(F)

= {P(xo ,x l ,x 2 ) I F(x o ,x 1"2) = O }

and the points of

cc rational aver GF(.q) are exactly the fixed points of cp on et' •

Far

P i 5

any non-singular point the tangent Tp at

Tp V( aF Xo
c ~.

Xl
aF X2)=

aio
+ + aX 2

.eX 1

In affine coordinates,

Tp V( af (X-il) af
= aa + alJ(x-b) )
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where f(x,y) = F(x,y,l),

Instead of looking at fixed points of <p • let us look at the

the GF(q)-rational points of 'C,

set of points such that p ~ e As P e T p' this set contains

Then
h

x
= (qxq-1-l)fx + (xq-x)f xx + (yq-y)f yx

= -f + (xq-x)f + (yq-y)f
x xx yx

and

So V(h) and V(f) have a common tangent at any GF(q)-rational point

of ~ that is non-singular. So, if N is the number of GF(q)-rational

points of'C and the degree of f is d. then Bézout' 5 theorem implies.

when f is not a campanent of h, that

(d+q-l)d = deg h deg f

I
= suro of the intersection numbers at

the points of V(f)" V(h)

> 2N.

Hence N < ict(d+q-l).

Now. suppose that V(f) is a component of V(h), or equivalently

that h=O as a function an V(f). Therefore

(xq-x)fx/fy + (yq-y) = o.
(xq-X)~ - (yq-y) = O.
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Oifforentinting gJ~es

Remembering that -%x = ·ii + ~ iy we abtain that

Since .'!1: =
dx

THEDREM 4.1

(xq-x) d
2

~
= O

d 2

~
= O.

it follows that

If d
2Y

2 l' O. that i5, '(f i-5 not ali inflexion5 and
dx

i5 odd, then N 1 d(d+q-1) .(j < 2·

In fnet q = O can ".:'J ·V aceur when '{j
dx

1s a l1ne or the characte

pr+ 1 pr+ 1 1
ristjç ;l ~ d. For eXdmple. when f = x + y +. than CC 1s Hll

inflexions. A prlrticular CHse of this phenomenon 1s the Hermitian

(l.ir\'~ + X~+l) when q 1S a square.

Since every curve af genus 3 can be embedded in the pIane as

fI. non-singular Quartic, ~';e can see how theorem 4.1 compiires with

Serre's bound for N
q

(3) aTld its actuaI value.



q+l+3[2rcu 13

q

2(q+3)

3

12

lO

5

16

18

16

7

20

23

20
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9

24

28

28

11

28

30

28

13

32

35

32

17

40

42

40

19

44

44

44

Thus, for q odd with q :5- 19 and q i 3 or 9, the theorem gives

the bes t possible result. A curve achieving N9(3) is ~2.9'

5, WEIERSTRASS POINTS IN CHARACTERISTIC ZERO,

First consider the canonical curve -€2g-2 of genus g > 3 in

PG(g-l ,a:). The Weierstrass points. W-points far short, are the

points at which the osculating hyperplane has g coincident interse-

ctions. In this case, with w the number of W-points

2w = g(g -1).

In A.ny case.

with the lower bounded achieved only far hyperelliptic curves.

A curve of genus g> 1 is hyperelliptic if it has a linear series

Y} (a 2-sheeted covering) on it; far example, a pIane quartic

with a double paint. It has equation

y2 = f(x)

with genus g = [l(d-l)] where d = deg f,

Consider the case g=3 of the canonical curve ~4. a non-singular

pIane quartic. The W-points are the 24 inflexions. We note that
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in chA.racteristic p> O. there 1s different behaviour; for example,

dJfz hilS 28 unduli'l.tions (points where the tangent has 4-point
, q

contRee). \vhen g=4. the curve <if6 = .?3 n .,?2. the intersection

of a cubie and a quadric surfAce. has 60 stalis where the ~scu18ting

pIane meets the curve al [aUT coincident points.

fo.lore gene6dly, stilI with characteristic zero, if'fj has genus

g > 1 and· P € .. ~'. '·there exist integers "1'"2 •... '"g 5uch that no

funetion has pole àivisor precisely "iP, Aisa {n1,"Z •...• n g } =

={l,l •... ,g} for alI bue fl. finite number of points. We elaborate

this idùA. and make it more precise in §§8-10.

6. FUNDAMENTAL DEFINITIONS IN ALGEBRAIC GEOMETRY

Let ~cAn(K) be an irreducible non-singular algebraie curve defined

aver K. let I(W) C

zero al alI points

K[X I , .... X J be the ide"l of poIynomi"ls wichn

of 'l! , let f ('l!)=K=[X I , ... ,XJ/l('lfJ; and K('lf) be. n

"re

the

quotient field of f C'lf); then K('lf) is c"lled the function field of 'lf.AIso, for P in

<eJet Op = lf/glf,gef ,g(P)1'D), the Ioc"I ring of '6 at P. Then,

by natur"I inclusions, K c f('lf) c 0p('6) c K('lf). Aiso Op' l units)

'" Np = < t>, the rnF.l.xirnF.l.l ideaI. and for any z in Op th8re exist

a unique unit u "nd " unique non-negative integer m such that

Z = ut m; write m=ordp(z) . HHice. if GEK[X I ,··· ,XnJ and g is the

image of G in r (($) with G(P) l' D, define ordp(G)=ordp(g). In

particular. if" <& is a pIane curve and V(L) the tangent at p. then

ordp(L) gives the multiplicity of cont<9ct of the tangent with

'lf.



- 9 -

Far the extension of thes6 definitions to the projective case,

see Fulton [3J. p.I82. This is the situation we now considero

A divisor D on ce is D = ~é&npP. TIp€Z. with TIp=O for fl.ll but

a finite number of points p; the degree of D is deg D=En p ' Then

D is effective if n p ~ O for "11 P. For z in K('6). define

div(z) = ordp(z)P

where

E ordpez)p. the divisor of zeros,
ord(z) >0

end

(z)oo = l: - ordp(z)P, the divisor of poles;
ord(z)<O

thoC is. div(z) is the difference of two effective divisors and

deg div(z) = O.

Given D = EnpP, define

L(D) = (f_K('6) lordp(f) 2 - n p ' VP) ;

that is. poI es of f are no worse than TI p ' In other words. fEL(O)

if f=O or if div (f) + D is effective.

The sel LeO) is a vectar space and its dimension i~ denoted

qD) .

There is an important €Quivalence relation on the divisors

given by D..v DI if there exists g in K(~) sue h that D-D'=div(g).
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7. THE CANDNICAL SERI ES

Let ~ be an irreducible curve in PG(2,K) where R is the algebraic

closure of K and iee X be a non-singuliu model of «j \..ith III:X .... «j

birational. Points of X ,<).re places or branches of C(j A pIace

Q i5 centred at P if Qf = P. Let r Q = mp ('6'). the multiplicity

of'{/ at P, where (Ij has anIy ordinary singular points. If (&'=V(G)

is any other pIane curve such th;H div(G)-E is effective, where

€' is an adjoint of t: essentially, VJ' pfl.ssesE =

m-I

E (rQ-I)Q, then
Q€X
t imes through any point of '€ of multiplicity m. lf deg'6= d

and deg"f" = d-3. then CC' is a spacial adjoint of~. In this case,

div(G) - E is a canonical divisor. The canonical suries, consisting

of alI canonical divisors. is therefore cut cut by alI the special

adjoints of «j. The series i 5 a g-I
y 2g-2 of (projective) dimension

g-l and arder 2g-2. Fo~ example,

is a sextic with an ordinary quadruple point .'l t P(O,O,I) n.nd no

other singuln.rity. ISO

I Ig = 2(6-1)(6-2) - 2 4(4-1) = 4

The speci.al n.djoints t'lre cubics with a triple point iH P(O.O.l),

t h;j t i 5 triples of lines through the point. A special adjoint

hi:1s equR.tioll V((x- À[Y)(x- À2y)(x-À 3 Y)) and has frùedom 3 . l t lIleets

Cf, () i n 6.3-4.3=6 poinLs otht.:[ than r(o.o,I). Ile ncr; the spec i fil

3adJoìllts rut Qllt A '(5' ,q~ 8xpectf't1.

Th(· RlbDIAnn-Rocll thr'nr~m SflYS thlll if \11 i~ h ul.lìonlrlil rli\JSUI
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on X ~nd D i5 any divisor, then

qD) = deg D + 1 - g + ~ (W-D).

S.THE OSCULATING HYPERPLANE OF A CURVE

Let X be an irreducible. non-singular, projective. algebraic

curve of genus g defined over K but viewed as the set of points

defined aver R. and' let f X +<cc PG(n,K) be a suitable ratianai

ffiap. Then 'il i5 viewed as the set af branches of X.

Assume that 'C . i5 not contained in a hyperplane. The degree

d of ~ i5 the number of points of intersection of ~ with a generie

hyperplane. Far any hyperplane H. if np is the interseetion multipli

city cf H and ~ et p. then

i5 a divisor of degree d ::: LO p . Alsa

i2'={H.'OIH a hyperplane)

i5 a linear system. In this case, D,..,. D' for any D.D' in çç . Hence

~]5 contained in the complete linear system IDI ::: {Dr ID'N DJ,

~here D 15 some element of 9 .

by

A (('/i"jJl.;te line:u sy~Lem defines an embedding f given

L(D) = (geK(X)ldiv(g) + D> D) .
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Given A. l in€nf system q) • the complete system containing q has

the 5Rme degree flS ~ and possibly Unger dimensiono Hence. aJthough

not neceSSA.ry. it is simpler to consider complete linear systems.

and this Wl':: do.

Let '6 of degree d have A.ssociated complete linear system ~

i1nd Jet P be a f i xed· paint of <e • Let ~i be the sel of hyperplanes

passing thrnugh p with multiplicity at least i. Then

Ench !?ti is A. projective space. lf qi # ~i+l' then ~i+l has codi­

mension ane in ,qjli' Such ao i is a (§l,P)-arder. So the (ç},P)-orders

are jo"" ,jn' wherEJ

Note that jl = 1 if and only if p is non singular.

Far example, Jet ~ be a pIane cubico

Then

= \ (0,1,2) lf P is nelther singular oor ao lnflexion,

(0,1,3) lf P is an inflexion,

(O,/.j) lf P 1S slngular.

Note that, as the points of r:c are viewed as branches. each branch

has a unique tangent.

The Hasse derivative, satisfies the followin~ properties:

(ii) D;i) (fg)
i

= .E Dt(j)f Dt(i-I)g;
J=o
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The unique hyperplane with interséction mu!tiplicity J. At
n

P is the osculating hyperplane Hp and has ùquation

r Xo xn

( i o l (iol
Odet D f D f n =o

'(in_ll ·(jn-l l
D f o D f n

Far example. if ~ is the twisted cubie in PG(3.K),

2 3
= (l,t,t .t ).

The osculating hyperplane at P(1.t,t 2
,t 3 ) is

x xl x2 x3o

det l t t 2 t 3
= O

O l 2t 3t 2

O O l 3t

thAt i 5 •

t
3 xo

2 3tx 2 O.3t xl + - x3 =

The point P on '{f is a WeierstrHsS point. W-point for-short,

if (io·i l •··• .i n) 1 (O.l ....• n).
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Since ~ is complete, the Riernfl.nn"'Roch theorem gives that. i r

d >2g- 2, then

( i ) n = d-g;

Ci i) dim !ili d-g-i for i < d - 2g + l;-

Ci i i) i i = i for i < d - 2g.-

Let Li ::: n hyperplanes meeting 'fJ ot P with TI p > ji+l. Then

Li ,1s dual to ~i and

Also Lo ::: {?}, the set LI 1s the taogent line at P, flnd L
O

_ 1 1s

the osculating hyperplane al P.

The point P 1s a ~-osculation point if jn>n. that 15, there

exists a hyperplane H such that TI p > TI.

The integers ji are characterized by the following result.

THEOREM 8.1 (i) If jo'" .·,ji-l A.re kno\,"n. then ji 1s the
I

smallest integer r such that n(r)f(Q) 1s linearly independent

(io) (ii-l)
of ID f(Q) .. , .. D f(Q)}; the latter set spans L. l'

l -

(ii)If O < f
O

< •. < r s are integers such that

(r
o

) (r
s

)
D f(Q)"."D f(Q) are linearly independent. then j .< r ..

1- l
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9. THE GENERALIZED WRONSKIAN

Consider the generalized Wronskian

w = det

(E )
D o f

o

(E )
D o f

n

Here the derivations are taken with respact to a separating varia-

ble t (dt is the image of t under the lllap d : R('€)~ ili( ; see Fulton

[3J p. 203).

The \ are required to satisfy the conditions:

(i) O = E<E<.,.<E'o 1 TI'

(ii) W " O;

( i 1j ) given E: •••• ,E:. l'o 1-
then Et 1s chosen as smaIl as passible

(E) ,. )
5uch that D o f ..... C l fare linearly independent.

Then

(iv) the E. are the (~, P) -nrders at a generaI point P;
l

(r.)
(v) E. < r. for any r o

< < r wi th det (D l f
j

)

"
O;

l l n

(v i) <. < j i for any P in '€
l -

(vii) the E. are called the ~-Qrders of '€ ,
l

The divisor
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n
R = div(W) + (50i) div(dt) + (n+1) ~epP,

where dt is the differential of t and e p -min ordpf.. is the
i l

ramification divisor of 91 and depends only on fJ . Putting R ==

= E[pP. we have

deg·R = r r
p

= (2g-2)Lo
i

+ (n+1)d.

n
THEOREM 9.1: r p > i"o (j i-o i)

C10 (mod p). where C = (cis) and

COROLLARY: (i) R is effective.

with equality "if and only if det

(ii) f p = O if and only if ji=€i for O<i<n.

The points P where rp=O are called ~-ordinary; the others

are called f}-Weierstrass. The number rp is the weight of P. When

g is the canon-ical series, the ~-Weierstrass points are simply,
the Weierstrass points. This coincides with the classical definition.

When ti = i. O < i < n. then ~ is classical. Next. the estimate

E::. < j. is improved.
l - l

THEOREM 9.2: (i) Let P on '{f have (~,P)-orders jo, .•• ,jn and

suppose that det C', O (mod p), where C'= (c! ) and c' = (Jr·i),
IS IS 5

then linearly independent and

(ii) If TI (j._j )/(i-s) " O (rnod p), then 9 isi>s 1 5 r .

classical and r p =
n
E (j.-i)

i=o l
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or p=O.
n

then r p = Vii-i) for ali

(iv) If € is a ~-order and lJ is an integer with

<
(v) ~ O (mod p). then v i5 a150 a g;I-order.

Cv) If e: is a 9 -arder and €<p, then 0.1, .... c-l

are aIso qj)-orders ..

Entering into this theorem is the classical result of Lucas.

LEMMA 9,3: Let

adic expansions of A and B with respect to the prime p; that is,

O < ai' bi ~ p-l. Then

(i)
A

( ) ­
B

p) :

A
(ii) ( ) ~ O (mod p) if and only if ai> bi' a11 i:

B

A [" . pl
Proof: (l+x) = (l+x) 1

a p al pro am= (l+x) o(l+x) ",(l+x)

Now, the result follows by comparing the eoefficient of xB on

both sides.
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lO. CONSTRUCTION OF SOME LINEAR SYSTEMS

LEMMA 10.1: Let IDI be A. complete. non-special linear system

and let jo ..... jn be the (IDI.P)-orders, where n=dimIDI. Then

the (ID+PI,P)-orders are O. jo+l, ... ,jn+l.

THEOREM 10.2: !fIDI is • complete, non-special, cl.ssic.l,

linear system and lO' I is a complete, base-point-free, linear

system, then 10+0 1 I is classical.

Let PE~ and IEt jo,.,.,jn be the (~,P)-orders for ~ canonical.

Then jo+l=al, .... jg_l+l= ag

is. there does nct exist f

ordp(f)=- ai'

are the

in K(""),

Weierstrass gaps at p; that

regular outside p. such that

THEOREM 10.3: Let Peli' and let al'"'' a g be the Weierstrass

gap sequence at P. If the linear system !?)= IdPI for some positive

integer d, then the (~,P)-orders are {O,I ..... dJ'..{d-ail ai ~ di.

THEOREM 10.4: With P and "I ..... ag as above, let V be a canonical

divisor, 5 > 2 an integer. and !!}= IV+sPI. Then the (2},P)-orders

are

.1, = i for i=O,l, ... ,5-2,

t'Or i = l .... ,g

THEOREM 10.5: Let P in ~ be an or,dinary point for the canonical

linear system IVI and assume that IVI is classica!. Then, for

any TI such thA,t O < TI .2 g-l. the linear system g, = IV-nPl is a

classical yg-l-n without base points. and P is 9-ordinary.2g-2-n

An important result an linear seri es is also worth noting.
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THEDREM 10.6: The gener ic curve of genus g has a

onl y if

n
d > n+1 g+n.

Il. THE ESSENTIAL CONSTRUCTION

n
Yd if and

Given the curve ~ with its linear systern of hyperplanes and with

N the number of its GF(q)-rational points. consider the set

fF= {PIP~ c Hp! ; compare §4 for the pIane. So PefF _

fq · ..... fq
o n

det
(io) (j o)

ODt f o Dt f n =

To give an outline first, take the classical case in which

ji=i. So, let

fq · ....... fq
o n

f · ... .... f no

W'=det

If W' # O, then W is a function of degree
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n(n-l)(g-l) + d(q+n)

A..nd the rational points are n-fold zeros of Wl. Hence

N < (n-l)(g-l) + d(q+n)/n.

Since ç) is complete, d < n+g; hence

N < (n-l)(g-l)+(n+g)(q+n)/n

= q + 1 + g(n +q/n),

This has minimum value for n Iq, in which case

N < q + 1 + 2gIQ

~1ore carefull y, le t

fq fq -
Io ...... n

Wt(v,f) det
(v o ) (v o )

= Dt f o ...... Dt f n
l

where t is a separat ing var iable on CC and v=(v ... , ,v 1) witho n-

< v l'n-

THEOREM Il. 1 : (i) There exist integers v ..... v l'o n- such that

0< vo < .. ,<v n_l and Wt(v,f) 1'0,
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intagar no withanexiststherethen

(ii) If vo ..... vn_1 are chosen successively

so that vi is ~s 5mall as possible to ensure the linear independence

('lo) (vi).
O f, .... 0 f,of

o < n < n such thato

v := E,' fari
i < no'

where Eo ••••• En are the ~-orders; that is

(iii) If '1'=('1', ••• ,'1' 1) and Wt(v',f) ". O. theno n-

The integer5 vi are the Frobeniu5 ~-order5. They a,d S depend

anI y on f'I), where

S = div(Wt(v.f))+div(dt) Evi+(q+n)E,

deg S = (2g-2) r v i + (q+n)d.

THEOREM 11.2: lf v .s. q i5 a Frobeniu5 ~-order, then each non-

negative integer U such that (~) ~ O (mod p) i5 a Frobeniu5

~-order. In particuIar, if vi <p, then v
J

= J for J .s. L

THEOREM 11.3: (i) If P i5 a GF(q)-rational point of 'Il .then

n
mp(S) ~ i~I(Ji-vi_l)'
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with equality if and only if det e t o (mod p), where

J i
= ( )

vr-l
• i.r=I .... ,n.

(ii) lf P€~ but not GF(q)-rational. then

n-l
mp(S) 2 i~l(ii-vi)'

If det c' _ O (mad p), the inequality 15 strict. where

C T := (c~ ) and c~
lr l r

). i,r=1 ..... 0 .

THEOREM 11.4: Let P be a GF(q)-rational point of ~, lf

O.:: mo< .•. <mn _1 and det e" # o (mod p). then

where Cl! = (c'.' ) aod
lr

v. < m,'l -
far ali i,

c'.'
lr

= (ii-h)

rnr-l
.i,r=I, ...• o.

COROLLARY 1: (i) lf P is a GF(q)-rational point of '6. then

Vi: ii+1-ii for i=O, •..• n-1 and mp(S) ~ ni 1 ,

(ii) lf (a) 1<1; r< n Cir-ii)/(r-i)ilO (mod p).

or (b) ii~ir (mod p) for i;ir, or (c) p

n
and mp(S) = n + iE1 (ii-i),

> d, then v.=i far i=O ....•o-1
l

eOROLLARY Z: 1f Vi ;i "i for some i < n. then each GF(q)-rationa1
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point of'G a !'À-Weierstrass point.

COROLLARY 3: If 'G has some GF(q)-rational point. than v.<i+d-n,
1-

a11 i. If also !';J is complete. then vi=i for i <d - 2g.

THEOREM 11.5: (THE MAIN RESULT) Let X be an irreducible. non-

singular, projective. algebraic curve cf genus g defined over

K = GF{q) >11th N rational points. If there exists on X a linear

system Y~ without_ base points. and with arder sequence Eo •••• E n

and Frobenius arder sequence vo •...• vn_1 • then

n-l
N < l {(2g-2) E v.+(q+n)dJ.

- n o 1

If a150 vi:: Et for 1<0, then

n-l
E <i + (q+n)d.
o

where P 1s a K-rationai point af XI where p1eX but not I-faticnai

and where

with jo •.•.• jn the C!'tJ.P)-orders.

COROLLARY: IN-{q+l)1 ~ 2glQ.

THEOREM 11.6: If X is non-singular. p~g~3 with q=ph. and the

canonical system is classical. then

N < 2q + g{g-I).
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Notes:(l) If P 2lg-l, then the canonical system is classical.

(l) This gives a better bound than Sg = q+l + g[l,rq] when

IIQ-g I</&+1.

THEOREM 11.7: lf X is non-singular and not hyperelliptic, with

j(p+3) ~ g ~ 3, then

N < (l:=~)q + g(q-l).

Note This 1s better than Sg when

IIQ - g(g-l) I<l (g-l) (gl_g_l)) ! /(g-1).
g-l

THEOREM 11.8: lf X is non-singular with classical canonical

system and a K-rational paiot. then

N < (g-n-l)(g-l)+(lg-n-l)(q+g-n-l)(g-n-l)-l

for O < n ~ g - 1.

Il, ELLIPTIC CURVES

The number of elements of a Y~ OD a curve af genus g with 0+1

coincident points. that 1s !'}-Weierstrass points, is (n+l) (d+ng-n).

When g=l,

degree r

this number is d(n+l). If!'} consists of alI curves of

1and 'G 1s a pIane non-singular cubie, then n=Ir(r+3).

nd = 3r. The condition for a Y d to exist 1s. trom Theorem 10.6."

that d 2 n/(n+l)+n. So this only allows

and the number af g}-Weierstrass points 1s

5
y 6'

From

whence d=n+l

the Riemann-

Roch theorem. as every saries 1s non-special OD tG I a complete
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series Y~ satisfies d = n+1.

For n=2. the !0-Weie,rstrass points are the 9 inflexions. Far

n=5. they are the 9 inflexions (repeated) plus the 27 sextactic

points (6-fold contaet points of conies = points af contaet of

tangents through the inflexions).

The abave holds "for the complex numbers; for finite fields.

the result is the following.

THEOREM 12.1: (i) lf P 1(n+I). the ~-W-points have multiplicity

cne .

(ii) lf pkl(o+I). pk+I{(n+l) with k > l. then

cne of the following holds:

(a) 'Il is ordinary and there are (n+l) 2/pk~ - W­

points with multiplicity pk;

(b) 'Il is supersingular and there are (n+I)2/ p 2k

~- w-points with multiplicity p2k

THEOREM 12.2: lf ''Il is elliptic with origin O and ~ is a complete

l inear system on (j. then

(i) ~ is classical;

(ii) !JJ' is Frobenius classical except perhaps when ~= I (;Q+l)OI;

(iii) I (lq+l)OI is Frobenius clas'sical if and only if N< VQ+l)2.

13. HYPERELLIPTIC CURVES

As in 15. if pt2. then 'Il has homogeneous equation y2 z d-2=zdf(x/z)

with g=[~(d-I)J. Let g> l and let P1 " '''Pn be the ramification

points of the double cover (= double points of the Y~ 00 'Il):



- 26 -

then n=2(g+1) trom the formula beginning §12. When d is even.

they are the points with y=O; when d ìs odd, they are these plus,

P(O,l,O). Let no be the number of K-rational Pi ,

THEOREM 13.1: Let 'I! be hyperelliptic with a complete

IDI and n,no as above. If there is a positive integer TI 1 such

that I (n 1+g)D I is Frobenius classical. then

Note: lf p ~ 2(n l +g). then the hypothesis is fulfilled.

COROLLARY: Let p ~ 5 with p=c 2+1 or p=c 2+c+l for some positive

integer c and let 'I! be hyperelliptic with g>l aver GF(p). Then

IN-(p+l) I < g[21j)] - 1.

14. PLANE CURVES

Let 'i be a non-singular. pIane curve of degree dover K=GF(q);

1then g = I(d-1)(d-2), Let D be a divisor cut aut by aline, which

can be taken as z=O.

Let x,y be affine coordinates, The monomials xiyj. i.j~O. i+j~m

span L(mD) and are linearly independent for ID < d. Hence dimlmDI=

= imeID+3) for ID <. d. Also. mD is a special divisor for·ro < d-3.

Thus ImD I is cut aut by alI curves of degree m.

THEOREM 14.1: Let 'I! be a pIane curve of degree d and let D be

a divisor cut aut by aline. If ID is a positive integer with

ID < d - 3 such that ImDI is Frobenius classical. thon
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Proof. Put (i) im(m+3) for n, (ii) i(d-1)(d-2) for g,

(iii) md for d, (iv) i for vi' in theorem 11.5.

Notes: (1) When m~p/d, then ImDI is Frobeinius c1assica1.

(2) For m=l, we have that 4 < d < p imp1ies that

N ~ id(d+Q-1),

as in theorem 4.1.

(3)For m=2. we have that 5 ~ d ~ tp implies that

N < -li{5(d-2)+Q)- 5

which is required in theorem 19.1.

Let f(x,y) be homogeneous of degree d with f(x,l) having distinct

roots in K. A Thue curve is given by

It is non-singular.

f(x,y) d= z •

THEOREM 14.2: Let D be a divisor cut out by aline on "d' lf

ID is a positive integer 5uch that ImDI is Frobenius

then

where TI is the dimension af ImDI;

classical.

n=' i m(m+3)

I dm - g

for ID < d - 3

for ID> d - 3 •
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lg = Z(d-l)(d-Z).

d = number of K-rational roots of f(x,l),o

-i4m(m-l){4(d-m-l)(m+4)+(rn-Z)(m-5)} for m<d-3

A =
m -i4 (d-l)(d-Z)(d-3)(d+4) for m>d - 3.

B =Idm
m g

l- Zm(m+3) far ID < d·- 3

for ID> d - 3.

Note: When m ~ p/d. then ImDI is Frobenius classical.

A Fermat curve is a speriai case of a Thue curve given by

THEOREM 14.3: For $Od with the same conditions as above.

with n.g.Am,Bm as above. but dI 1s the number of points of Yd

with xyz = o.

15. THE MAXIMUM NUMBER OF POINTS ON AN ALGEBRAIC CURVE

In Table 1. we give the value of Nq(g) or the best. known

bound for g.5:5 and q~49 ari sing from results of Serre [lZJ. [13J

and the preceding sections.· Also included in the table is the

bound Sg = q+l+g [Z,lQJ; see §Z.
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TABLE l

The maximum number points on an algebraic curve

q [2,1,,] Nq (l) Nq (2) 52 Nq (3) 53 Nq (4) 54 Nq (5) 55

2 2 5 6 7 7 9 8 11 9 13

3 3 7 8 lO lO 13 12 16 < 15 19-
4 4 9 lO 13 14 17 15 21 2 18 25

5 4 lO 12 14 16 18 18 22 ~ 22 26

7 5 13 7 18 20 23 24-25 28 ~ 29 33

8 5 14 18 19 24 24 29 2 32 34

9 6 16 20 22 28 28 26-30 34 2 36 40

11 6 18 24 24 28 30 32-34 36 2 40 42

13 7 2l 26 28 32 35 36-38 42 2 45 49

16 8 25 33 33 38 41 49 57

17 8 26 32 34 40 42 ~ 46 50 254 58

19 8 28 36 36 44 44 ~50 52 258 60

23 9 33 42 42 ~48 51 ~58 60 2 66 69

25 lO 36 46 46 56 56 66 66 76

27 lO 38 48 48 58 68 78

29 lO 40 50 50 60 70 2 78 80

31 11 43 52 54 65 < 74 76 2 82 87

fl2 11 44 53 55 66 77 88

37 12 50 60 62 74 86 2. 94 98

41 13 54 66 68 81 94 ~102 107

43 13 57 68 70 83 96 ~106 109

47 13 61 74 74 87 100 113

49 14 64 78 78 92 92 106 120
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16. ELL1PT1C CURVES: FUNDAMENTAL ASPECTS.

The theory of elliptic curves Dver an arbitrary field K offers

an appealing mixture of geometrie and algebraie arguments. Let

CCbe a non-singular cubie in PG(2,q). Far the projective classifi­

cation when K = GF(q), see [6J Chapter 11. A1though,(; may have

no inflexion, up to isomorphism it may be

one. O.

assumed to have

the divisors ~. e.c 1

THEOREM 16.1: lf \l': \l''' are cubie curves in PG(Z,K) such that

9 a
iE1 Pi and \l'.'(J" = ih Pi + Q, then Q = P9 ·

Proof. (Outline) Through P1 ' ... 'Pa there is a pencil Si' of cubic

curves lo which <t'. <€'. ~" belong. Any curve of fP has the farro

V(F+ÀG) and so contains V(F) n V(G). By Bézout's theorem IV(F)nV(G)i=9.

Hence Q =P
9

"

For a detailed proof, see [3J. Chapter 5.

Theorem 16.1 is known as the theorem of the rune associated points.

It has numerous corollaries of ~hich we give a variety betere the

important theorem 16.7.

THEDREM 16.2: Any two inflexions of·~ are callinear with a third.

Procf. Let P1.P Z be inflexions of ~ with corresponding tangents

t 1 ,t Z " Let t = P1 PZ meet '(J again at P3 ' and let t 3 be the tangent

at P3 meeting ~ again at Q. Then
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Hence

'6. ~I ~Z ~3 3P l + 3P Z
+ ZP 3

+ °
3 3P 1

3P
Z 3P3'6. ~ : + +

By the previous theorem. °= P
3

; so P3 is an inflexion.

THEOREM 16.3. lf P
1

and 01 are any two points of'(i , the crOS5­

rfltio of the fauT tRngents through P1 is the 5ame as the cross­

[fltio of the fauT tflngents through Q1'

Procf. Let PIQ} meet ~ ogain al RIo Let r be a tangent to

through R1 with point of contaet RZ=R 3 , Let P1 Pz P3 be any line

through PI with PZ'P3 on 'C . Let RZP Z rneet 'C again at 0z and let

R3 P3 meet <€ again at Q3' We use the previous theorem to show that

0I,OZ,03 are collinear.

Write

with S the third point of Q on ~.

3
i~1 (Pi+Oi+Ril

3
'C. prq: i~1 (Pi+Ril + 01+OZ+5.

Again by theorern 16.1, 5 : 03' When Pz and P
3

coincide, so do

Q2 and Q3' So there is an algebraic bijection "[ trom the pencil

:F through P1 and the pencil G through Q1 in which the tangents

correspond. Hence l is projective and the cross-ratios of the

tnngents are éQual.
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s
,1

I

i 't-

P R r
1 "'<::::::- /~--:'___=.<:.!..1---1

THEDREM 16.4. (Pascal's Theorem)

P,

/

/
/

Q1

If PI02P3QIP203 is rt hexiigon insC"ribed in ii eonie 9 ,then the

interseetions of opposite sides, thiit is R1 ,R 2 .R 3 , ..ne c"ollineiir.

Proof. The two sets of three lines
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are rubics through the nin€: points P i ,°1 ,R i l 1=1,2.3; thtHf;: isan

irreducible cubie <6 in the pencil they determine. Also in the

peneil 1s the cubie consistin& of .:]1 Rnd the lio€: R3 RZ" So. by

theorem 16.1. this rubie contains the n10th paint RI , which (ROnot

lie 00 .JJ>. So R
3

R
2

R
1

1s fI. line.

THEOREM 16.5: Let ~1.~Z.~3 •.14 be the sldes of" complete Qu"dri

Iflteral In fl.n fl.ffine pIfl.ne fl.nd let Ci be the circwncircle of the

trI"ng1e obt"ined by de1eting ~i. Then c1nC Znc 3nc 4 = (Pl.

Proof.

.et
There 1s A. peneil of cubics through the vertices of the quadri IA.­

teral and the two circular points al infinity. The faur (ubics

C
i

+ R.
i

, 1=1,2,3,4, contaio these eight points ;md therefere the

n10th associated paint P. As eRch li contains three of the eight

ioilial points. il does not contaio P. Hence P 11es on each Ci.

Now we show th,H i'l.n elliptic curve <t is an abelian group. As

above we take O as nn inflexion.
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Definition: For P,Q on '6', let 'il,PQ=P+Q+R ond let '6'.OR=O+R+S;

define S = P+Q.

LEMMA 16.6: (i) On '6', the points O,P,-P ore collineor.

(ii) P,Q,R ore collineor on '6' if ond only if P+Q+R=O.

THEOREM 16.7: Under the additive operation. ~ is an abelian

group.

Proof. The only non-triviai property to verify is the associati­

ve l aw.

- p. -P,
1 2.

Aprlrt from ~ . consider the two cubirs consisting of three lines

given by the rows and columns of the array



- 35 -

-p -Il
j 2

O

Again. by theorem 16.1, X l ies on both these cubics. So.

x = -P j -(P Z+P 3 ) = -(P j +P Z)-P3 ; hence, if Y is the third point

of '6 on OX, then

Note: '6 has been drawn as yZ=(x-a)(x-b)(x-c) with a<b<c, but the

point of inflexion natural to this picture is at infinity.

THEOREM 16.8; (Waterhouse [2l]). For any integer N=q+l-t with

hItl ~ Z,iq, there exist5 an elliptic cubic in PG(Z,q), q= p , with

precisely N ratianai points if and only if one of the following

conditions on t and q is satisfied:

( i ) (t,p) = j

Ci i) t = O h odd or p 'I l (mod 4)

(iii) t = ~;q h even and p 'I l (mod 3)

(iv) t ~Z,fq h even

(v) t = ~12cl h odd and p = Z

(v i) t ~/3q h odd and p 3

COROLLARY: Nq Cl)

l"
[Z ,rq] if P divides [Z ,rqJ '

h 15 odd and h > 3;

q+l+ [ZIQJ otherwise.



- 36 -

17. k-ARCS ON ELLIPTIC CURVES

As in §16. the curve ((j is (l non-singular cubie in PG(Z.Q) with

inflexion O.

THEOREM 17.1: (Zirilli [22J) If !';)'I = Zk, then thoc. exists

FI. k-arc K on~.

Proof. Since 't 1s fin abei ian group. the fundA.mentfl.l theorem

says that '1/ 1s a direct produce of

Grder. By taking R subgroup of arder

cyeIic groups of prime

r-l2 in A. compon~nt of

power

arder

2 r , we obtRin a subgroup G of re of index 2. Lat K = ~'G. Let

pl,P Z e K. Then -P1eK and PZ=-Pl+Q for some Q in G. lIence P1+PZ=Q

flnd P1+PZ-Q=O. Since -Q 1s in G. no three points of K are collinear.

The remainder of §17 follows Voloch [19J.

The object 1s now to show that .8 eRn be chosen to be complete.

First we constructX in a different way.

Let Uo = P(l,O,O), Ul=P(O,l,O), UZ=P(O.O,l).

. Z Z
Also, with K=GF(q)" let Ko=GF(qf'{Ol and Ko={t IteKol.

Now, iet';)' in PG(Z,q), q odd, have equation

Also suppose it 1s non-singulFl.f with 2k points. The point VI 1s

an inflexion and we take this as the zero of ~ as an flbelian group"

Since I<t'l is even. so I{j has an element of o.rder Z. which necessa-

rily is a point of contact of a tangent through U1 " Choose the

tRngent as x=O and the point of contact as UZ' Thus ao=O and

C(j has eQuation
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(17.1)

Define 8 '(f ~ K (KZ
o O

by

LEMMA 17.2: 0 is a homomorphism.

Proof. lf P = P(x,y,l). then -P=P(x,-y,l).

So P8 = (-Pl8 , this also holds for Ul and U2 • Henee, if Pl +P Z+P 3=O,

then P'l+P Z=-P
3

and (P l +P Z)8 = (-P3 )8 = P38= 1/(P3 8). lf it is

shown that (P
1
8)(P

Z
8)(P

3
8)=l, then (P

l
+P Z)8 = (P

1
8)(PZ8).

Let P i = P(xi'Yi,l), i=l,2,3. Sinee P l +P Z+P 3=O, so Pl ,P Z ,P3

are callinear. whence there exist ID and c in K such that yi=mxi+c.

i=l,Z.3. So

lf (Pl,P Z) = (Ul,P Z)' then (P l +P Z)8 = PZ8 = (P 1 8)(P Z8). lf

(Pl.P Z) = (Pl'U Z) and Pl = P(xl'Yl,l), then Pl+UZ=P(xZ'YZ,l) with

x 2= a l /x l

Z
= xl(al/x l ) = xl al = (P 18)(U Z8).

So the homomorphism is established in alI C8ses.
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LEMMA 17.3: e is surjective for q 2. 7.

Procf. Since P(bx 2 ,y,l)0 = bi = b. it suffices lo find a point

Q on 'C' = V(F(bx 2 ,y,z)) where '6= V(F(x,y,z)). So 'C' has equation

However, we require Q not on V(xz). But V(z)n'C'={U
l

} and

V(x) n 'f!' (U l ·U 2) lf we put y = tx. we see that C(f' is a150

elliptic (IQ_1)2 Since 2
> 2and so has at least points. (rq-l)

for q 2 7, there exists the required point Q.

LEMMA 17. 4: .li ='f, \ ke r O i 5 a k- a r c .

Proof. Let G = ker9 Then. from the previous two lemmas.

G<'6 with 0&': G) =' 2. Then. if PeG. PO = l; if PeK. PO = ~ . Suppose

Pl ,P 2 ,P3 in % are collinear. So P
l

+P 2+P
3

= O, whence (P
l

+P 2+P
3

)O=OO.

So (P l O)(P 2 0)(P
3

0) = L whence ~3=L whence ~ = L a contradiction.

This lemma just repeats lemma 17.1 using the homomorphism 0.

THEOREM 17.5: f is complete for q 2 311',

Proof. Let Po ePG(2,q) 'X. It must be shown that ';<U{ P
o

} is

not a (k+l)-arc. There are three cases: (a) Poe'f!\.)(, (b)Po=P(xo,yo,I),

(c) Po = P(I,yo'O).

'f - P and
o

't\X: So Po,Q,

Case (a). There are Rt most faur tangents through Pa with point

l l 2of contact Q in X. Since k = zl'f! I > Z{/q-l) > 4. there exists Q

in .J( which is nal such a point of contact. So 2Q

Q'f - (Po+Q). Also -(Po+Q) eX, as otherwise

-(Po+Q) Rre distinct callinear points of f U {
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Case Cb). Let ~, be the elliptic curve with affine equation

Define the following functions on ~':

U Z Z A (Yo-Z)/(xo-U) •o vx . o xy. o

B
Z C Z

o A -a 2 , o ZAZ-a 1 -ZA U.

D o (U_B)Z + 4(C+BU - UZ) •

Then there exists a double cover

(17.Z)

defined by WZ
o D; that is. for any point P(x.y.1) of t:C'. there

afe two points P(x,y,W,l) of ~ . Now, let P(x,y,W,I) be a ratianai

point of ~. Then. trom the equation for C(j',

whence

Hence

(1) p o P(U,Z,l) €.Jr;

(2) PP has equatinn y-Z • A(x-U);o

(17.3)

(3) PP meets (t is two points other than P whose x-coordinate~
n

Sfltlsfy

Thf" l'1St. follows hy 5ubstitl1tl0n from (2) il, (lì.l), for we have



- 40 -

Then, from (17.3).

Canrelling x-U glves (17.4).

Now. let r:c n PPo == {p,Q,RL The discriminnnt of (17.4) is

So Q nnd R Rre rational points of ~. Since P,Q,R nr~ (0111near

(l'O)(QO)(RO) = l. As l'eX, so l'O =v, whenre (QO)(RO)"v. So one

of Q a od R. say Q, is in j{. Hence, if P1Q, there are three (allinear

it remains to eXRffiin€ the conditioo that r'Q. There fl.re at

mnst six tfl.ngents (O C(:;' thrnugh PC) ([6J p.252). So, if P=Q or P=R.

there are at mostl six choices for P, hence 12 choices for (x,y)

and 24 choices for P(x,y,\"l) on 9). As l't'n V(x)I~2 and Il','nv(z) 1=0,

so l0Inv(x) I < 4 and 101 nv(z) 1=0. So we require that 01 has at least

24+4+1 = 29 ratianal points.

By the Hurwitz formula ([5J p.301 or l3] p.215),

2g(0l)-2 = 2 { 2g (\',' , )-2} + deg E

deg E.

lIerE~, E is the ramification divisor (cf. §9) and

(17.5)
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deg E = # points nf ramification

= # points wi th D = O

# points such that Q and R have

the same x-coordinflte .

lf Q = l'(x 1 'Y1,l) and R = l'(x 1 'Y2,l), then Y2=::Y 1 ; ìf Y2 =

Y
1

' then Q,R,U
1

He cnllinear. Sn either Q=R or Q=-R. If Q =

-R, then P :: UI nnd this giv-Els al most two points on '(!'. If

Q=R, then PPo lS <1 tangent to ~ at Q. Hence there are al most

six choices far P flnd hence at most 12 sue h points on «/'. Hence

2g(g) -2 < 12 + 2 = 14, whence g(g) :. 8. Thus by the corollary

to theorem 11.5.

191 ~ q+1 - 16/q .

So, when q+l-16/Q :: 29. we abtain the desired contradiction; this

occurs far q > 311.

Case (c). This Is similar to case (b). Here, arnong the functions

on t:.(f'. ane takes A = Yo'

Notes: (1) The result certainly holds for some but not all k with

q < 311.

(2) A similar technique ean be applied for q even. Here

C6 Is taken in the form

Instead nf 0 os abnve, we define 0 ; '(! ~ K/C n where Co=fteKIT(t)=Ol

2 q/2.and T(t) = t+t + ••. t , here Co in the set of elements of category

(= t,-ece) zern. Teke l'(x,y,l)0 = xC o ' Then Xis complete for Q2256.
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COROLLARY: In PG(Z,q) there exists a complete k-arc wlth k=~(q+l-t)

for i;very t satisfying 16.8 when i;ither (Fl.) q is odd. q.::311. t

is even;or (u) Qis even, q-.::256 , t is odd.

18. k-ARCS IN PG(Z,q).

Let .)f"be ti complete k-arc in PG(2,q); thA.t is. ,)f hf\s no three

points (ollineilr ;md is not rontained in a (k+l)-n[c. We define

three constants m(Z,q), n(Z,q), m'(Z,q).

evenm(Z,q) = max k=lq+Z,q

q+I, q odd,

If m(Z,q) 1 n(Z,q),

n(Z,q) min k.

m!Cl,q) = second largest k;

if m(Z,q) = n(Z,q), let m' (Z,q) = m(Z,q). So, if a k-arc has

k > m'Cl,q). then it is contained in ;in m(2,q)-arc. For Q odd,

every (q+l)-rnc is ti conico Far q even, the (q+2)-;ncs hfl.ve been

classified for q < 16; see 1'4], [6J.

The value of n(l,q) seems to be a difficult problem. By elementa

ry considerations ([6J p.ZOS),

n(Z,q) ':.NI2Q.

Constructions have been given for complete k-arcs with" k having

the following values (up to an added constant):

~q see [6J, §9.4;

jq [IJ ;
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rq

q large, 115"1;

r ~i, q large rI6];

These eXfl.mples ilil Iie RO r<Hinnal curVE:S, namely c-nnies or 5in­

gular cubics; lo be precise the k-Rrcs or order !q hHV~ nne poillt

off A. conico The examples of §17 Rre the only other ones known.

Conjecture: l:or 8Ach k such that

n(Z,q) < k <m'(Z,q),

these exists a complete k-arc in PG(2,q).

In fact, A.lthough the conjecture 1s [rue for q : 13. tt i5

probably more realistic to ask for the smallest value or q l'or

which the conjecture 15 false.

In Tabla 2, we give m, m! and n for Q < 13.

q Z 3 4 5 7 8 9 11 13

m 4 4 6 "6 8 10 10 1Z 14

m' 4 4 6 6 6 6 8 10 1Z

n 4 4 6 6 Ò 6 6 7 8

Upper bounds for m' (Z,q) ~re ~s follows:

1 - Z5
[17J;m' (Z,q) -" q - 4/q + 16 q odd,

m' (Z,q) < q IQ+ 1 q = Zh [6J, theorem 10.3.3.,

m' (Z,q) = q - Iq+ 1 q = lr ,[ZJ •
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19. AN lMPRDVEMENT DN THE BDUND FDR m'(Z.q) WHEN q IS PRIME

THEDREM 19.1: (Voloch [zoJ) , For a prime p > 7.

44 8
m'(Z.p) ~ 45P + ~.

Proof. A theorem of Segre (see [6J. theorem 10.4.4) says that.

far q odd with q ~ 7. we have m'(Z.q) < q - ilQ+ ì and we follow

the s'tructure of this proof.

Let X' be a complete k-arc with k > :~P+~. Through each point

p of .)( there are t := p+2-k unisecants. The kt unisecants of .Jf

and so a conico When t > 2, four cases

belong to an algebraic envelope has a simple

campanent r wi th n o( 2t.n -

of a conie ,fis a (q+l)-arc

are d stinguished.

For

fi
Zt

of class Zt. which

t=1. the envelope 6 2 is the dua1

(i) f n is a regular (fationaI) linear componente

lIere r n is a peneil with vertex Q not in X. Then XU{ Q) is

a (k+l) -are and X is not complete.

(ii) fn is regular of class two.

Here f n is the dual of a conie (jj • and j( is contained in

f(j. [6] theorem 10.4.3.

(iii) r n is irregular.

Suppose that r TI has M simple lines and d double lines. and

1et N=M+d, Then. by [6] lemma 10.1.1. it follows that N <
Z

n •

distinct lines of f n through p; so N

Also by the definition cf fi Zt and fn •
1

> k kn.

there are at least in

Therefore k~ZN/n~2n~4t=
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4 44 8= 4(p+Z-k). Thus k < S(p+Z) < n P + 9' a contradiction for p.::5.

(iv) f n is regular with n ~ 3.

l l l 3 44 8Either n=Zt ~ IP or t>lP, When t> l p, then k=p+Z-t< lP+Z<nP+9

far p ~ 5.

lWhen n < IP, then

N::' ;n{5(n-Z)+p}

far n :::.. 5 by theorem 14.1. note (3); far n > 3 it follows tram

ltheorem Il.5 when we note that n ~ 7 P impl ies v i := i by theorem

11.4, corollary l (ii).

lAs in (iii), N.:: Ikn. So

l ZnIkn < N < -,{5(n-Z)+ p} ,

k < ~ { 5(n-'Z)+p }

k < ~{5(Zt-Z)+p}

Substituting t = p+2-k gives

k ~ ~(lO(P+l-k)+p)

4k ~ ~ (llp + 10),

the required contradiction.

COROLLARY: For any prime p .:: 311,

i(p+[ZIP])~ m'(Z,p) ~ :5 (llp+10).
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N (1) 4 (1 ) 1;- Z5otes: 45 Ip+IO < p - "4 p + 16 forp> 47.

(Z) :5 (llp+IO) < p -/li+l far p -" ZOI7.

ZO. k-CAPS IN PG(n.q). n > 3.

A k-cap in PG(n,q) is fl set of k points no 3 callinear. Let

ffi 2 (n.q) be the maximum value that k can attaiTI. From §19. me2,q)":

= ID 2 (2,Q). Far TI > 3, the only values known are as follows:

ZmZ(3.q) = q +1.

mZ(d.Z)= Zd;

mZ(4.3) = ZO;

mZ(5.3) 56.

q > 2;

See [8J for a survey on these and similar numbers. The sets corre-

sponding to these values for m2 (d.Q) have been cliissified apart

froID(q2+ 1)-caps for q even with q ~ 16.

As for the plflne,l 1et ffi 2 (n,Q) be the size of the second largest

complete k-cap. Then. from [9J. chapter 18 •

mZ(3.Z) = 5 • mZ(3.3) = 8.

We nQW summarize the best known upper bounds for miCTI,Q) and ID 2 (n.Q).

THEOREM ZO.I: ([7J) Far q odd with q ~ 67.

tqlq + Zq.

THEOREM ZO.Z: ([IOJ) Far q even with q>Z.
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This gives that mi(3,4) < 15.

THEOREM 20.3: ([lOJ) mi(3.4) = 14.

In facto a complete 14-cap in PG(3.4) is projectively unique

and is obtained as follows.

Let TI be a PG(2,2) in PG(3,4), let P be a point not in TI

and Jet II be a PG(3.2) containing P and TI. Each of the seven lines

joi:ltng P to a point of Tr contains three points in TI and two points

-,ot in TI. The 14 points on the lines through P not in II farro the

desired cap.

THEOREM ZO.4: (lijJ For q odd. q.::. 121, n > 4,

n-l l n-3/Z + n-Z
mZ(n.q)<q -4q 3q.

THEOREM ZO. 5: ([lOJ) For even, q~4, n>4,

n-l 1 n-2 5 n-3
mZ(n.q) ~ q - 2 q + 2 q
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