2. Derivate geometrico-distribuzionali

Definizione 1. Sia μ una misura reale definita sui boreliani limitati di \mathbf{R}^n tale che $|\mu|(K) < +\infty$ per ogni compatto K. Sia $f: E \to \mathbf{R}^k$ e sia $a \in \mathbf{R}^k$; diremo che $a \ni il$ μ -limite approssimato di f in x, e porremo $a = \mu - ap \lim_{y \to x} f(y)$ se:

$$\lim_{\rho \to 0} \frac{|\mu|(B_{\rho}(x) \cap E)}{|\mu|(B_{\rho}(x))} = 1$$

e

$$\lim_{\rho \to 0} \frac{1}{|\mu|(B_{\rho}(x))} \int_{B_{\rho}(x) \cap E}^{*} (|f(y) - a| \wedge 1) d|\mu|(y) = 0$$

dove $\int_{-\infty}^{\infty}$ indica l'integrale superiore.

Osservazione 1. Questa definizione di limite approssimato è leggermente più generale della definizione di punto di Lebesgue ed è ispirata alla definizione di $(\mu, V) - ap$ lim data da H.Federer (cfr. H.Federer, Geometric Measure Theory, 2.9.12).

Definizione 2. Siano μ ed f come nella definizione 1, e sia $\tilde{f}(x) = \mu - ap \lim_{y \to x} f(y)$; sia inoltre, per $w \in \mathcal{L}(\mathbf{R}^n, \mathbf{R}^k)$, cioè $w : \mathbf{R}^n \to \mathbf{R}^k$, w lineare:

$$\psi_x(w,y) = \begin{cases} \frac{|f(y) - \tilde{f}(x) - w(y-x)|}{|y-x|} & \text{se } y \neq x, \\ 0 & \text{se } y = x; \end{cases}$$

porremo $w \in {}_{\mu}\mathcal{D}f(x)$ se

$$\mu - ap \lim_{y \to x} \psi_x(w, y) = 0.$$

Osserviamo che $\mu \mathcal{D}f(x)$ è un sottoinsieme convesso e chiuso di $\mathcal{L}(\mathbf{R}^n, \mathbf{R}^k)$, che pensiamo munito della norma hilbertiana

$$||w||^2 = \sum_{i=1}^n \sum_{j=1}^k \langle w(e_i), e'_j \rangle^2$$

dove (e_i) (risp. (e'_i)) è una base ortonormale in \mathbb{R}^n (risp. \mathbb{R}^k).

Definizione 3. Se $_{\mu}\mathcal{D}f(x) \neq \emptyset$, indicheremo con $_{\mu}\nabla f(x)$ l'elemento di norma minima in $_{\mu}\mathcal{D}f(x)$, cioè porremo $w = _{\mu}\nabla f(x)$ se $w \in _{\mu}\mathcal{D}f(x)$ e $||w|| \leq ||v||$ per ogni $v \in _{\mu}\mathcal{D}f(x)$.

Definizione 4.Sia μ come nella definizione 1, e sia γ una misura vettoriale a n componenti verificanti le stesse condizioni di μ ; diremo che γ è la derivata geometricodistribuzionale di μ e porremo $\gamma = GDD\mu$ se per ogni $f \in C_0^1(\mathbb{R}^n)$ risulta

$$\int_{\mathbf{R}^n} \mu \nabla_{\mathbf{i}} f d\mu + \int_{\mathbf{R}^n} f d\gamma_{\mathbf{i}} = 0 \qquad per ogni \ i \in \{1, ..., n\}.$$

Osservazioni. 2. I discorsi sopra sviluppati si possono evidentemente localizzare considerando misure definite in un qualsiasi aperto di \mathbb{R}^n .

- 3. La nozione di derivata geometrico-distribuzionale di μ dovrebbe unificare i tre concetti di funzioni aventi derivate misure, di bordo e di curvatura media.
- 4. Il concetto di derivata geometrico-distribuzionale si estende senza difficoltà alle misure vettoriali e quindi si può passare alle derivate geometrico-distribuzionali di ordine superiore al primo. Tali derivate saranno indicate con GDD^{i} .
- 5. Sarebbe interessante confrontare la definizione di derivata $_{\mu}\nabla$ con la definizione di $_{w}\nabla$ (si veda la definizione 5 nella prima conversazione sulle varietà analitiche e problemi variazionali connessi) nei casi in cui entrambe siano definite.
- 6. Si potrebbe pensare alle possibili estensioni del concetto di $\mu-ap$ lim al caso di spazi metrici qualunque e del concetto di $\mu\mathcal{D}$ al caso di spazi di Banach.
- 7. Con le notazioni delle prime due conversazioni sulle varietà analitiche e problemi variazionali connessi (si veda in particolare la definizione 5 nella prima), posto per ogni $x \in \mathbb{R}^n$ $p_s(x) = x_s$ (s = 1, ..., n), e posto

$$b_{ijs} = {}_{w}\nabla_{i}{}_{w}\nabla_{j}p_{s} - {}_{w}\nabla_{i}{}_{w}\nabla_{i}p_{s},$$

vale la formula:

$$_{w}\nabla_{i}_{w}\nabla_{j}f - _{w}\nabla_{j}_{w}\nabla_{i}f = \sum_{s=1}^{n} b_{ijs}_{w}\nabla_{s}f;$$

per studiare iterazioni degli operatori $_{\mu}\mathcal{D}_{\mu}\nabla$ bisognerebbe scoprire analoghe formule sulla commutazione dell'ordine di derivazione.

Per l'ulteriore indagine sulle proprietà della derivata geometrico-distribuzionale sarebbe importante confermare o smentire la seguente congettura.

Congettura 1. Se μ è una misura verificante le condizioni della definizione 1 ed esiste $GDD\mu$ allora esistono n+1 funzioni $f_0, f_1, ..., f_n$ tali che per ogni boreliano limitato $B \subset \mathbf{R}^n$ risulti:

$$\mu(B) = \sum_{i=0}^{n} \int_{B} f_{i}(x) d\mathcal{H}^{i}(x).$$

Osservazioni. 8. Si possono dare condizioni sufficienti sulle f_i in modo che la misura μ definita per ogni boreliano limitato B dalla $\mu(B) = \sum_{i=0}^n \int_B f_i \, d\mathcal{H}^i$ possieda derivata

geometrico-distribuzionale. Per esempio si potrebbe cominciare a pensare a funzioni $f_i = \varphi_i \chi_{V_i}$, con φ_i funzioni e V_i varietà abbastanza regolari.

9. Posto per ogni boreliano limitato B $\mu(B) = \sum_{i=0}^{n} \int_{B} f_{i} d\mathcal{H}^{i}$, e supposto che esista $GDD\mu$, ci si può domandare se esistano anche le $GDD\mu_{i}$, ove $\mu_{i}(B) = \int_{B} f_{i} d\mathcal{H}^{i}$.

Definizione 5. Sia μ come nella definizione 1. Per ogni x nel supporto di μ indicheremo con $N\mu(x)$ e con $T\mu(x)$ rispettivamente lo spazio normale e lo spazio tangente a μ in x, definiti come segue:

$$N\mu(x) = \{z \in \mathbf{R}^n : \langle \mu \nabla f(x), z \rangle = 0 \text{ per ogni } f \in C^1(\mathbf{R}^n)\};$$

$$T\mu(x) = il\ complemento\ ortogonale\ di\ N\mu(x).$$

Indicheremo inoltre per ogni x nel supporto di μ e per ogni $f: \mathbb{R}^n \to \mathbb{R}^n$ con $\mathcal{P}_{N\mu} f(x)$ la proiezione di f(x) su $N\mu(x)$ e con $\mathcal{P}_{T\mu} f(x)$ la proiezione di f(x) su $T\mu(x)$

Osservazione 10. Per ogni $f \in C^1$ risulta: $_{\mu}\nabla f(x) = \mathcal{P}_{T\mu}\nabla f(x)$.

Congettura 2. Sia P un poliedro in \mathbb{R}^n , e sia $\mu(B) = \mathcal{H}^n(B \cap P)$ per ogni boreliano $B \subset \mathbb{R}^n$. Allora per ogni i esistono le derivate geometrico-distribuzionali $GDD^i\mu$ ed inoltre $GDD^{n+1}\mu = 0$.

Le prossime congetture riguardano alcune proprietà delle funzioni lipschitziane e delle derivate geometrico-distribuzionali.

Congettura 3. Sia μ tale che esista $GDD\mu$, e sia $\varphi: \mathbf{R}^n \to \mathbf{R}$ lipschitziana; allora per $\mu - q.o. x \in \mathbf{R}^n$ esiste $\mu \nabla \varphi(x)$ e si ha

$$\int_{\mathbf{R}^n} {}_{\mu} \nabla \varphi \, d\mu + \int_{\mathbf{R}^n} {}_{\varphi} GDD\mu = 0.$$

Congettura 4. Sia μ tale che esista $GDD\mu$, e sia $\varphi: \mathbb{R}^n \to \mathbb{R}$ lipschitziana; allora esiste $GDD(\varphi\mu)$ e si ha:

$$GDD(\varphi\mu) = \varphi GDD\mu + (\mu\nabla\varphi)\mu.$$