metric. Now the Webster scalar curvature W on a 3-dimensional contact metric manifold is defined by

$$W = \frac{1}{8}(R + \frac{1}{4}|\tau|^2 + 2);$$

by virtue of (2.4) and $\frac{1}{4}|\tau|^2 = |h|^2$, W becomes

$$W = \frac{1}{8}(R - Ric(\xi) + 4).$$

Chern and Hamilton [11] studied the functional $E_W(g) = \int_M W dV_g$ for 3-dimensional contact manifolds as a functional on \mathcal{A} regarded as the set of CR-structures on M and proved the following Theorem.

Theorem 4.5 (Chern-Hamilton). Let M be a compact 3-dimensional contact manifold and A the set of metrics associated to the contact form. Then $g \in A$ is a critical point of $E_W(g) = \int_M W \, dV_g$ if and only if g is K-contact.

An alternate proof was given by D. Perrone [19]. In view of the work we have done so far we can prove this theorem as follows.

Proof of Theorem 4.5. Clearly it is enough to consider $\int_M R - Ric(\xi) dV_g$ and having computed the derivatives of each term separately we see that

$$\frac{d}{dt} \int_{M} R - Ric(\xi) \, dV_g \bigg|_{t=0} = \int_{M} \left(-R^{ki} + h^{i}_{m} h^{mk} + R^{k}_{rs}{}^{i} \xi^{r} \xi^{s} - 2h^{ik} \right) D_{ik} \, dV_g.$$

Thus the critical point condition is

$$(Q\phi - \phi Q) - (l\phi - \phi l) - 4\phi h = -\eta \otimes \phi Q\xi + (\eta \circ Q\phi) \otimes \xi.$$

So far we have not used the fact that we are in dimension three and hence this is the critical point condition for the intergral of the generalized Tanaka-Webster scalar curvature as defined by Tanno [22]. Now in dimension 3 we can combine this condition with (3.6) to get h = 0.

5. The Abbena-Thurston manifold as a critical point

In 1976 W. Thurston [24] gave an example of a compact symplectic manifold with no Kähler structure. We will begin by discussing this manifold briefly and then turn to a natural Riemannian metric on this manifold introduced by E. Abbena [1]. For details of the topological obstructions to a Kähler structure we refer to [24] or [1] and simply remark here that the first Betti number of this manifold is 3 whereas the odd-dimensional Betti numbers of a compact Kähler are even

Let G be the closed connected subgroup of $GL(4, \mathbb{C})$ defined by

$$\left\{ \begin{pmatrix} 1 & a_{12} & a_{13} & 0 \\ 0 & 1 & a_{23} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2\pi i a} \end{pmatrix} \middle| a_{12}, a_{13}, a_{23}, a \in \mathbf{R} \right\},\,$$

i.e. G is the product of the Heisenberg group and S^1 . Let Γ be the discrete subgroup of G with integer entries and $M = G/\Gamma$. Denote by x, y, z, t coordinates on G, say for $A \in G$, $x(A) = a_{12}$, $y(A) = a_{23}$, $z(A) = a_{13}$, t(A) = a. If L_B is left translation by $B \in G$, $L_B^* dx = dx$, $L_B^* dy = dy$, $L_B^* (dz - xdy) = dz - xdy$, $L_B^* dt = dt$. In particular these forms are invariant under the action of Γ ; let $\pi : G \longrightarrow M$, then there exist 1-forms $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ on M such that $dx = \pi^* \alpha_1, dy = \pi^* \alpha_2, dz - xdy = \pi^* \alpha_3, dt = \pi^* \alpha_4$. Setting $\Omega = \alpha_4 \wedge \alpha_1 + \alpha_2 \wedge \alpha_3$ we see that $\Omega \wedge \Omega \neq 0$ and $d\Omega = 0$ on M giving M a symplectic structure.

The vector fields

$$\mathbf{e}_1 = \frac{\partial}{\partial x}, \ \mathbf{e}_2 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \ \mathbf{e}_3 = \frac{\partial}{\partial z}, \ \mathbf{e}_4 = \frac{\partial}{\partial t}$$

are dual to dx, dy, dz - xdy, dt and are left invariant. Moreover $\{e_i\}$ is orthonormal with respect to the left invariant metric on G given by

$$ds^{2} = dx^{2} + dy^{2} + (dz - xdy)^{2} + dt^{2}.$$

On M the corresponding metric is $g = \sum \alpha_i \otimes \alpha_i$. The Riemannian manifold (M, g) is referred to as the Abbena-Thurston manifold.

Moreover M carries an almost complex structure defined by

$$Je_1 = e_4$$
, $Je_2 = -e_3$, $Je_3 = e_2$, $Je_4 = -e_1$.

Then noting that $\Omega(X,Y)=g(X,JY)$, we see that g is an associated metric.

The curvature of g was computed by E. Abbena in [1]. With respect to the basis $\{e_i\}$ the non-zero components of the curvature tensor are

$$R_{1221} = \frac{3}{4}, \ R_{2332} = -\frac{1}{4}, \ R_{1331} = -\frac{1}{4}.$$

Thus the Ricci operator Q is given by the matrix

$$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and we note that Q^2 is parallel with respect to the Levi-Civita connection of g but that Q is not parallel.

The following observation stems from conversations between Won-Tae Oh and myself.

Proposition 5.1 (Blair-Oh). The Abbena-Thurston manifold is a critical point of the functional

$$I(g) = \int_{M} \left(\frac{4}{3} \operatorname{tr} Q^{3} - R\right) dV_{g}$$

on M.

Sketch of the proof. Computing the critical point condition for I(g) on \mathcal{M} in general we find that it is

$$2(\nabla_{m}\nabla_{i}R_{jk}R^{km} + \nabla_{m}\nabla_{j}R_{ik}R^{km} - \nabla^{m}\nabla_{m}R_{jk}R^{k}{}_{i} - g_{ij}\nabla_{m}\nabla_{l}R^{m}{}_{k}R^{kl} - 2R_{im}R^{m}{}_{k}R^{k}{}_{j} + \frac{1}{2}R_{ij}) + \frac{1}{2}(\frac{4}{3}trQ^{3} - R)g_{ij} = cg_{ij}.$$

Now since Q^2 is parallel and $Q^3 = \frac{1}{4}Q$ on the Abbena-Thurston manifold we see that this metric on the underlying manifold $M = G/\Gamma$ is a critical point of I(g).

From the expression for Q it is clear that (M,g) is not Einstein nor is QJ = JQ. Thus this metric is not a critical point for $A(g) = \int_M R \, dV_g$ considered as a functional on \mathcal{M} or on \mathcal{A} or for $K(g) = \int_M R - R^* \, dV_g$ on \mathcal{A} . In particular it does not give a negative answer to the question of whether or not an almost Kähler manifold satisfying QJ = JQ is Kählerian. On the other hand (M,g) is a critical point for K in a different context; C. M. Wood [25] showed that the Abbena-Thurston manifold is a critical point of K defined with respect to variations through almost complex structures J which preserve g. For this problem the critical point condition is

$$[J, \nabla^* \nabla J] = 0,$$

where $\nabla^*\nabla J$ is the rough Laplacian of the metric in question.

6. Problems involving other integrands

Finally we turn to a brief discussion of some related problems. In the Riemannian geometry of contact metric manifolds the tensor fields l and S defined by $lX = R(X, \xi)\xi$ and $S(X, Y) = R(X, Y)\xi$ play important roles. For example on a K-contact manifold l is the identity and on a Sasakian manifold $S(X, Y) = \eta(Y)X - \eta(X)Y$. More generally we have noted (equation (2.3)) that

$$\nabla_{\xi} h = \phi - \phi h^2 - \phi l.$$

Thus it seems reasonable to consider functionals defined by integrals such as $\int_M |l|^2 dV_g$ and $\int_M |S|^2 dV_g$. In the case of the first of these Mr. S. R. Deng computed the critical point condition of $\int_M |l|^2 dV_g$ as a functional on $\mathcal A$ and noted the following.

Proposition 6.1 (Deng). Let M be a compact contact manifold and A the set of metrics associated to the contact form. Then a K-contact metric is a critical point of the functional $\int_{M} |l|^2 dV_g$ on A. More generally if for a metric g, $\nabla_{\xi} h = 0$, then g is a critical point if and only if $h^3 - h = 0$.

The original functionals A(g), B(g), C(g), D(g) on \mathcal{M} have been study further in the context of contact geometry by Muto [17] and Yamaguchi and Chūman [26]; the general thrust of their work is to suppose that a critical point is a Sasakian metric. For example we have the following results.